JPH01183421A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPH01183421A
JPH01183421A JP884188A JP884188A JPH01183421A JP H01183421 A JPH01183421 A JP H01183421A JP 884188 A JP884188 A JP 884188A JP 884188 A JP884188 A JP 884188A JP H01183421 A JPH01183421 A JP H01183421A
Authority
JP
Japan
Prior art keywords
sol
alkoxysilane
gel
mixed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP884188A
Other languages
Japanese (ja)
Inventor
Hideji Tanaka
秀二 田中
Takaaki Shimizu
孝明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP884188A priority Critical patent/JPH01183421A/en
Publication of JPH01183421A publication Critical patent/JPH01183421A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a large-sized thick-walled transparent quartz glass in high yield with good reproducibility, by preparing a mixed sol from specific two kinds of sols, gelatinizing the sol, drying and calcining the resultant gel by a sol-gel method. CONSTITUTION:A mixture of an alkoxysilane with water is hydrolyzed in the presence of an acidic catalyst to provide a homogeneous linear polysiloxane sol solution, which is then mixed with a spherical fine particulate silica suspension sol obtained by hydrolyzing an alkoxysilane in the presence of a basic catalyst to prepare a mixed sol. The obtained mixed sol is subsequently gelatinized to afford a wet gel, which is then dried and calcined. The mixing ratio of the alkoxysilane to the water in the above-mentioned linear polysiloxane-like sol solution is preferably 0.5<=water/alkoxysilane<=3.0. Alkoxides of various metals as a dopant may be added to the alkoxysilane in hydrolyzing thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石英ガラスの製造方法、特にはゾル−ゲル法に
よって再現性よく、高い歩留りで大型の透明な石英ガラ
スを得る方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing quartz glass, and particularly to a method for obtaining large-sized transparent quartz glass with good reproducibility and high yield by a sol-gel method. .

(従来の技術) 近年、光学用、光通信用などに使用され始めた高純度の
合成石英の製造法には大別して高温合成法と低温合成法
がある。
(Prior Art) Methods for producing high-purity synthetic quartz, which has recently begun to be used for optical purposes, optical communications, etc., can be roughly divided into high-temperature synthesis methods and low-temperature synthesis methods.

この高温合成法は5LC1いSi(OR)4などの揮発
性のけい素化合物を酸水素火炎中で火炎加水分解するか
、酸素と共にプラズマ炎中で酸化分解し、生成したシリ
カをターゲット上に透明溶融状態で、または不透明な多
孔質状態で成長させ、ついでこの透明棒状母材について
は抵抗加熱などの電気加熱で高温下に塑性成形し、切断
、研削、研摩して所望の形状に仕上げ、不透明多孔質棒
状母材については電気加熱炉中で焼結して透明ガラス化
したのち透明棒状母材と同様の方法で製品化されるので
あるが、これには■母材成長のための酸水素火炎、プラ
ズマ発生に多大のエネルギーが必要とされるし、塑性成
形時に2,000℃近くまで昇温させる必要があるため
、これにも多大のエネルギーが必要とされる、■光通信
用などのために得られる石英ガラスには屈折率制御用の
ドーパントが添加されるが、この場合には上記したよう
な高温工程でドーパントが揮散するためその固定化率が
極めて低くなる。■最終成形品を得るまでの工程が長く
、シたがって経済性がわるい、という不利がある。
This high-temperature synthesis method involves flame hydrolysis of volatile silicon compounds such as 5LC1Si(OR)4 in an oxyhydrogen flame or oxidative decomposition together with oxygen in a plasma flame, and the resulting silica is transparently placed on a target. The transparent rod-shaped base material is grown in a molten state or in an opaque porous state, and then this transparent rod-shaped base material is plastically formed at high temperatures by electrical heating such as resistance heating, and is finished into the desired shape by cutting, grinding, and polishing, and is then opaque. The porous rod-shaped base material is sintered in an electric heating furnace to become transparent and vitrified, and then manufactured using the same method as the transparent rod-shaped base material. A large amount of energy is required to generate flame and plasma, and it is necessary to raise the temperature to nearly 2,000°C during plastic molding, which also requires a large amount of energy. A dopant for controlling the refractive index is added to the quartz glass obtained for this purpose, but in this case, the dopant volatilizes during the above-mentioned high-temperature process, resulting in an extremely low fixation rate. ■The disadvantage is that the process to obtain the final molded product is long, and therefore economic efficiency is poor.

