JPS61256928A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS61256928A
JPS61256928A JP9667685A JP9667685A JPS61256928A JP S61256928 A JPS61256928 A JP S61256928A JP 9667685 A JP9667685 A JP 9667685A JP 9667685 A JP9667685 A JP 9667685A JP S61256928 A JPS61256928 A JP S61256928A
Authority
JP
Japan
Prior art keywords
glass
particles
raw material
powder
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9667685A
Other languages
Japanese (ja)
Inventor
Ichiro Yoshida
吉田 伊知朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9667685A priority Critical patent/JPS61256928A/en
Publication of JPS61256928A publication Critical patent/JPS61256928A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Abstract

PURPOSE:To stably glass produce without generating cracks by mixing a thickener and glass raw material particles of a specific grain size with a sol liquid contg. alkoxide of silicon as a raw material, gelling the mixture, drying the gel and sintering the same. CONSTITUTION:Alkoxide of Si such as Si(OCH3)4 is used for at least one of the raw materials and others such as ethanol and ammonia are added thereto to obtain the 1st sol liquid which can be gelled. The powder contg. the thickener and glass raw material particles of 1mu grain size or above are mixed with the 1st sol liquid, by which the 2nd sol liquid is obtd. The above-mentioned thickener is preferably the pulverous particles of the glass raw material and the adequate grain size thereof is about 0.005-1mu. The secondary particles of average 1-100mu grain size formed by flocculating the pulverous particles of the glass raw material are used as the above-mentioned powder and are preferably crushed partly in the stage of mixing so as to act as the thickener for the pulverous particles. The above-mentioned 2nd sol liquid is gelled and is sintered after drying, by which the glass is obtd. without generating cracks.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゾルゲμ法によりガラスを製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing glass by the Sorge μ method.

〔従来の技術〕[Conventional technology]

現在、光ファイバーのプリフォームを作製する方法とし
ては、vAp法をはじめとする、81Cj。
Currently, there are 81Cj methods for producing optical fiber preforms, including the vAp method.

等を火炎中に通しガラス微粒子をターゲット上に堆積さ
せ、得られたガラス多孔質体を焼結しガラス塊を得る、
という方法が主流になっている。これは高純度の多孔質
ガラスを比較的安価に得られる優れた方法である。しか
しこの方法は気相反応であるため、添加物として使える
物質がガス化できるものに限られる、という欠点があっ
た。
etc. through a flame to deposit glass particles on a target, and sinter the resulting glass porous body to obtain a glass lump.
This method has become mainstream. This is an excellent method for obtaining high-purity porous glass at a relatively low cost. However, since this method is a gas phase reaction, it has the disadvantage that the substances that can be used as additives are limited to those that can be gasified.

そこで、近年、この欠点を補う方法として、Slを主体
とした金属アルコキシドを加水分解し、シリカゲルある
いは添加元素を含むシリカゲルを得、該シリカゲμを乾
燥させた後無孔化処理等を行い透明ガラスを得る方法が
盛んに研究されている。
Therefore, in recent years, as a method to compensate for this drawback, a metal alkoxide mainly composed of Sl is hydrolyzed to obtain silica gel or silica gel containing additive elements, and after drying the silicage μ, a process such as making it non-porous is performed to make transparent glass. Methods to obtain this are being actively researched.

一例を挙げれば、シリコンテトラメトキシド等os1の
アルコキシドを、エタノ−μト充分に攪拌混合した後、
水を加え更に攪拌して加水分解する。この時水にはアン
モニア等pH調整剤を加えておくことが好ましい。加水
分解反応の開始と共に粒子の析出が始まり、該反応溶液
を一端を封じたパイプに流しこみゲル化させる。
For example, after thoroughly stirring and mixing an os1 alkoxide such as silicon tetramethoxide with ethanol,
Add water and stir further for hydrolysis. At this time, it is preferable to add a pH adjuster such as ammonia to the water. Particle precipitation begins with the start of the hydrolysis reaction, and the reaction solution is poured into a pipe with one end sealed to form a gel.

ゲル化後これを水中で押し出し、ゆつ(9乾燥するよう
内径がゲμよシもやや大きなパイプに移し乾燥させる。
After gelling, extrude it in water and transfer it to a pipe with a slightly larger inner diameter to dry it.

乾燥するに従いゲルは収縮する。このようにして得たゲ
ルを取りだし、例えば酸素と塩素を含むHe雰囲気中に
て加熱する等によシ無孔化処理を行い、透明ガラスを得
ることができる。
The gel shrinks as it dries. The thus obtained gel is taken out and subjected to a porosity treatment such as heating in a He atmosphere containing oxygen and chlorine to obtain transparent glass.

