JPS61286230A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS61286230A
JPS61286230A JP12435985A JP12435985A JPS61286230A JP S61286230 A JPS61286230 A JP S61286230A JP 12435985 A JP12435985 A JP 12435985A JP 12435985 A JP12435985 A JP 12435985A JP S61286230 A JPS61286230 A JP S61286230A
Authority
JP
Japan
Prior art keywords
gel
glass
particles
dried
sol solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12435985A
Other languages
Japanese (ja)
Other versions
JPH0551540B2 (en
Inventor
Ichiro Yoshida
吉田 伊知朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12435985A priority Critical patent/JPS61286230A/en
Publication of JPS61286230A publication Critical patent/JPS61286230A/en
Publication of JPH0551540B2 publication Critical patent/JPH0551540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Abstract

PURPOSE:To efficiently produce the glass which is hard to be broken while drying and has high uniformity by mixing the particles under a prescribed condition with a sol solution of the alkoxide of silicon to gelatinize said sol solution. CONSTITUTION:At least one kind of the material is, for instance, methoxide, ethoxide, etc., of silicon. The original granular particles of glass having >=0.005mu particle diameter which are so small as to produce the colloid are mixed with this gelatinizable sol solution to gelatinize the sol solution. The resultant gel is then dried and the dried gel is sintered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラスの製造方法に関するもの−であシ、詳
しくは、クリコンアルコキシドを原料の1つとしてゾル
ゲル法によシガラスを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing glass, and more particularly, to a method for producing glass by a sol-gel method using cricon alkoxide as one of the raw materials. .

〔従来の技術〕[Conventional technology]

現在、光ファイバーのプリフォームを作製する方法とし
ては、WAD法をはじめとする、51at、等を火炎中
に導入しガラス微粒子をターゲット上に堆積させ、得ら
れたガラス多孔質体を焼結しガラス塊を得る、という方
法が主流になっている。これは高純度の多孔質ガラスを
比較的安価に得られる優れた方法である。しかしこの方
法は気相反応であるため、添加物として使える物質がガ
ス化できるものに限られる、という欠点があった。
Currently, methods for producing optical fiber preforms include the WAD method, 51at, etc. are introduced into a flame, glass fine particles are deposited on a target, and the resulting glass porous body is sintered. The mainstream method is to obtain lumps. This is an excellent method for obtaining high-purity porous glass at a relatively low cost. However, since this method is a gas phase reaction, it has the disadvantage that the substances that can be used as additives are limited to those that can be gasified.

そこで、近年、この欠点を補う方法として、Sl  を
主体とじ九金属アルコキクドを加水分解し、シリカゲル
あるいは添加元素を含むシリカゲルを得、該シリカゲル
を乾燥させた後無孔化処理等を行い透明ガラスを得る方
法が盛んに研究されている。
Therefore, in recent years, as a method to compensate for this drawback, silica gel or silica gel containing additive elements is obtained by hydrolyzing a nine-metal alkoxyde mainly composed of Sl, and after drying the silica gel, a process such as making it non-porous is performed to make transparent glass. How to obtain it is being actively researched.

一例を挙げれば、クリコンテトラメトキシド等の81の
アルコキシドを、エタノールと充分に攪拌混合した後、
水を加え更に攪拌して加水分解する。この時水にはアン
モニア等pH調整剤を加えておくことが好ましい。加水
分解反応の開始と共に粒子の析出が始まυ、該反応溶液
を内面にシリコーンを塗つ念容器に移し、乾燥時間を長
くできるようにアルミ箔等で蓋をして例えば60℃程度
の恒温槽中に保つことによシ、ゾル液のゲル化およびゲ
ルの乾燥を行う。乾燥するに従ってゲルは収縮し、通常
数日を経るとほぼ乾燥が終了する。このようにして得た
ゲルを取シ出し、例えば酸素を含むHe雰囲気中にて加
熱する等によシ無孔化処理を行い、透明ガラス化する方
法がすでに知られている。
For example, after thoroughly stirring and mixing 81 alkoxides such as cricontetramethoxide with ethanol,
Add water and stir further for hydrolysis. At this time, it is preferable to add a pH adjuster such as ammonia to the water. As the hydrolysis reaction begins, particles begin to precipitate. Transfer the reaction solution to a container coated with silicone on the inside, cover with aluminum foil, etc. to prolong drying time, and store in a constant temperature bath at, for example, 60°C. By keeping the sol inside, the sol solution gels and the gel dries. The gel shrinks as it dries, and drying is usually completed after several days. A method is already known in which the gel thus obtained is taken out and subjected to a pore-free treatment, such as heating in an oxygen-containing He atmosphere, to make it transparent vitrified.