このため、最近はゾル−ゲル法と呼ばれている低温合成
法が注目されている。このゾル−ゲル法は基本的には■
アルコキシシランをアルコール溶媒中で塩酸などの酸性
触媒またはアンモニアなどの塩基性触媒の存在下で加水
分解して均一なゾルを得たのち、加温などの条件下でゲ
ル化して湿性ゲルとし、ついでこれを乾燥して乾燥ゲル
としてからこれを焼結してガラス化する方法(特公昭5
9−9497号公報参照)であるが、これについては■
1p以下の微細なシリカ粒子が水などに分散懸濁した溶
液にゲル化触媒となる酸または塩基を加え、ゲル化して
湿性ゲルとし、ついでこれを乾燥、焼結してガラス化す
るか、またはこの微細シリカ粒子懸濁液中の分散媒を揮
発させてシリカ乾燥体を作り、これを焼結してガラス化
する方法(J、 Amer、 Caram、 Soc、
、 66(10)、 683(1983)参照〕が提案
されており、さらには■ドーパントを含有するアルコキ
シシランを酸性触媒の存在下で加水分解して得たゾル液
と、アルコキシシランをアンモニアの存在下で加水分解
して得た球状シリカ微粒子を含む溶液とを混合し、この
ゾル溶液を同筒状回転容器中で回転させて湿式ゲルとし
、ついで乾燥してこれを乾燥ゲルとし、焼結してガラス
化する方法(特開昭61−91033号公報参照)が提
案されている。
For this reason, a low-temperature synthesis method called the sol-gel method has recently attracted attention. This sol-gel method is basically ■
Alkoxysilane is hydrolyzed in an alcoholic solvent in the presence of an acidic catalyst such as hydrochloric acid or a basic catalyst such as ammonia to obtain a uniform sol, which is then gelled under conditions such as heating to form a wet gel. A method of drying this to form a dry gel and then sintering it to vitrify it (Special Publications Publication No. 5)
9-9497), but regarding this
An acid or base serving as a gelling catalyst is added to a solution in which fine silica particles of 1 p or less are dispersed and suspended in water, etc., and the gel is formed into a wet gel, which is then dried and sintered to vitrify it, or A method of volatilizing the dispersion medium in this fine silica particle suspension to create a dried silica body, and sintering this to vitrify it (J, Amer, Caram, Soc,
, 66(10), 683 (1983)] has been proposed; The sol solution is mixed with the solution containing the spherical silica fine particles obtained by the hydrolysis described above, and this sol solution is rotated in the same cylindrical rotating container to form a wet gel, which is then dried to form a dry gel, and then sintered. A method of vitrification using a method (see Japanese Patent Laid-Open No. 61-91033) has been proposed.

しかして、このゾル−ゲル法については乾燥ゲルの焼結
によるガラス化工程が1,000−1,500℃と上記
した高温合成法に比べて低温でよいので高温合成法より
も大巾にエネルギーが節約されるという利点があり、こ
れにはまたその工程が比較的低温で行われるのでこぎに
添加されるドーパントが略々100%の収率で固定化さ
れるし、このガラス体の成形はそのゲル化を所望の形状
の容器内で行なわせれば所望の形状のものを成型。
However, in this sol-gel method, the vitrification step by sintering the dry gel can be performed at a lower temperature of 1,000-1,500°C, compared to the high-temperature synthesis method described above, so it requires much more energy than the high-temperature synthesis method. This has the advantage that the process is carried out at relatively low temperatures, so that the dopant added to the glass is immobilized with a yield of almost 100%, and the shaping of the glass body is If the gelation is performed in a container of the desired shape, the desired shape can be molded.

切断、切削などの加工操作なしで容易に得ることができ
るという有利性がある。。
It has the advantage that it can be easily obtained without processing operations such as cutting or cutting. .

したがって、このゾル−ゲル法は上記した高温成形法に
くらべて技術的、経済的にすぐれたものであるけれども
、これには例えば上記した■法には1,000〜1,2
00℃という比較的低い温度での焼結ガラス化でも透明
なガラス体が得られるものの、これには乾燥時および焼
結時にガラス体に割れや発泡現象が生じ易く、したがっ
て大型のガラス体が得がたいという不利があるし、■法
には発泡現象は生じないものの、乾燥工程において割れ
が生じ易いために大型ガラス体は得難く、これにはまた
透明ガラス化温度が 1,500℃と比較的高くなると
いう不利があり、さらに■法には割れの発生が少なく、
焼結ガラス化温度も1.300℃前後と比較的低温で済
むけれども、焼結ガラス化時に時々発泡が生じるという
不利があり、さらには得られるガラス体が透明化せず。
Therefore, although this sol-gel method is technically and economically superior to the above-mentioned high-temperature molding method, it has a 1,000 to 1,2
Although a transparent glass body can be obtained by sintering and vitrification at a relatively low temperature of 00°C, it is difficult to obtain a large glass body because cracking and foaming phenomena tend to occur in the glass body during drying and sintering. Although method (2) does not cause foaming, it is difficult to obtain large glass bodies because cracks easily occur during the drying process, and the transparent vitrification temperature is relatively high at 1,500°C. In addition, the method has the disadvantage of being less likely to crack.
Although the sintering and vitrification temperature can be relatively low at around 1.300°C, there is a disadvantage that foaming sometimes occurs during sintering and vitrification, and furthermore, the resulting glass body does not become transparent.

不透明なものとなることがあるために再現性に乏しく、
歩留りよく透明ガラス体を得ることが難しいという欠点
がある。
It can be opaque and has poor reproducibility.
There is a drawback that it is difficult to obtain a transparent glass body with a good yield.

(発明の構成) 本発明はこのような不利を解決したゾル−ゲル法による
石英ガラスの製造方法に関するものであり、これはアル
コキシシランと水との混合物、好ましくはモル比が0.
5≦水/アルコキシシラン≦3.0であるものを酸性触
媒の存在下で加水分解して得た均一な線状ポリシロキサ
ンプル液に、アルコキシシランを塩基性触媒の存在下で
加水分解して得た球状シリカ微粒子懸濁液ゾルを混合し
て混合ゾルを作り、ついでこれをゲル化して湿式ゲルと
したのち、これを乾燥して乾燥ゲルとし、この乾燥ゲル
を焼結しガラス化することを特徴とするものである。
(Structure of the Invention) The present invention relates to a method for producing quartz glass by a sol-gel method that solves the above-mentioned disadvantages.
5≦water/alkoxysilane≦3.0 in the presence of an acidic catalyst. The obtained spherical silica fine particle suspension sol is mixed to make a mixed sol, which is then gelled to form a wet gel, dried to form a dry gel, and this dried gel is sintered to vitrify it. It is characterized by:

すなわち1本発明者らは前記したゾル−ゲル法の■法に
おいて割れ、結晶化、発泡現象の生じる原因について検
討したところ、これは酸性触媒の存在下で加水分解して
得たゾル液とシリカ微粒子を含有するゾル液との混合ゾ
ル液はこのシリカ微粒子の重量濃度がたかだか30重量
%と低いためにこれから得られる湿性ゲル、乾燥ゲルが
機械的強度の低いものとなるし、さらにこのシリカ微粒
子が粒径1p以下のものであるために大型で肉厚の成形
品を得るための大型のバルク中での乾燥速度が不均一と
なり、したがってバルク中での応力に耐え切れず乾燥工
程で割れが生じ、この乾燥速度はゲル体乾燥表面付近で
速く、それ以外のところが遅くなるためにゲル体が乾燥
工程でそりなどの変形現象を起すということ、また、二
へに使用される酸性加水分解ゾルはH,O/アルコキシ
シランのモル比が4以上のものの加水分解で得られるも
のであるために、こNに得られるゾル体はこの加水分解
で得られるシロキサン高分子がクラスター状または粒状
のものとなってこれから得られる湿性ゲル、乾燥ゲルは
機械的強度の低いものとなるし、湿性ゲルから乾燥ゲル
にいたる工程で大きな収縮率を伴なうために2cwi以
上の肉厚の透明石英ガラスを得ようとするとゲル内部の
細孔径が小さいために毛細管力にゲル体の強度が耐えき
れず乾燥工程で割れが生じるということを確認し、この
対策について種々検討した結果、酸性加水分解ゾルの製
造時にH,O/アルコキシシランのモル比を減少させ、
これを0.5≦H* O/アルコキシシラン1モル0の
範囲とすると、この加水分解で得られるゾルが高分子状
の線状ポリシロキサンとなり、曳糸性を示すものとなる
ので、これにアルコキシシランを塩基性触媒の存在下で
加水分解して得た球状シリカ微粒子懸濁液ゾルを混合し
て得られる混合ゾル、これから作られる湿式ゲル、乾燥
ゲルはいずれも球状シリカ粒子群に線状ポリシロキサン
高分子が固着、絡むことによってゲル体の強度が飛躍的
に向上して機械的強度の強いものとなる。したがって混
合ゾル液のシリカ微粒子濃度がたかだか30重量%であ
りながら乾燥工程における割れが防止されるし、焼結工
程における白色結晶化、発泡も防止されるので、これに
よれば大型で肉厚の透明石英ガラスを再現性よく、高い
歩留りで得ることができることを見出し、各工程につい
てのより詳細な研究を進めて本発明を完成させた。
In other words, the present inventors investigated the causes of cracking, crystallization, and foaming in the above-mentioned sol-gel method (1), and found that this was caused by the sol liquid and silica obtained by hydrolysis in the presence of an acidic catalyst. Since the mixed sol solution with a sol solution containing fine particles has a low weight concentration of 30% by weight of the silica fine particles, the resulting wet gel and dry gel have low mechanical strength. Because the particles have a particle size of 1p or less, the drying rate in a large bulk to obtain a large, thick-walled molded product becomes uneven, and as a result, the bulk cannot withstand the stress and cracks occur during the drying process. The drying rate is faster near the drying surface of the gel body and slower elsewhere, causing deformation phenomena such as warping of the gel body during the drying process. Since this is obtained by hydrolysis of H,O/alkoxysilane with a molar ratio of 4 or more, the sol obtained from this N is one in which the siloxane polymer obtained by this hydrolysis is in the form of clusters or particles. Therefore, the wet gel and dry gel obtained from this will have low mechanical strength, and because the process from wet gel to dry gel involves a large shrinkage rate, transparent quartz glass with a wall thickness of 2 cwi or more is used. When attempting to obtain a gel, the pore diameter inside the gel was small, so the strength of the gel body could not withstand the capillary force, resulting in cracking during the drying process. After investigating various countermeasures for this problem, we decided to produce an acidic hydrolyzed sol. Sometimes the molar ratio of H,O/alkoxysilane is reduced,
If this is in the range of 0.5≦H*O/1 mole of alkoxysilane, the sol obtained by this hydrolysis becomes a polymeric linear polysiloxane that exhibits stringiness. The mixed sol obtained by mixing a suspension sol of spherical silica fine particles obtained by hydrolyzing alkoxysilane in the presence of a basic catalyst, the wet gel, and the dry gel made from this are all linear in groups of spherical silica particles. By fixing and entangling the polysiloxane polymer, the strength of the gel body is dramatically improved, resulting in a strong mechanical strength. Therefore, even though the concentration of silica fine particles in the mixed sol solution is at most 30% by weight, cracking during the drying process is prevented, and white crystallization and foaming during the sintering process are also prevented. They discovered that transparent quartz glass can be obtained with good reproducibility and high yield, and completed the present invention by conducting more detailed research on each process.

以下本発明の方法を工程毎に詳述する。The method of the present invention will be explained step by step in detail below.

本発明の方法はまずアルコキシシランを酸性触媒の存在
下で加水分解してゾル液を作り、これをアルコキシシラ
ンを塩基性触媒の存在下で加水分解して得た、球状シリ
カ微粒子含有懸濁ゾル液と混合して混合ゾルを作るので
あるが、この方法は基本的には公知の方法で行なえばよ
い。
The method of the present invention involves first hydrolyzing alkoxysilane in the presence of an acidic catalyst to produce a sol solution, and then hydrolyzing this alkoxysilane in the presence of a basic catalyst to obtain a suspended sol containing spherical silica particles. A mixed sol is prepared by mixing with a liquid, and this method can basically be carried out by a known method.

したがって、二Nに使用されるアルコキシシランは一般
式S i (OR)4で示され、Rが炭素数1〜4のア
ルキルであるアルコキシシラン、例えばテトラメトキシ
シラン、゛テトラエトキシシラン。
Therefore, the alkoxysilane used for diN has the general formula S i (OR)4 and R is alkyl having 1 to 4 carbon atoms, such as tetramethoxysilane, "tetraethoxysilane."

テトラプロポキシシラン、テトラブトキシシラン。Tetrapropoxysilane, tetrabutoxysilane.

メトキシトリエトキシシラン、ジメトキシジェトキシシ
ラン、トリメトキシエトキシシランなどとすればよい。
Methoxytriethoxysilane, dimethoxyjethoxysilane, trimethoxyethoxysilane, etc. may be used.

この酸性加水分解はこのアルコキシシラン1モルをこの
アルコキシシランと相溶性のある有機溶剤特にはメタノ
ール、エタノール、プロパツール、ブタノールなどのア
ルコール類の10モル以下に溶解してから、これに水と
塩酸、硝酸、硫酸などの無機酸または酢酸などの有機酸
から選択される酸性触媒0.I X 10−3〜100
×10−3モルを添加し、これらを大気圧下または密閉
状態とした加熱下において0〜50℃の温度で攪拌すれ
ばよいが、本発明の方法では二5に添加される水分とア
ルコキシシランとのモル比が0゜5以下では、線状ポリ
シロキサン高分子を形成するのに長時間を要し、また未
反応−OR基がシリカゾル中に多量に残留してしまい、
球状シリカ微粒子との固着力にとぼしくゲルの強度が低
下してしまうので、0.5≦H20/アルコキシシラン
≦3.0の範囲、好ましくは1≦H80/アルコキシシ
ラン≦2の範囲とすることが必要とされる。
This acidic hydrolysis involves dissolving 1 mole of this alkoxysilane in 10 moles or less of an organic solvent that is compatible with this alkoxysilane, particularly alcohols such as methanol, ethanol, propatool, butanol, and then adding water and hydrochloric acid to this solution. , an acidic catalyst selected from inorganic acids such as nitric acid, sulfuric acid, or organic acids such as acetic acid. IX 10-3~100
x 10-3 mol and stir the mixture under atmospheric pressure or under heating in a closed state at a temperature of 0 to 50°C. However, in the method of the present invention, the water added to If the molar ratio with
Since the adhesion force with the spherical silica fine particles becomes weak and the strength of the gel decreases, the range of 0.5≦H20/alkoxysilane≦3.0, preferably 1≦H80/alkoxysilane≦2 is recommended. Needed.

これは水とアルコキシシランのモル比をこの範囲内とせ
ず、このモル比を3以上、特に4以上とすると、このア
ルコキシシランの加水分解で生成されるオルガノポリシ
ロキサンが式 %式% (二へにη は比粘度、Cはシリカ濃度、ρは粒P 子密度、には常数を示す) で示されるアインシュタインの式によって示される。そ
の形状はクラスター状あるいは粒状となるためこのゾル
液より得られるものは機械的強度の弱いものとなるが、
このモル比を0.5≦H,O/アルコキシシラン≦3.
0とするとこのアルコキシシランの加水分解で生成され
るオルガノポリシロキサンは式 %式%) (こぎにη8.は比粘度、ユ、−は還元粘度、Cは濃度
、〔η〕は固有粘度、kは常数を示す)で示されるハギ
ンスの式によるものとなって還元粘度−シリカ濃度のプ
ロットが勾配をもつ直線で示されるようになり(X線小
角散乱測定の結果もこれを裏付いている)、高分子状の
線状ポリシロキサンとなることが確認され、したがって
このものは曳糸性を示すものとなる。このようにして得
られたゾルおよびこれを含んだ後述する湿性ゲル、乾燥
ゲルは機械的強度の大きいものとなる。
This means that if the molar ratio of water and alkoxysilane is not within this range, and this molar ratio is 3 or more, especially 4 or more, the organopolysiloxane produced by hydrolysis of this alkoxysilane is where η is the specific viscosity, C is the silica concentration, ρ is the particle density, and is a constant). Since the shape is cluster-like or granular, the sol obtained from this sol has weak mechanical strength.
This molar ratio is 0.5≦H, O/alkoxysilane≦3.
When set to 0, the organopolysiloxane produced by hydrolysis of this alkoxysilane is expressed by the formula %. is a constant), and the plot of reduced viscosity vs. silica concentration is now shown as a straight line with a slope (the results of small-angle X-ray scattering measurements also support this). It has been confirmed that the polymer is a linear polysiloxane, and therefore exhibits spinnability. The sol thus obtained and the wet gel and dry gel containing the same, which will be described later, have high mechanical strength.

なお、この加水分解時にアルコキシシランに各種金属の
アルコキシサイド、例えばPO(OR)、。
Note that during this hydrolysis, various metal alkoxides, such as PO (OR), are added to the alkoxysilane.

T i (OR)いAl(OR)、、B (OR)□。T i (OR) