JPS5846342B2 - Ceramic ball manufacturing method - Google Patents

Ceramic ball manufacturing method

Info

Publication number
JPS5846342B2
JPS5846342B2 JP55160313A JP16031380A JPS5846342B2 JP S5846342 B2 JPS5846342 B2 JP S5846342B2 JP 55160313 A JP55160313 A JP 55160313A JP 16031380 A JP16031380 A JP 16031380A JP S5846342 B2 JPS5846342 B2 JP S5846342B2
Authority
JP
Japan
Prior art keywords
liquid
sol
ceramic
specific gravity
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55160313A
Other languages
Japanese (ja)
Other versions
JPS5784731A (en
Inventor
義治 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP55160313A priority Critical patent/JPS5846342B2/en
Publication of JPS5784731A publication Critical patent/JPS5784731A/en
Publication of JPS5846342B2 publication Critical patent/JPS5846342B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はセラミック球の製造法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing ceramic spheres.

焼結セラミック微小球はその強度、耐熱性、耐薬品など
の点から触媒担体、その他各種の用途に広く使用されて
いる。
Sintered ceramic microspheres are widely used as catalyst carriers and in various other applications due to their strength, heat resistance, and chemical resistance.

従来、これらの微小球は機械的に製造するか、またはゾ
ルを単一液体中を落下させて球状を形成する方法が行わ
れていた。
Conventionally, these microspheres have been produced mechanically or by dropping a sol into a single liquid to form a spherical shape.

しかし、機械的製法では球のそろった物、また真球のも
のが得難いばかりでなく、公害源となる欠点があった。
However, the mechanical manufacturing method not only makes it difficult to obtain uniform or perfectly spherical balls, but also has the drawback of being a source of pollution.

また単一液体中に落下する方法において真球を得るには
長い液高を必要とし、それだけ設備も大型となる欠点が
あり、またこの方法ではアルミナなど1種類の陽イオン
からなる酸化物の製造のみが対象であった。
In addition, the method of dropping into a single liquid requires a long liquid height to obtain a true sphere, which has the disadvantage of requiring a correspondingly large size of equipment.Also, this method produces oxides made of one type of cation such as alumina. The only target was

本発明はこれら従来法における欠点および問題点を解消
せんとするものであり、その目的は極めて小型装置で、
しかも真球のセラミック球を容易に製造する方法を提供
するにある。
The present invention aims to solve the drawbacks and problems of these conventional methods, and its purpose is to use an extremely small device,
Moreover, it is an object of the present invention to provide a method for easily manufacturing a true spherical ceramic sphere.

また他の目的は複酸化物からなるスピネルの球も容易に
製造し得る方法を提供するにある。
Another object of the present invention is to provide a method for easily producing spinel balls made of double oxide.

本発明者は前記目的を達成せんと鋭意研究の結果、アル
ミニウム、マグネシウム、シリカ等のセラミック原料ゾ
ルを使用してそれらのセラミック球を製造するに際し、
これらの単独または2種以上のゾルを、ゾルより比重が
小さく且つ水と混合しない水より高沸点の液体と、ゾル
より比重が大きく、前記高沸点の液体及び水と混合しな
い液体、好ましくは且つゲルより比重の小さい液体との
二層からなるゲル化作用を持った溶液中に滴下すると、
滴下されたゾルは前記高沸点液体中を落下しながら球状
となり、またゲルになる。
As a result of intensive research to achieve the above object, the inventor of the present invention found that when producing ceramic balls using ceramic raw material sol such as aluminum, magnesium, and silica,
A liquid having a specific gravity lower than the sol and having a higher boiling point than water that does not mix with water, and a liquid having a specific gravity higher than the sol and not mixing with the high boiling point liquid and water, preferably and When dropped into a solution that has a gelling effect and consists of two layers with a liquid that has a lower specific gravity than the gel,
The dropped sol becomes spherical while falling through the high boiling point liquid, and then becomes a gel.

そして2液の境界面上にとどまり、完全にゲル化すると
、下の液中を落下して球状物が得られることを究明し得
、本発明を完成した。
They were able to find out that when they stay on the interface between the two liquids and completely gel, they fall through the liquid below to form spherical objects, thus completing the present invention.

ゾルより比重が小さく、且つ水と混合しなく水より高沸
点の液体としては、例えば、2−エチル1−ヘキサノー
ル、2−ヘプタツール、などが挙げられる。
Examples of liquids that have a lower specific gravity than a sol, do not mix with water, and have a higher boiling point than water include 2-ethyl 1-hexanol, 2-heptatool, and the like.