このようないわゆるゾルゲル法は、アルコキシドが多く
の金属元素について作製できるので、各種の物質を容易
に添加できる。また、均一性が極めて高いガラスが得ら
れるという長所がある。しかしながら一方では、ゲルが
乾燥時などに割れやすいという欠点もある。
In such a so-called sol-gel method, since alkoxides can be prepared for many metal elements, various substances can be easily added. Another advantage is that glass with extremely high uniformity can be obtained. However, on the other hand, it also has the disadvantage that the gel tends to crack when drying.

本発明者らはこのような乾燥、焼結時の割れを防ぐため
に、すでに特願昭60−15558号明細書にて、ゾル
液にコロイドになり得ない大きさの粒子を加える方法を
、また特願昭60−96676号明細書にてはゾル液に
ガラス原料を含む粉末を混合して、ゾル液が増粘剤と粒
径1ミクロン以上のガラス原料粒子を含んでなるように
したものをゲル化させる方法を提案しているが、いずれ
の方法も大きな効果を挙げるものである。
In order to prevent such cracking during drying and sintering, the present inventors have already proposed a method in Japanese Patent Application No. 15558/1983, in which particles of a size that cannot be turned into colloids are added to the sol solution. In Japanese Patent Application No. 60-96676, a powder containing a glass raw material is mixed with a sol liquid so that the sol liquid contains a thickener and glass raw material particles with a particle size of 1 micron or more. We have proposed a gelling method, and each method is highly effective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに上記の三方法によって作られたゲルは、乾燥、
焼結時の割れ防止には効果があるものの、これらの方法
によって作られたゲルはすきま径が大きく、サブミクロ
/オーダーの均一性が要求される用途、例えば平面導波
路やロンドレンズ等の微小光学部品をゾルゲル法で製造
する場合などには、好ましくない場合がある。
However, the gel made by the above three methods cannot be dried,
Although effective in preventing cracking during sintering, the gels made by these methods have large gap diameters and are used in applications that require submicro/order uniformity, such as micro-optics such as planar waveguides and Rondo lenses. This may be undesirable when parts are manufactured using the sol-gel method.

またフォトレジストでマスクするのもむずかしくなる。It also becomes difficult to mask with photoresist.

本発明は乾燥時に割れにくく、かつ高度の均一性を有す
るゲルを得、それによシカ−性の高いガラスを焼結時の
発泡等がなく効率よく製造する方法を提供することを目
的とするものである。
The object of the present invention is to provide a method for obtaining a gel that is hard to crack when drying and has a high degree of uniformity, and for efficiently producing glass with high resistance to damage without foaming during sintering. It is.

〔問題点を解決するだめの手段] 本発明は原料の少なくとも1つをシリコンのアルコキシ
ドとするゲル化しうるゾル液に、粒径α005μ以上で
あシ、かつコロイド状態になり得る程度に小さい粒子を
混合した後、ゾル液をゲル化してこれによシ得られたゲ
ルを乾燥し、該乾燥ゲルを焼結することを特徴とするガ
ラスの製造方法により上記目的を達成するものである。
[Means to Solve the Problems] The present invention adds particles having a particle size of α005μ or more and small enough to be in a colloidal state to a gelatable sol solution containing silicon alkoxide as at least one of the raw materials. The above object is achieved by a method for manufacturing glass, which is characterized in that after mixing, the sol solution is gelatinized, the resulting gel is dried, and the dried gel is sintered.