このようないわゆるゾルゲル法は各種の物質を容易に添
加できるという長所がある。
This so-called sol-gel method has the advantage that various substances can be easily added.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記の従来法ではゲルが乾燥・焼結の過程
で割れ易い、などの欠点がある。
However, the conventional method described above has drawbacks such as the gel being easily broken during the drying and sintering process.

本発明者らは、これらの欠点を除くため、ゾル液に、コ
ロイドになる、またはならない大きさの粒子を加えるこ
とを既に提案しておシ、効果をあげている。(特願昭5
9−192581.60−13538各号明細書) な
お、ゾル、ゲル、という言葉は本来はコロイドに対して
定義されたものであるが、ここではコロイドにならない
大きさの粒子を含むゾμ、ゲμをもゾル、ゲμと呼ぶこ
とにする。
In order to eliminate these drawbacks, the present inventors have already proposed adding particles of a size that may or may not form a colloid to the sol, and have achieved results. (Special request 1976
9-192581.60-13538) The terms sol and gel were originally defined for colloids, but here they are used to refer to sol and gel, which contain particles that are too large to become colloids. We will also call μ sol and geμ.

ところが、この方法でコロイドにならない大きさの粒子
を加えた場合、粒子によってはゲル化完了前に粒子が下
に沈もうとし、ゲ〃のかさ密度が、ゲμの上部と下部で
異なったり、あるいは粒子を完全に沈ませてからゲル化
させると、ゲル、特に長いゲルを取りだすのが困難にな
り、とりだした後も弾性が少なく、小さいひずみで割れ
てしまうなど扱いに・くい場合があった。
However, when using this method to add particles that are too large to form a colloid, some particles tend to sink to the bottom before gelation is complete, and the bulk density of the gel may differ between the top and bottom of the gel. Alternatively, if the particles are completely submerged and then gelled, it becomes difficult to take out the gel, especially long gels, and even after taking out the gel, it has little elasticity and can be difficult to handle, such as breaking with a small strain. .

本発明はこのような従来法の欠点を解消すること、すな
わち乾燥・焼結の際に割れにくく、均一でかつ扱いやす
いゲルを得る手段に関し、それにより安定したガラスの
製造方法を提供することを目的とする。
The present invention aims to eliminate the drawbacks of such conventional methods, that is, to provide a means for obtaining a gel that is hard to break during drying and sintering, is uniform, and is easy to handle, thereby providing a stable glass manufacturing method. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は原料の少なくとも1つをシリコンのアルコキシ
ドとするゲ)v化しうる第1のゾル液に、ガラス原料を
含む粉末を混合し、得られた第2のゾル液をゲル化させ
、得られたゲpを乾燥させ、該乾燥ゲμを焼結してガラ
スを得る方法に於いて、第1のゾル液と粉末を混合して
得た第2のゾル液は、増粘剤と粒径1ミクロン以上のガ
ラス原料粒子を含んでなるものでおることを特徴とする
ガラスの製造方法によシ前記目的を達成するものである
In the present invention, at least one of the raw materials is a silicon alkoxide.G) A powder containing a glass raw material is mixed with a first sol liquid that can be converted into a glass, and the second sol liquid obtained is gelled. In the method of obtaining glass by drying the powder and sintering the dried gel, the second sol obtained by mixing the first sol and the powder is mixed with a thickener and a particle size. The above object is achieved by a method for producing glass, which is characterized in that it contains glass raw material particles of 1 micron or more.

本発明の特に好ましい実施態様としては、該増粘剤がガ
ラス原料の微粒子である上記のガラスの製造方法を挙げ
ることができる。
A particularly preferred embodiment of the present invention includes the above-mentioned method for producing glass, in which the thickener is fine particles of a glass raw material.

以下に本発明の方法を詳述する。The method of the present invention will be explained in detail below.

本発明におけるクリコンのアルコキシドとしては、例え
ば8i(OCH3)イSi(OC2H5)4等を用いる
ことができ、これらを原料の1つとする第1のゾル液は
、例えばシリコンのアルコキシドをエタ゛ノーμ等と混
合したのちアンモニア水を加えさらによく混合する等の
方法によって製造する。
As the alkoxide of cricon in the present invention, for example, 8i(OCH3), Si(OC2H5)4, etc. can be used, and the first sol liquid using these as one of the raw materials can be prepared by mixing silicon alkoxide with ethanol, etc. It is manufactured by a method such as mixing, adding ammonia water, and further mixing well.