また該高沸点液体及び水と混合せず、これと二層を形成
するゾルより比重が大きい、好ましくは、且つゲルより
比重の小さい液体としては、例えばブロモホルム、四塩
化炭素が挙げられる。
Examples of liquids that do not mix with the high-boiling liquid and water and have a specific gravity higher than the sol that forms two layers therewith, and preferably have a specific gravity lower than the gel, include, for example, bromoform and carbon tetrachloride.

該二層液中の上層液体、例えば2−エチル−1ヘキサノ
ールの比重は0.83であり、滴下されるゾルの比重は
約1.1〜1.2である。
The upper layer liquid in the two-layer liquid, for example, 2-ethyl-1 hexanol, has a specific gravity of 0.83, and the sol to be dropped has a specific gravity of about 1.1 to 1.2.

従って滴下されたゾルは上層液体中を下降し、球状とな
ると共にゲル化する。
Therefore, the dropped sol descends into the upper liquid, becomes spherical, and gels.

この場合2層の下層液体例えばブロモホルムがないと、
容器底まで落下して球形が保てない。
In this case, without the lower liquid of the two layers, e.g. bromoform,
It falls to the bottom of the container and cannot maintain its spherical shape.

下層液体はゾル状を支え、ゾルが完全にゲル化して球状
を保つことができるまで支え、その後下層液体中を落下
してゲル球が得られる。
The lower liquid supports the sol until the sol is completely gelled and can maintain its spherical shape, after which it falls through the lower liquid to obtain gel spheres.

従って、二層溶液の厚さは従来の半液体中を落下させて
球状とする場合に比較して液の高さは短かくてすみ、し
かも均一な球状のものが容易に得られる特長を有してい
る。
Therefore, the thickness of the two-layer solution is shorter than that of the conventional method of forming a sphere by dropping it in a semi-liquid, and it has the advantage of being able to easily obtain a uniform sphere. are doing.

上層の高沸点液体には滴下液の合体を防ぎよく分散させ
るために界面活性剤を少量混合してもよい。
A small amount of surfactant may be mixed with the upper layer of high boiling point liquid in order to prevent the dropped liquid from coalescing and to disperse it well.

界面活性剤はノニオン性、アニオン性のいずれでもよい
The surfactant may be nonionic or anionic.

セラミック原料のアルミニウム、マグネシウム、シリカ
、等のゾルは特定のものであることを必要としない。
The sols of ceramic raw materials such as aluminum, magnesium, silica, etc. do not need to be specific.

しかし、例えば該金属のアルコキシドを加水分解して得
られるものが、純粋なものが得られ、且つ均一で安定な
ゾルが得られるので、異種ゾルを混合しても均一で安定
な混合ゾルとなり、複酸化物からなるスピネル球も容易
に得られる。
However, for example, the product obtained by hydrolyzing the alkoxide of the metal is pure, and a uniform and stable sol can be obtained, so even if different types of sols are mixed, a uniform and stable mixed sol can be obtained. Spinel spheres made of double oxides can also be easily obtained.

ゾルは例えば、アルミニウムイソプロポキシド粉末また
はベンゼン溶液にpH2〜4に調整した水に加え、常温
で加水分解すると、アルミナ1水和物(以下擬ベーマイ
トと言う)からなる安定で均一なゲルが得られる。
For example, when the sol is added to aluminum isopropoxide powder or benzene solution in water adjusted to pH 2 to 4 and hydrolyzed at room temperature, a stable and uniform gel consisting of alumina monohydrate (hereinafter referred to as pseudoboehmite) is obtained. It will be done.

またマグネシウムの場合も同様にして得られる。Magnesium can also be obtained in the same manner.

金属アルコキシドのアルコールは、炭素数1〜6のアル
コールがすべて使用し得られる。
All alcohols having 1 to 6 carbon atoms can be used as the metal alkoxide alcohol.

滴下するゾルの粘度は特定値であることを必要とせず、
適度なチクソトロピー性を持つゾルであれば、2−エチ
ル−1−ヘキサノール中に分散すると球状となり直ちに
ゲル化し始める。
The viscosity of the dropped sol does not need to be a specific value,
A sol with appropriate thixotropy becomes spherical when dispersed in 2-ethyl-1-hexanol and immediately begins to gel.

スピネル組成のゾルにおいては、溶液中のスピネルの重
量%で0.6〜1.5重量%特に1.4重量%であるこ
とが好ましい。
In a sol having a spinel composition, the weight percent of spinel in the solution is preferably 0.6 to 1.5 weight percent, particularly 1.4 weight percent.