本発明者らはすてに特願昭59−192581号明細書
にてアルコキシドの加水分解時tたはそれ以前に液中に
コロイド粒子を[L5〜20モル係程度加えることを提
案している。このようにコロイド粒子を分散させておい
て、なぜ、かさ密度が制御できるかについてさらに検討
の結果、コロイド粒子はアルコキシドの加水分解で析出
する酸化物の核となシ、その結果割れにくいゲルを得る
ことができるとわかった。
The present inventors have already proposed in Japanese Patent Application No. 59-192581 to add colloidal particles to the liquid at about 5 to 20 molar proportions at or before the time of hydrolysis of the alkoxide. . Further investigation into why the bulk density could be controlled by dispersing colloidal particles in this way revealed that colloidal particles do not act as nuclei for oxides that precipitate due to hydrolysis of alkoxides, resulting in a gel that is difficult to break. I knew I could get it.

本発明はコロイド粒子を加える時期が、ゾル液のゲル化
前であれば、加水分解が終了していても良いこと、コロ
イド粒子の量がアルコキシドの大むね100モル係以上
が好ましいこと、などの点で前記の発明と異なる。よシ
本質的には、本発明ではコロイド粒子は加水分解とは関
係なくゲル中に存在することにより、ゲルのすきま径を
均一性を損なわない範囲で大きくし、乾燥時のひずみに
対して割れにくいゲルを得るものである。
In the present invention, the colloid particles may be added after hydrolysis has been completed as long as the sol solution is not gelled, and the amount of colloid particles is preferably approximately 100 moles or more of the alkoxide. This invention differs from the above invention in this point. Essentially, in the present invention, the colloidal particles exist in the gel regardless of hydrolysis, so that the gap size of the gel can be increased within a range that does not impair uniformity, and the colloidal particles can be prevented from cracking due to strain during drying. This results in a gel that is difficult to use.

このとき加えるコロイド粒子の径が小さいと、割れを防
ぐ効果が少ないのでα005μ以上の粒径が必要である
。粒径が大きいとすきま径がますます大きくなυ割れを
防ぐ効果は増すが、均一性が損なわれる。本発明の目的
である、乾燥時に割れにくくかつ均一性の高いゲルを得
るためには、粒子はコロイドになり得る程度に小さいこ
とが好ましく、その径はおおむねQ、5μ以下である。
If the diameter of the colloidal particles added at this time is small, the effect of preventing cracking will be small, so a particle diameter of α005μ or more is required. If the particle size is large, the effect of preventing υ cracks due to increasingly large gap diameter increases, but uniformity is impaired. In order to obtain a highly uniform gel that is hard to crack during drying, which is the objective of the present invention, the particles are preferably small enough to form a colloid, and their diameter is approximately Q, 5 μm or less.

また粒子は適当な増粘作用を持つことが好ましい。It is also preferable that the particles have an appropriate thickening effect.

以上の理由から粒子は粒径α05μ以上であシコロイド
状態になり得る程度に小さいサイズ、特に好ましい粒径
としてはcL005μ以上11.5μ以下が挙げられる
For the above reasons, the particles have a particle size α05μ or more and are small enough to form a cicoloid state, and a particularly preferable particle size is cL005μ or more and 11.5μ or less.

また、加える粒子の量はアル;キシドの濃度、加える粒
子の粒径・組成・OB基密度、その他の条件によシ大き
く異なるが、一般にはアルコキシドを原料とするガラス
成分の100モル係以上加えることが好ましい。粉末が
それ以上まざシにくくなるほどなるべく多くまぜるのが
好ましい結果をもたらすことが多い。
The amount of particles added varies greatly depending on the concentration of alkoxide, the particle size, composition, OB group density of the particles added, and other conditions, but in general, 100 moles or more of the glass component made from alkoxide is generally added. It is preferable. Mixing as much as possible to prevent the powder from clumping further often yields favorable results.