得られた第1のゾル液に、ガラス原料を含む粉末を加え
、第2のゾル液を得るが、該第2のゾル液は増粘剤と粒
径1ミクロン以上のガラス原料粒子を含んでなるように
、ガラス原料を含む粉末を選ぶ。
Powder containing glass raw material is added to the obtained first sol liquid to obtain a second sol liquid, and the second sol liquid contains a thickener and glass raw material particles with a particle size of 1 micron or more. Choose a powder that contains glass raw materials so that

上記第2のゾル液に含まれるガラス原料粒子の粒径が1
−未満のものばかやであると、得られたゲルが乾燥時に
やや割れやすいからである。
The particle size of the frit particles contained in the second sol is 1
This is because if it is less than -, the obtained gel will be a little more likely to crack during drying.

また本発明の増粘剤は上記粉末に含まれていてもよいし
、別に加えてもよい。
Further, the thickener of the present invention may be included in the powder, or may be added separately.

該増粘剤はゲル化前に粒径1μ以上のガラス原料粒子が
沈むのを防ぐ作用を持つ。どの程度の粘性が適当かは、
ゲル化時間、粒径、粒子の形などによって異なる。粘性
が高すぎると、脱気したりゾル液を型に流しζんだすす
るのが、困難であり、低すぎるとゲル化前に粒子が下に
沈んでしまう。その中間の濃度が好ましい。
The thickener has the effect of preventing glass raw material particles having a particle size of 1 μm or more from sinking before gelation. What level of viscosity is appropriate?
Depends on gelation time, particle size, particle shape, etc. If the viscosity is too high, it will be difficult to degas or pour the sol into a mold, and if the viscosity is too low, the particles will sink to the bottom before gelation. Concentrations in between are preferred.

本発明における増粘剤としてはガラス原料の微粒子・水
溶性上μロース等を用いることができるが、これに限定
されることはなく、上記した作用を有するものであれば
よい。増粘剤としてガラス原料の微粒子を用いると、水
溶性上μロースのように、焼結時にとり除く必要が無く
都合が良い。特に810.の微粒子は造粘作用が大きく
、ま、た安価でかつ高純度のものが得やすく優れている
。この微粒子は、成分、粒子の形、OH基密度などによ
り、適当な径が異なるが大むね[LOO5μから1μ程
度、好ましくはα00’5μから0.5μである。粒子
の形がいびつな場合には、これより大きくても増粘作用
を示すこともあるようである。加える量も条件によって
異なる。前述の適当な粘性となるように加えるのが良い
As the thickener in the present invention, fine particles of glass raw materials, water-soluble upper μ-loose, etc. can be used, but the thickener is not limited thereto, and any thickener that has the above-mentioned effect may be used. It is convenient to use fine particles of a glass raw material as a thickener because it does not need to be removed during sintering, unlike water-soluble micro-loose. Especially 810. The fine particles have a strong viscosity-forming effect, and are also inexpensive and easy to obtain with high purity. The diameter of these fine particles varies depending on the components, particle shape, OH group density, etc., but in general, it is approximately [LOO 5μ to 1μ, preferably α00′ 5μ to 0.5μ. If the shape of the particles is irregular, even if the particles are larger than this, they may exhibit a thickening effect. The amount added also varies depending on the conditions. It is best to add it to achieve the appropriate viscosity mentioned above.

第1のゾル液に加える粉末として、微粒子が軽く造粒さ
れて2次粒子となったものを用いると優れた結果が得ら
れる。この場合、粉末を、第1のゾル液と混合する際2
次粒子の1部がこわれ、こわれた粒子が造粘剤として働
くものと考えられる。1次粒子は、適当な増粘作用をあ
たえるものであれば良い。この値は条件によって異なる
が大むねα005から1μ程度が適当なことが多いよう
である。1次粒子が小さすぎると粒子どうしの結合が強
くなりやすく、2次粒子が混合時にこわれなくなる場合
がある。また1次粒子が大きすぎると増粘作用が少なく
なるので、前述の範囲にこだわらず適当な粒径を条件に
あわせて選べば良い。
Excellent results can be obtained when fine particles are lightly granulated to form secondary particles as the powder added to the first sol solution. In this case, when the powder is mixed with the first sol solution,
It is thought that a part of the secondary particles are broken and the broken particles act as a viscosity agent. The primary particles may be of any type as long as they provide an appropriate thickening effect. Although this value varies depending on the conditions, it seems that approximately α005 to 1μ is appropriate in most cases. If the primary particles are too small, the bonds between the particles tend to become strong, and the secondary particles may not be broken during mixing. Moreover, if the primary particles are too large, the thickening effect will be reduced, so it is sufficient to select an appropriate particle size according to the conditions without being limited to the above-mentioned range.