擬ベーマイトの場合は5〜10%であることが好ましい
In the case of pseudo-boehmite, it is preferably 5 to 10%.

ゾルを滴下するオリフィス径は0.30 mmφ〜1.
10mmφ程度でよく、ゾルの濃度の方が球形酸には影
響されることが大きい。
The diameter of the orifice through which the sol is dropped is 0.30 mmφ to 1.
The diameter may be about 10 mm, and the concentration of the sol is more affected by the spherical acid.

実施例 1 金属マグネシウムとメタノールを反応させてマグネシウ
ムメトキシドを作り、これを加水分解して、ブルーサイ
ドシルを得た。
Example 1 Magnesium methoxide was produced by reacting metallic magnesium with methanol, and this was hydrolyzed to obtain blue side sil.

一方アルミニウムインプロポキシドの力日水分解により
アルミニウム1水和物(擬ベーマイト)を作り、これに
塩酸を加えて解膠することによりベーマイトゾルを得た
On the other hand, aluminum monohydrate (pseudo-boehmite) was prepared by hydrolysis of aluminum impropoxide, and boehmite sol was obtained by adding hydrochloric acid to peptize the aluminum monohydrate.

この両者をスピネル組成(モル比で50:50)に混合
し、原料ゾルとした。
Both were mixed in a spinel composition (50:50 in molar ratio) to form a raw material sol.

次に100CCビーカー中に2−エチル−1−ヘキサノ
ール20CCにノニオン性の界面活性剤(リポノックス
MCG ) (ライオン社製)を0.2 CC溶解させ
たもの、およびブロモホルム10ccを加えて二層から
なる溶液を形成させた。
Next, in a 100 cc beaker, add 0.2 cc of a nonionic surfactant (Liponox MCG) (manufactured by Lion Corporation) dissolved in 20 cc of 2-ethyl-1-hexanol and 10 cc of bromoform. A solution was formed.

該二層溶液中に前記スピネル組成ゾルをオリフィス径0
.50朋φのオリフィスから滴下した。
The spinel composition sol is placed in the two-layer solution through an orifice diameter of 0.
.. It was dripped from an orifice with a diameter of 50 mm.

オリフィスから滴下されたゾルは、ゲル化されながら下
層液のブロモホルム面に到達する。
The sol dropped from the orifice reaches the bromoform surface of the lower liquid while being gelled.

この状態でしばらく保持したところ、ゲル化が完全に行
われた。
When this state was maintained for a while, gelation was completed.

このゲル化を減圧下、例えばゾルを滴下したビーカーを
デシケータ−に入れて減圧して行うと、ゲル化が促進さ
れると共に脱気が同時に行われるので好ましい。
It is preferable to carry out this gelation under reduced pressure, for example, by placing the beaker into which the sol has been dropped into a desiccator and reducing the pressure, since gelation is promoted and deaeration is carried out at the same time.

ゲル球が手で取扱える強度となったとき、ビーカー中の
溶液を流出させ、ゲル球を空気中で自然乾燥させ350
℃以上で焼成して焼成スピネル微小球を得た。
When the gel sphere is strong enough to be handled by hand, drain the solution in the beaker and dry the gel sphere naturally in the air for 350 minutes.
Calcined spinel microspheres were obtained by firing at temperatures above ℃.

実施例 2 実施例1に示した方法で製造したアルミナグルリ単独を
同様な二層溶液中に滴下してゲル球とし、これを800
℃に焼成してアルミナ球を得た。
Example 2 Alumina gluli alone, produced by the method shown in Example 1, was dropped into a similar two-layer solution to form a gel sphere.
Alumina spheres were obtained by firing at ℃.

Claims (1)

【特許請求の範囲】 1 セラミック原料ゾルの1種または2種以上の混合ゾ
ルを、ゾルより比重が小さく且つ水と混合しない水より
高沸点の液体と、ゾルより比重が大きく、且つ前記高沸
点液体及び水と混合しない液体との二層からなるゲル化
作用を持った溶液中に滴下して球状に成形した後、乾燥
焼成することを特徴とするセラミック球の製造法。 2 上層液体の高沸点液体が2−エチル−1−ヘキサノ
ール、2−ヘプタツール、またはこれらに界面活性剤を
混和したものである特許請求の範囲第1項記載のセラミ
ック球の製造法。 3 下層液体のゾルより比重が大きい液体が、ゲルより
比重の小さい液体である特許請求の範囲第1項記載のセ
ラミック球の製造法。 4 下層液体がフロモホルム、四塩化炭素である特許請
求の範囲第1項記載のセラミック球の製造法。 5 セラミック原料ゾルがアルミニウム、マグネシウム
、珪素等の金属アルコキシドの加水分解によって製造し
たものである特許請求の範囲第1項記載のセラミック球
の製造法。
[Scope of Claims] 1 A mixed sol of one or more ceramic raw material sols is mixed with a liquid having a specific gravity lower than that of the sol and having a higher boiling point than water that does not mix with water, and a liquid having a higher specific gravity than the sol and having the higher boiling point. A method for producing a ceramic sphere, which comprises dropping the ceramic sphere into a gelling solution consisting of two layers of a liquid and a liquid that does not mix with water, forming it into a sphere, and then drying and firing it. 2. The method for producing ceramic spheres according to claim 1, wherein the high boiling point liquid of the upper layer liquid is 2-ethyl-1-hexanol, 2-heptatool, or a mixture thereof with a surfactant. 3. The method for manufacturing ceramic spheres according to claim 1, wherein the liquid having a higher specific gravity than the sol of the lower liquid is a liquid having a lower specific gravity than the gel. 4. The method for producing ceramic spheres according to claim 1, wherein the lower liquid is fromoform or carbon tetrachloride. 5. The method for producing ceramic spheres according to claim 1, wherein the ceramic raw material sol is produced by hydrolysis of metal alkoxides such as aluminum, magnesium, and silicon.
JP55160313A 1980-11-14 1980-11-14 Ceramic ball manufacturing method Expired JPS5846342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55160313A JPS5846342B2 (en) 1980-11-14 1980-11-14 Ceramic ball manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55160313A JPS5846342B2 (en) 1980-11-14 1980-11-14 Ceramic ball manufacturing method

Publications (2)

Publication Number Publication Date
JPS5784731A JPS5784731A (en) 1982-05-27
JPS5846342B2 true JPS5846342B2 (en) 1983-10-15

Family

ID=15712250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55160313A Expired JPS5846342B2 (en) 1980-11-14 1980-11-14 Ceramic ball manufacturing method

Country Status (1)

Country Link
JP (1) JPS5846342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007937T5 (en) 2019-12-04 2022-10-27 Mitsubishi Electric Corporation VEHICLE CONTROL DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263628A (en) * 1985-05-17 1986-11-21 Mitsubishi Mining & Cement Co Ltd Production of ceramic microglobe
JPH07114952B2 (en) * 1986-08-14 1995-12-13 株式会社香蘭社 Powder slurry forming method
US5214884A (en) * 1991-04-23 1993-06-01 Kabushiki Kaisha Toshiba Ball polishing apparatus and method for the same
SE0101852D0 (en) * 2001-05-23 2001-05-23 Svenska Rymdaktiebolaget Method of preparing granules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007937T5 (en) 2019-12-04 2022-10-27 Mitsubishi Electric Corporation VEHICLE CONTROL DEVICE

Also Published As

Publication number Publication date
JPS5784731A (en) 1982-05-27

Similar Documents

Publication Publication Date Title
US3108888A (en) Colloidal, anisodiametric transition aluminas and processes for making them
DE69016057T2 (en) Process for the production of magnesium oxide.
US3850849A (en) Formed alumina bodies for catalytic uses
JPH0116771B2 (en)
US3637406A (en) Ultrapure alumina ceramics formed by coprecipitation
US4746468A (en) Method of preparing ceramic microspheres
US4367292A (en) Method for manufacture of powder composition for cordierite
JPS5846342B2 (en) Ceramic ball manufacturing method
US5045514A (en) Sol-gel method for making composite mullite/cordierite ceramics
US2805167A (en) Synthetic spinel refractory products
US4126422A (en) Method of densifying metal oxides
US5106608A (en) Magnesium oxide in fine powder form and its use
US4102978A (en) Process for producing alumina catalyst carriers
US5587010A (en) Process for producing fine flaky alumina particles and alumina-based plastic material
US3059997A (en) Method for preparing siliceous aerogels
JP3507567B2 (en) Spherical alumina and its manufacturing method
JPH0343201B2 (en)
US4774068A (en) Method for production of mullite of high purity
US3494875A (en) Porous silica bodies and method
CA1087374A (en) METHOD FOR PREPARING SHAPED, GREEN CERAMIC COMPACTS FROM HIGHLY FLOWABLE AND FILLABLE POWDERS CONTAINING .beta.-AND /OR .beta."-AL.SUB.2O.SUB.3
JPS6357383B2 (en)
JPS61256928A (en) Production of glass
JPH0986924A (en) Spherical agglomerated particle and its production
JPH05147910A (en) Aluminum nitride-based powder and its production
JPH06172023A (en) Production of cordierite powder and its ceramic