本発明方法に用いられる粒子の成分はガラス原料であれ
ば良い。例えば810!、もしくは5102にGo、P
、AL、Ti、Zr、an。
The components of the particles used in the method of the present invention may be any glass raw material. For example 810! , or Go to 5102, P
, AL, Ti, Zr, an.

Pb、Os  などの酸化物を加えたものなどを用いる
ことができるがこれに限定されない。
A material containing an oxide such as Pb or Os can be used, but is not limited thereto.

本発明においては、原料の少なくとも一つをシリコンの
アルコキシド例えばシリコンのメトキシド、ヱトキシド
等とし、これを加水分解してシリカゲルあるいは添加元
素を含むシリカゲルを得るが、加水分解条件唸特に限定
されるところはなく、例えばエタノールと混合後に水を
加える。またはpm調製剤としてのアンモニア等を加え
た水を加える等の方法による。また得られたゲルを乾燥
し焼結することも常法による。
In the present invention, at least one of the raw materials is silicon alkoxide, such as silicon methoxide, ethoxide, etc., and this is hydrolyzed to obtain silica gel or silica gel containing additive elements, but there are no particular limitations on the hydrolysis conditions. For example, add water after mixing with ethanol. Alternatively, a method such as adding water to which ammonia or the like as a PM adjuster is added is used. Further, the obtained gel may be dried and sintered using a conventional method.

本発明において上記した少なくともシリコンのアルコキ
シドを含む原料には、クリコンのアルコキシド以外に他
のアルコキシド、例えばGe、  B、 P、 At、
 Ti、  Zr、  Eln  などのアル;キシド
を加えておいても良い。またゾル液中にアル;キシド以
外の形、例えば塩の水溶液などの形で各種ドーパント元
素を含ませておいても良い。
In the present invention, the above-mentioned raw material containing at least silicon alkoxide may include other alkoxides in addition to silicone alkoxide, such as Ge, B, P, At,
Al; oxides such as Ti, Zr, and Eln may be added. Further, various dopant elements may be included in the sol solution in a form other than alkoxide, for example, in the form of an aqueous salt solution.

ゾル液に粒子を混合した後、ゾル液を常法によシ乾燥し
て乾燥ゲルとする。
After the particles are mixed into the sol solution, the sol solution is dried by a conventional method to form a dry gel.

このようにして得たゲルにドーパント分布をつけ、焼結
することによシ各種の微小光学部品を得ることができる
。微小光学部品としては例えば平面導波路等の光回路、
ロンドレンズなどが挙げられる。
By imparting a dopant distribution to the thus obtained gel and sintering it, various microscopic optical components can be obtained. Examples of micro optical components include optical circuits such as planar waveguides,
Examples include Rondo lenses.

本発明方法に従って平面導波路を製造する工程は例えば
次のようなものである。上記の本発明方法によυ得られ
た平板上のゲルにアルコールをしみこませ、次に数十秒
間Go のアル;キシドのアルコール溶液につける。こ
れによシ表面にGe のアルコキシドを含む層ができる
。これをアルコールでうすめた水につけることによす、
表面のGeのアルコキシドが加水分解をおこし、該ゲル
の表面にGm01 を含む層ができる。
For example, the steps for manufacturing a planar waveguide according to the method of the present invention are as follows. The gel on a flat plate obtained by the above method of the present invention is impregnated with alcohol, and then immersed in an alcoholic solution of Go oxide for several tens of seconds. This forms a layer containing Ge alkoxide on the surface. By soaking this in water diluted with alcohol,
Ge alkoxide on the surface undergoes hydrolysis, and a layer containing Gm01 is formed on the surface of the gel.