2次粒子の径は任意であるが平均2次粒径が1μから1
00μのあいだであると、ゲμの割れにくさ、均一性が
特に優れているようである。
The diameter of the secondary particles is arbitrary, but the average secondary particle diameter is 1μ to 1μ.
When it is between 00μ, it seems that the resistance to cracking of the gel μ and the uniformity are particularly excellent.

この2次粒径が小さすぎると、乾燥・焼結の際割れやす
い傾向があり、大きすぎると、ゲルが不均一になりやす
い傾向がある。
If the secondary particle size is too small, the gel tends to crack easily during drying and sintering, and if it is too large, the gel tends to become non-uniform.

1次粒子を造粒する方法としては、1次粒子を液体に分
散させておいて、その液体を、■ 噴霧し、液滴を凍結
乾燥する、 ■ ビーカー等に入れ加熱し液体を蒸発させ、残留物を
砕く、 ■ ビーカー等に入れ真空に引くと共に加熱し液体を蒸
発させ、残留物を砕く、 ■ 高温中に噴霧する(噴霧乾燥)、 などの方法が公知であるがこれに限定されるものではな
い。
The methods for granulating primary particles include: dispersing the primary particles in a liquid, then spraying the liquid and freeze-drying the droplets; ■ placing the particles in a beaker or the like and heating them to evaporate the liquid; The following methods are known, but are limited to: ■ Putting it in a beaker or the like and drawing a vacuum and heating it to evaporate the liquid and crushing the residue; ■ Spraying it in a high temperature environment (spray drying). It's not a thing.

本発明者は研究の結果、噴霧乾燥によって造粒すること
が、なかでも優れていることを見い出した。これは造粒
の強さ、粒径などが適当なためであると思われる。
As a result of research, the present inventor found that granulation by spray drying is particularly excellent. This seems to be due to appropriate granulation strength, particle size, etc.

本発明によって得られるゲルはドーパントをドープする
際に割れにくく、不均一なドープに対しても強い。この
ため、ゲル中にドーパントを不均一にドープし、平面導
波路、ロッドレンズを製造するのにも適している。
The gel obtained by the present invention is resistant to cracking when doped with a dopant and is resistant to uneven doping. Therefore, it is also suitable for manufacturing planar waveguides and rod lenses by non-uniformly doping dopants into the gel.

均一なドープをする場合は、ゲル化後にドープするより
もドープされた粉末を用いた方が、工程が簡単になる、
仮焼が必要な場合は粉末状態で仮焼した方が楽になるな
ど便利な場合が多い。
When doping uniformly, it is easier to use doped powder than to dope after gelation.
If calcining is necessary, it is often easier and more convenient to calcinate in powder form.

ドーパントをドープするには、■粉末中にドープしてお
く、■第1のゾル液中にドープしてお(、■ドーパント
を含む液をゲμにしみこませる、などの方法があシ、い
ずれの方法によってもよい。
In order to dope the dopant, there are several methods, such as ■ doping it in the powder, ■ doping it in the first sol solution, and ■ infiltrating the solution containing the dopant into the gel μ. This method may also be used.

本発明に用いるドーパントとしては、例えばGo、 P
、 B、 Cs、 K、 Na、 Pb、 Nd、 Y
b、 8b、 8n、 kL等が挙げられるが、これら
に限定されるものではない。ドーパントは酸化物あるい
は酸化しうる化合物の形でドープし、最終製品ガラス中
では酸化物となるようにする。
Examples of dopants used in the present invention include Go, P
, B, Cs, K, Na, Pb, Nd, Y
b, 8b, 8n, kL, etc., but are not limited to these. The dopants are doped in the form of oxides or oxidizable compounds so that they become oxides in the final glass.

具体的なドープ方法の例を挙げると、5102コロイド
とGe01 コロイドを水中に分散させておき、スプレ
ードライすることにより、oeのドープされた粉末を得
ることができる。またS10.コロイドをCsNO3水
溶液中に分散させておきこれをスプレードライし、酸素
中600℃程度で仮焼することにより、Cmのドープさ
れた粉末を得ることができる。この他に、第1のゾル液
にKBrを溶かしておくことによりKをドープしたり、
乾燥ゲルにNdI、とH3BO3の水溶液をしみこませ
ることによりNdとBをドープしたりできる。
To give an example of a specific doping method, OE doped powder can be obtained by dispersing 5102 colloid and Ge01 colloid in water and spray drying them. Also S10. A Cm-doped powder can be obtained by dispersing the colloid in a CsNO3 aqueous solution, spray-drying it, and calcining it in oxygen at about 600°C. In addition, K may be doped by dissolving KBr in the first sol solution,
Nd and B can be doped by impregnating the dry gel with an aqueous solution of NdI and H3BO3.

また、これはドーパントではないが、ゲルにNH,・H
F’の水溶液をしみ込ませた後、適当な条件で焼結する
ことにより、フッ素を含むガラスを得ることも可能であ
る。
Also, although this is not a dopant, NH, .H
It is also possible to obtain glass containing fluorine by impregnating it with an aqueous solution of F' and then sintering it under appropriate conditions.

また本発明で得られるゲルは均一性が高(、乾燥時の収
縮の少ないものくすることが可能であり、ガラス棒、ガ
ラス板などの上に数10声以上の比較的厚いゲル膜をつ
くることができる。
In addition, the gel obtained by the present invention has high uniformity (it can be made with little shrinkage during drying, and it is possible to form a relatively thick gel film of several tens of tones or more on glass rods, glass plates, etc.). be able to.

これを適当な条件で焼結することによシ、ガラス板・ガ
ラス板上に異質のガラス層をつけることが可能である。
By sintering this under appropriate conditions, it is possible to form a different glass layer on a glass plate or glass plate.

〔実施例〕〔Example〕

以下、実施例によシ、本発明の方法を具体的に説明する
Hereinafter, the method of the present invention will be specifically explained using examples.

実施例1 Si(OCHs)4504 g、エタノ−/I/200
g、水54 ? 69を混合し3%のシリカゾル液を得
た。これを250℃で噴霧乾燥することにより平均粒子
径10μ程度の球形のシリカ粒子を得た。この粒子は強
く造粒されておシ簡単にはこわれなかった。
Example 1 Si(OCHs) 4504 g, ethanol/I/200
g, water 54? 69 was mixed to obtain a 3% silica sol solution. By spray drying this at 250° C., spherical silica particles with an average particle diameter of about 10 μm were obtained. The particles were strongly granulated and did not break easily.

次に81(OCH3)41 ?p、エタノーIV2sg
、15%アンモニア水1滴を含む水19.li+をよく
混合しミキサーに入れた。この中に、前記シリカ粉末s
a9を加えよく混合した。さらにこの中に粒径α05μ
程度のシリカ粉末(アエロジ/L10X−50の商品名
で市販されている。)45gを加え混合したところ粘性
は著るしく増した。これをビーカーに移し、60 To
rr 程度の圧力で脱気した後、1端をテフロンテープ
で封じた内径6−φのパイプに注ぎゲル化させた。
Next 81 (OCH3) 41? p, ethanol IV2sg
, water containing one drop of 15% ammonia water19. The li+ was mixed well and placed in a mixer. In this, the silica powder s
A9 was added and mixed well. Furthermore, in this, particle size α05μ
When 45 g of silica powder (commercially available under the trade name Aeroge/L10X-50) was added and mixed, the viscosity increased significantly. Transfer this to a beaker and add 60 To
After deaerating the mixture at a pressure of approximately 1.5 mm, it was poured into a pipe with an inner diameter of 6 mm and one end sealed with Teflon tape to form a gel.

その後テープをはずしゲルを水中に押し出した。Afterwards, the tape was removed and the gel was pushed out into water.

このゲルの一部をとりアルミ箔の上におき1晩乾燥させ
た。乾燥後、ゲμに5優のほう酸水溶液をしみこませ、
もう1度乾燥した。これを温度500℃空気中で仮焼し
、He中で1450℃まで昇温しガラスを得た。
A portion of this gel was placed on aluminum foil and dried overnight. After drying, soak Gemu with a 5% boric acid aqueous solution,
I dried it again. This was calcined in air at a temperature of 500°C and heated to 1450°C in He to obtain glass.

比較例1 粒径Q、05μ程度のシリカ粉末を加えなかったこと以
外は実施例1と同様にして、パイプ中にゲルを得た。ゲ
μの上部は粉末がなく、はとんどの粒子は下に沈んでい
た。多量の粒子を含む部分の長さは50α程度であった
。このゲルはパイプ内面との摩擦が大きく押し出せなか
った。
Comparative Example 1 A gel was obtained in a pipe in the same manner as in Example 1 except that silica powder having a particle size Q of about 05 μm was not added. There was no powder at the top of Geμ, and most of the particles had sunk to the bottom. The length of the portion containing a large amount of particles was approximately 50α. This gel could not be pushed out because of the large friction with the inner surface of the pipe.

比較例2 粒径10声、α05μ程度のいずれのシリカ粒子も加え
なかったことの他は実施例1と同様にしてゲルを得た。
Comparative Example 2 A gel was obtained in the same manner as in Example 1, except that no silica particles with a particle size of about 10 tones and about α05 μm were added.

しかじゲμは乾燥中にボロボロに割れた。Shikajige μ broke into pieces while drying.

実施例2 粒径Q、05μ程度のシリカ粉のかわりに0.012μ
程度のシリカ粉(アエロジμの商品名で市販されている
)15gを加えたことの他は実施例1と同様にしてガラ
スを得た。
Example 2 Particle size Q: 0.012μ instead of silica powder of about 05μ
A glass was obtained in the same manner as in Example 1, except that 15 g of silica powder (commercially available under the trade name Aeroge μ) was added.

実施例3 粒径0.012μ程度のシリカ粒子120gと水300
gとをミキサーで混合し、120℃恒温槽で乾燥するこ
とにより、シリカ粒子を造粒した。
Example 3 120g of silica particles with a particle size of about 0.012μ and 300g of water
g in a mixer and dried in a 120° C. constant temperature bath to granulate silica particles.

次にSi(OCH3)、  19 fl、エタノ−/I
/23g、13チアンモニア水1滴を含む水19gをよ
(混合しミキサーに入れた。この中に前記造粒されたシ
リカ259を加えよく混合したところ著るしく粘性が増
した。これは造粒された粒子の一部がこわれ微粒子とな
ったためである。これをビーカーに移し60 Torr
  程度で脱気した。
Next, Si(OCH3), 19 fl, ethanol/I
/23g, 19g of water containing 1 drop of 13thiammonia water was mixed and put into a mixer.When the granulated silica 259 was added to this mixture and mixed thoroughly, the viscosity increased significantly. This is because some of the crushed particles broke down and became fine particles.These were transferred to a beaker and heated to 60 Torr.
I degassed to a certain degree.

以後実施例1と同様にしてガラスを得た。Thereafter, glass was obtained in the same manner as in Example 1.

実施例4 粒径α012μ程度のシリカ粒子の5%程度のゾ#液を
250℃で噴霧乾燥することにより粒径15μ程度のシ
リカ粒子を得、これを900℃で仮焼した。この粒子は
弱く造粒されており、カバーガラスとスライドガラスの
間にはさみ、ガラスを軽くこするだけでこわれた。
Example 4 Silica particles with a particle size of about 15 μm were obtained by spray-drying about 5% of the sol solution at 250° C. on silica particles with a particle size of about α012 μm, and calcined at 900° C. These particles were weakly granulated and could be broken by simply placing them between a cover glass and a slide glass and lightly rubbing the glass.

この粉末15gを実施例3の造料されたシリカのかわり
に用いてガラスを得た。このとき得られたゲμは、実施
例5のゲルより、強度・均一性が高く優れていた。
Glass was obtained by using 15 g of this powder in place of the prepared silica of Example 3. The gel μ obtained at this time was superior to the gel of Example 5 in terms of strength and uniformity.

実施例5 1次粒子径a、Sμ程度、2次粒子は形はいびつで粒径
(最も長い部分)は平均が25μ程度だが1μ以下から
100μ以上にまで及び、かつ2次粒子はこわれやすい
Vリカ粉末3agを用いた他は実施例3,4と同様にし
てガラスを得た。
Example 5 The primary particle diameter is a, about Sμ, the secondary particles are irregular in shape, and the particle size (longest part) averages about 25μ, but ranges from less than 1μ to more than 100μ, and the secondary particles are fragile V Glass was obtained in the same manner as in Examples 3 and 4, except that 3ag of Rica powder was used.

実施例6 5チのほう酸水溶液のかわシに20チはう酸水溶液をし
みこませ、焼結温度を1000℃とした他は実施例5と
同様にしてガラスを得た。
Example 6 Glass was obtained in the same manner as in Example 5, except that a 20-T boric acid aqueous solution was impregnated into a 5-T boric acid aqueous solution and the sintering temperature was 1000°C.

このガラス中のB2O2濃度は12重量−程度である。The B2O2 concentration in this glass is about 12% by weight.

実施例7 実施例5,6と同様にして得た乾燥ゲルにGe(OC2
H5)4の1チエタノール溶液をしみこませ、その後エ
タノールの50チ水溶液中に5分間入れた。このゲルを
乾燥後5%のホウ酸水溶液をしみこませ再び乾燥した。
Example 7 Ge (OC2) was added to the dried gel obtained in the same manner as in Examples 5 and 6.
It was impregnated with a 1% ethanol solution of H5)4, and then placed in a 50% aqueous solution of ethanol for 5 minutes. After drying this gel, it was impregnated with a 5% boric acid aqueous solution and dried again.

その後実施例5と同様にして焼結し、Geをドープされ
たガラスを得た。
Thereafter, it was sintered in the same manner as in Example 5 to obtain a Ge-doped glass.

実施例8 6vmφのパイプのかわりに10瓢φのパイプを用いた
他は実施例5,6.7と同様にして乾燥ゲμを得た。こ
のゲμを板状に研摩し、20チはう酸水溶液をしみこま
せ、40チ硝酸セシウム水溶液に5秒間つけた後再び乾
燥した。このゲルを空気中500℃仮焼後、He中10
00℃で焼結し、表面に屈折率の高い層を持つ平面導波
路の母材を得た。
Example 8 Dry gel μ was obtained in the same manner as in Examples 5 and 6.7 except that a 10 mmφ pipe was used instead of the 6 mmφ pipe. This geum was ground into a plate shape, impregnated with a 20% cesium nitrate aqueous solution, immersed in a 40% cesium nitrate aqueous solution for 5 seconds, and then dried again. After calcining this gel in air at 500°C,
The base material of the planar waveguide was sintered at 00°C and had a layer with a high refractive index on the surface.

実施例9 実施例8と同様にして板状の乾燥ゲルを得た。Example 9 A plate-shaped dry gel was obtained in the same manner as in Example 8.

コノケルにエタノ−μをしみこませた後、Ge(OC2
Hs)i の1%エタノール溶液に5秒っけ、続いてエ
タノールの50%水溶液に5分つけた。これを乾燥後、
5%はうさん水溶液をしみこませ再び乾燥した。
After impregnating Conokel with ethanol-μ, Ge(OC2
It was immersed in a 1% ethanol solution of Hs)i for 5 seconds, and then immersed in a 50% aqueous ethanol solution for 5 minutes. After drying this,
It was impregnated with a 5% aqueous solution and dried again.

こうして得られたゲルを空気中500’Cで仮焼後He
中1450℃で焼結し表面に屈折率の高い層を持つ平面
導波路の母材を得た。なお粉末を加えずに得た乾燥ゲル
は、水、エタノ−μなどにつけると割れるため、そのま
まではこの方法で導波路をつくることはできない。
After calcining the gel thus obtained at 500'C in air,
A base material for a planar waveguide having a layer with a high refractive index on the surface was obtained by sintering at 1450°C. Note that a dry gel obtained without adding powder will break if it is exposed to water, ethanol, etc., so it is not possible to create a waveguide using this method as it is.

実施例10 実施例5〜9と同様にして得たゾル液を石英パイプの内
面に塗ヤ乾燥し、これに5チはう酸水溶液をしみこませ
空気中500℃仮焼後He中1450℃で焼結した。こ
のパイプを外側から酸水素炎であぶったところ膜は透明
化しパイプ内面に200μ程度のガラス膜がついたもの
を得た。
Example 10 A sol solution obtained in the same manner as in Examples 5 to 9 was applied to the inner surface of a quartz pipe, dried, impregnated with a 5-chloride aqueous solution, calcined in air at 500°C, and then calcined in He at 1450°C. Sintered. When this pipe was heated from the outside with an oxyhydrogen flame, the film became transparent and a glass film of about 200 μm was attached to the inner surface of the pipe.

比較例5 粉末を加えなかった他は実施例10と同様にして石英パ
イプにゾル液を塗った。しかし、1μ以上の厚みの乾燥
ゲル膜を割れ無しに得ることはできなかった。
Comparative Example 5 A quartz pipe was coated with a sol solution in the same manner as in Example 10, except that no powder was added. However, it was not possible to obtain a dry gel film with a thickness of 1 μm or more without cracking.

(発明の効果) 本発明は乾燥・焼結時に割れにくく、均一でかつ取り扱
い時にも割れにくいゲルを得ることができ、それにより
安定したガラスの製造方法を提供することができるとい
う優れた効果を奏する。
(Effects of the Invention) The present invention has the excellent effect of being able to obtain a gel that is hard to break during drying and sintering, uniform and hard to break when handled, and thereby providing a stable glass manufacturing method. play.

Claims (5)

【特許請求の範囲】[Claims] (1)原料の少なくとも1つをシリコンのアルコキシド
とするゲル化しうる第1のゾル液に、ガラス原料を含む
粉末を混合し、得られた第2のゾル液をゲル化させ、得
られたゲルを乾燥させ、該乾燥ゲルを焼結してガラスを
得る方法に於いて、第1のゾル液と粉末を混合して得た
第2のゾル液は、増粘剤と粒径1ミクロン以上のガラス
原料粒子を含んでなるものであることを特徴とするガラ
スの製造方法。
(1) A gelatinable first sol liquid containing silicon alkoxide as at least one of the raw materials is mixed with a powder containing a glass raw material, and the obtained second sol liquid is gelled. In the method of obtaining glass by drying the dried gel and sintering the dried gel, the second sol solution obtained by mixing the first sol solution and the powder contains a thickener and a particle size of 1 micron or more. A method for producing glass, characterized in that it contains glass raw material particles.
(2)前記増粘剤はガラス原料の微粒子である特許請求
の範囲第(1)項記載のガラスの製造方法。
(2) The method for producing glass according to claim (1), wherein the thickener is fine particles of a glass raw material.
(3)前記粉末はガラス原料の微粒子が凝集して2次粒
子となつたものであつて、第1のゾル液と混合する際、
該2次粒子の1部が壊れ、壊れた粒子が増粘剤として働
らくことを特徴とする特許請求の範囲第2項記載のガラ
スの製造方法。
(3) The powder is composed of fine particles of the glass raw material agglomerated to become secondary particles, and when mixed with the first sol liquid,
3. The method for producing glass according to claim 2, wherein a part of the secondary particles are broken and the broken particles serve as a thickener.
(4)前記粉末はガラス原料の微粒子を含む液を噴霧乾
燥したものである特許請求の範囲第(3)項記載のガラ
スの製造方法。
(4) The method for manufacturing glass according to claim (3), wherein the powder is obtained by spray-drying a liquid containing fine particles of a glass raw material.
(5)前記粉末は2次粒径の平均が、1ミクロン以上、
100ミクロン以下である特許請求の範囲第(3)項ま
たは第(4)項に記載のガラスの製造方法。
(5) The powder has an average secondary particle size of 1 micron or more,
The method for producing glass according to claim 3 or claim 4, wherein the glass has a particle size of 100 microns or less.
JP9667685A 1985-05-09 1985-05-09 Production of glass Pending JPS61256928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9667685A JPS61256928A (en) 1985-05-09 1985-05-09 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9667685A JPS61256928A (en) 1985-05-09 1985-05-09 Production of glass

Publications (1)

Publication Number Publication Date
JPS61256928A true JPS61256928A (en) 1986-11-14

Family

ID=14171398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9667685A Pending JPS61256928A (en) 1985-05-09 1985-05-09 Production of glass

Country Status (1)

Country Link
JP (1) JPS61256928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402610A2 (en) * 1989-05-18 1990-12-19 Chisso Corporation Process for the preparation of silica glass powders
US6080339A (en) * 1997-09-26 2000-06-27 Lucent Technologies Inc. Process for fabricating silica article utilizing sol-gel extrusion
US7059153B2 (en) 2000-06-05 2006-06-13 Murata Manufacturing Co., Ltd. Method for producing glass powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402610A2 (en) * 1989-05-18 1990-12-19 Chisso Corporation Process for the preparation of silica glass powders
US5028247A (en) * 1989-05-18 1991-07-02 Chisso Corporation Process for the preparation of silica glass powders
US6080339A (en) * 1997-09-26 2000-06-27 Lucent Technologies Inc. Process for fabricating silica article utilizing sol-gel extrusion
US7059153B2 (en) 2000-06-05 2006-06-13 Murata Manufacturing Co., Ltd. Method for producing glass powders

Similar Documents

Publication Publication Date Title
Yoldas Alumina gels that form porous transparent Al 2 O 3
JPH05509283A (en) Method for manufacturing sol-gel monolith
US4747863A (en) Method of manufacturing glass bodies
JPS61256928A (en) Production of glass
JPH038729A (en) Production of porous glass
KR100262141B1 (en) Method for the preparation of small ceramic bead
JPS6027615A (en) Production of optical glass
JP2007510532A (en) Improved sol-gel method, product obtained by the method, and method for storing nuclear material using the product
JPS5846342B2 (en) Ceramic ball manufacturing method
JPS61163124A (en) Preparation of glass
US20050095416A1 (en) Inorganic porous materials containing dispersed particles
JPS62226821A (en) Production of glass
JPH0520364B2 (en)
JPH03285833A (en) Manufacture of porous glass
JPS58167436A (en) Production of optical glass
JPS643812B2 (en)
JPH0551539B2 (en)
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPS61286230A (en) Production of glass
JPS6290B2 (en)
JPS62113737A (en) Production of quartz glass
JPH02199033A (en) Production of optical glass
JPS61201627A (en) Production of low oh glass
JPS63144127A (en) Production of quartz glass
KR20030022954A (en) A method of preparing transparent silica glass