これを乾燥させ、焼結し、エツチングすることによシ、
平面導波路を得ることができる。平板状のゲルにフォト
レジストでパターンをつくってから上の工程を行なえば
うめこみ型の導波路が得られ、エツチングは不要となる
By drying, sintering and etching this,
A planar waveguide can be obtained. By creating a pattern on a flat gel using photoresist and performing the above steps, a recessed waveguide can be obtained, eliminating the need for etching.

オた本発明方法に従ってロンドレンズを製造する工程は
例えば次のようなものである。本発明方法によシ得られ
たロンド状のゲルPC08NO3水溶液をしみこませる
。これをHsBO8の水溶液に数分つけ、周辺部に向か
って0sNO3濃度はなだらかに減少し、H3BO3の
濃度はなだらかに上昇するゲルを得る。これを低温で短
時間で乾燥するよう、真空乾燥し、焼結する。これによ
シ径方向に屈折率分布を持つロンドレンズが得られる。
For example, the steps for manufacturing Rondo lenses according to the method of the present invention are as follows. A rond-like gel PC08NO3 aqueous solution obtained by the method of the present invention is impregnated. This is soaked in an aqueous solution of HsBO8 for several minutes to obtain a gel in which the 0sNO3 concentration gradually decreases and the H3BO3 concentration gradually increases toward the periphery. This is vacuum dried and sintered to dry at low temperatures and in a short time. As a result, a Rondo lens having a refractive index distribution in the radial direction is obtained.

本発明によって得られるゲルは乾燥時、ドープ時に割れ
にくくかつ、均一性が高く精密なドーパント分布をつく
ることが容易に可能である。
The gel obtained by the present invention does not easily crack during drying or doping, has high uniformity, and can easily create a precise dopant distribution.

このため、上記の微小光学部品の製造に特に適している
Therefore, it is particularly suitable for manufacturing the above-mentioned micro optical components.

本発明によって製造されるガラスは塊状のものにかぎら
ず、膜状、ファイバー状であっても良い。例えばガラス
基板上に本発明によシ得られるゾル液をぬりそのまま乾
燥させると数μ以上の厚みのゲル膜が得られる。これを
焼結すれば数μ以上の厚みのガラス膜も得ることができ
る。アルコキシドのみを原料とし、本発明のように粉末
を加えてないゾル液では同じ方法で1μ以上の膜をつく
るのは、膜が割れてしまうため困難である。
The glass produced according to the present invention is not limited to a lump, but may be in the form of a film or a fiber. For example, if the sol obtained according to the present invention is applied onto a glass substrate and then dried, a gel film with a thickness of several microns or more can be obtained. If this is sintered, a glass film with a thickness of several microns or more can be obtained. With a sol solution that uses only alkoxide as a raw material and does not contain powder as in the present invention, it is difficult to form a film with a thickness of 1 μ or more using the same method because the film will crack.

〔実施例〕〔Example〕

以下、実施例及び比較例によって本発明の方法を具体的
に説明する。
The method of the present invention will be specifically explained below using Examples and Comparative Examples.

実施例1 81(ocHs)4 ’AモルとエタノールAモルをマ
グネチツクスターラで混合し、該混合液の中にほう酸1
150  モルを含む、1.91アンそニア水1モルを
加えさらに混合した。これをミキサーに入れ、粒径α0
5μ程度のシリカ粒子(市販品、商品名アエロジル0X
−50)402を加え、激しくかきまぜ九。これをビー
カーに移し、60Torr 程度の圧力で脱気した後、
内径10鱈φのパイプに入れた。
Example 1 81(ocHs)4'A mol and ethanol A mol were mixed with a magnetic stirrer, and 1 mol of boric acid was added to the mixture.
1 mole of 1.91 aqueous anthonia containing 150 moles was added and further mixed. Put this in a mixer, and the particle size α0
Silica particles of approximately 5μ (commercial product, trade name Aerosil 0X)
-50) Add 402 and stir vigorously9. After transferring this to a beaker and degassing it at a pressure of about 60 Torr,
It was placed in a pipe with an inner diameter of 10 mm.

これを室温でゲル化させた後、水中で押し出し、アルミ
箔の上で室温で乾燥した。これを500c空気中で仮焼
後1450℃He中で焼結したところ、割れることなく
ガラスを得ることができた。
After gelling at room temperature, it was extruded in water and dried on aluminum foil at room temperature. When this was calcined in air at 500°C and sintered in He at 1450°C, a glass could be obtained without cracking.

実施例2 コロイド粒子として、VADスス付けo際マツフルにつ
いた粉末40fを用い、原料にほう酸を加えず、アンモ
ニア水を13優にして、他は実施例1と同様にして乾燥
ゲルを得た。このゲルを、900℃で仮焼後、ゲルに1
0係はう酸水溶液をしみこませ再び乾燥した。900℃
の仮焼けほう酸水溶液をしみこませる際の割れを防ぐた
めに行った。こうして得られたゲルを温度500℃の空
気中で仮焼後1450cHe中で焼結し割れることなく
ガラスを得ることができた。
Example 2 A dried gel was obtained in the same manner as in Example 1, except that 40 particles of powder that had been attached to the matsufuru during VAD soot application were used as colloidal particles, no boric acid was added to the raw materials, and the amount of ammonia water was changed to 13 yuan. After calcining this gel at 900℃,
The 0-layer material was impregnated with an aqueous fluoric acid solution and dried again. 900℃
This was done to prevent cracking when soaking in the pre-baked boric acid aqueous solution. The thus obtained gel was calcined in air at a temperature of 500° C. and then sintered in 1450 cHe to obtain a glass without cracking.

実施例3 コロイド粒子として粒径α012μ程度の7リ力粒子(
アエロジルの商品名で市販されている)15fを加えほ
う酸の量を17100モル、アンモニア水を11にした
ことの他は実施例1と同様にして10■φのパイプに入
ったゲルを得た。
Example 3 As colloidal particles, 7-lion particles (with a particle size of approximately α012μ)
A gel in a 10 φ pipe was obtained in the same manner as in Example 1, except that 15f (commercially available under the trade name Aerosil) was added, the amount of boric acid was 17,100 mol, and the amount of ammonia water was 11.

このゲルを水中で押しだし、半分はゆつくシ乾燥させる
ため20■φのパイプに入れ、半分はアルミ箔の上にの
せ共に室温で乾燥した。前者は割れ無しに乾燥し、50
0℃空気中で仮焼後1450℃He 中で焼結しガラス
を得ることができた。後者は乾燥中割れたが、かけらは
比較的大きく4〜5−程度でちった。
This gel was extruded in water, half of it was placed in a 20 mm diameter pipe for slow drying, and the other half was placed on aluminum foil and both were dried at room temperature. The former dries without cracking and is 50
After calcination in air at 0°C, the glass was sintered in He 2 at 1450°C to obtain a glass. The latter cracked during drying, but the pieces were relatively large, about 4 to 5 pieces.

比較例1 シリカ粒子を加えなかったことの他は実施例3と同様に
した。20■φのパイプ中で乾燥したものはクラックが
入っており、焼結を試みると発泡した。アルミ箔の上で
乾燥したものは粉々になりかけらは1〜21程度で小さ
かった。
Comparative Example 1 The same procedure as Example 3 was carried out except that silica particles were not added. The material dried in a 20 φ pipe had cracks and foamed when sintering was attempted. Those dried on aluminum foil were shattered and the pieces were small, ranging from 1 to 21 pieces.

実施例4 フッ素を含む石英ガラス(屈折率1.453 )の板を
実施例1と同様にして得たゾル液につけ、ひき上げた後
、シャーレに入れフタをして、ゆつくシ乾燥した。これ
を温度500℃の空気中で仮焼後、1450℃にてHe
中で焼結し、得られたものを酸水素炎であぶ9透明なガ
ラス膜を得た。この膜厚は50f程度であシ、平面導波
路等の用途に十分使用できるものであった。
Example 4 A plate of fluorine-containing quartz glass (refractive index 1.453) was immersed in the sol solution obtained in the same manner as in Example 1, pulled up, placed in a Petri dish, covered with a lid, and gently dried. After calcining this in air at a temperature of 500°C, it was heated to 1450°C.
The resulting material was sintered in an oxyhydrogen flame to obtain a transparent glass film. This film thickness was approximately 50 f, which was sufficient for use in applications such as planar waveguides.

比較例2 フッ素を含む石英ガラスの板を比較例1と同様にして得
たゾル液につけ、ひき上げた後、シャーレに入れ7タを
してゆつくり乾燥した。得られたゲルの膜は0.3μ程
度であった。膜厚を厚くするためゾル液につけ乾燥する
ことを2回行ったものではゲル膜は割れていた。
Comparative Example 2 A fluorine-containing quartz glass plate was immersed in the sol solution obtained in the same manner as in Comparative Example 1, pulled up, placed in a petri dish, and gently dried by 7 tumbles. The resulting gel film had a thickness of about 0.3μ. When the gel film was soaked in a sol solution and dried twice to increase the film thickness, the gel film was cracked.

実施例5 実施例2で得たゲルを板状に研摩した後900℃で仮焼
した。これにエタノールをしみこませた後、G e (
o 0xHs)sの3%エタノール液に30秒つけすぐ
にエタノールに1秒つけた。さらに続いてエタノールの
50係水溶液20fに13%アンモニア水1滴を加えた
ものにつけ60分放置した。これをとシだして乾燥した
後10%のほう酸水溶液をしみこませ、再び乾燥した。
Example 5 The gel obtained in Example 2 was polished into a plate shape and then calcined at 900°C. After soaking this with ethanol, G e (
It was immersed in a 3% ethanol solution of 0xHs) for 30 seconds, and then immediately immersed in ethanol for 1 second. Subsequently, the sample was soaked in a solution prepared by adding 1 drop of 13% ammonia water to 20 f of a 50% aqueous solution of ethanol and left for 60 minutes. After this was poured out and dried, it was impregnated with a 10% boric acid aqueous solution and dried again.

これを500℃空気中で仮焼後1450℃He中で焼結
し、表面に屈折率の高い膚を持つ平面導波路母材を得た
This was calcined in air at 500°C and sintered in He at 1450°C to obtain a planar waveguide base material having a skin with a high refractive index on the surface.

実施例6 実施例5と同様にして得た仮焼後のゲルを7オトレジス
トでマスクし、幅50f程度のみそを切った後、エタノ
ールをしみこませた。以下実施例5と同様にしてチャネ
ル型の平面導波路を得ることができた。
Example 6 The calcined gel obtained in the same manner as in Example 5 was masked with 7 Otoresist, and after cutting miso paste with a width of about 50 f, it was impregnated with ethanol. Thereafter, a channel type planar waveguide could be obtained in the same manner as in Example 5.

比較例7 粒径的1012μのシリカ粒子120tと、水300f
とをミキサーで混合した後、乾燥機で乾燥するととによ
シ、シリカ粒子を造粒した。
Comparative Example 7 120t of silica particles with a particle size of 1012μ and 300f of water
After mixing with a mixer and drying with a drier, silica particles were granulated.

B1(OClls)a ’Aモルと、エタノール捧モル
をマグネチックスターラで混合し、その中に[lL5%
のアンモニア水1モルを加え、さらに混合した後、これ
をミキサーに入れた。その9中に造粒したシリカ粒子2
52を加え、激しくかきまぜた。
B1 (OClls) a ' A mole and a mole of ethanol are mixed with a magnetic stirrer, and [lL5%
After adding 1 mol of ammonia water and further mixing, this was placed in a mixer. Granulated silica particles 2 in 9
52 was added and stirred vigorously.

これをビーカーに移し、40 Torr  程度の圧力
で脱気した後、内径10−のパイプにこれを室温でゲル
化させた後、水中で押し出した後アルミ箔の上で載録さ
せた。このゲルを板状に研摩し、フォトレジストでマス
クしようとしたが、すきま径が大きいため、フォトレジ
ストはゲルにしみこみ、マークすることができなかった
This was transferred to a beaker and degassed at a pressure of about 40 Torr, gelled in a pipe with an inner diameter of 10 mm at room temperature, extruded in water, and then placed on aluminum foil. An attempt was made to polish this gel into a plate shape and mask it with photoresist, but the gap was so large that the photoresist soaked into the gel and could not be marked.

(発明の効果) 本発明の方法は乾燥時割れに<<、焼結時発泡しに<<
、かつ均一性の高いゲルを得ることができ、それによシ
、均一性の高いガラスを効率良く製造することのできる
優れた効果を有する。
(Effects of the invention) The method of the present invention prevents cracking during drying and foaming during sintering.
Moreover, it has the excellent effect of being able to obtain a gel with high uniformity, and thereby efficiently producing glass with high uniformity.

Claims (1)

【特許請求の範囲】[Claims] (1)原料の少なくとも1つをシリコンのアルコキシド
とするゲル化しうるゾル液に、粒径 0.005μ以上であり、かつコロイド状態になり得る
程度に小さい粒子を混合した後、ゾル液をゲル化して、
これにより得られたゲルを乾燥し、該乾燥ゲルを焼結す
ることを特徴とするガラスの製造方法。
(1) Particles having a particle size of 0.005μ or more and small enough to be in a colloidal state are mixed into a gelable sol liquid in which at least one of the raw materials is a silicon alkoxide, and then the sol liquid is gelled. hand,
A method for producing glass, which comprises drying the gel thus obtained and sintering the dried gel.
JP12435985A 1985-06-10 1985-06-10 Production of glass Granted JPS61286230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12435985A JPS61286230A (en) 1985-06-10 1985-06-10 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12435985A JPS61286230A (en) 1985-06-10 1985-06-10 Production of glass

Publications (2)

Publication Number Publication Date
JPS61286230A true JPS61286230A (en) 1986-12-16
JPH0551540B2 JPH0551540B2 (en) 1993-08-02

Family

ID=14883446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12435985A Granted JPS61286230A (en) 1985-06-10 1985-06-10 Production of glass

Country Status (1)

Country Link
JP (1) JPS61286230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259516A (en) * 1985-09-09 1987-03-16 Tama Kagaku Kogyo Kk Production of silica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259516A (en) * 1985-09-09 1987-03-16 Tama Kagaku Kogyo Kk Production of silica

Also Published As

Publication number Publication date
JPH0551540B2 (en) 1993-08-02

Similar Documents

Publication Publication Date Title
JPH038729A (en) Production of porous glass
JPS61286230A (en) Production of glass
JPS59116135A (en) Manufacture of quartz glass
JPH054839A (en) Method for preparing thin film by sol-gel method
JPH06199569A (en) Production of zirconia and zirconia molding stabilized with yttria
JPH0549610B2 (en)
JPS6296339A (en) Production of optical fiber preform
US5810899A (en) Glass production
JPS6081034A (en) Manufacture of base material for optical fiber
JPS61256928A (en) Production of glass
JPH02199033A (en) Production of optical glass
JPS61270225A (en) Production of high-silica glass
JPS62262734A (en) Production of ceramic microball
JPH03285833A (en) Manufacture of porous glass
JPH0551539B2 (en)
JPH059036A (en) Production of quartz glass having refractive index distribution
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPH0570150A (en) Method for producing optical element of refractive index distribution type
JPS6027611A (en) Production of additive-type silica gel
JPS6168329A (en) Production of glass
JPS61201627A (en) Production of low oh glass
JPS589842A (en) Preparation of optical glass
JPS63144127A (en) Production of quartz glass
JPS63147857A (en) Manufacture of forme body from geo2 as main component
JPS61186237A (en) Production of parent material for optical fiber of quartz glass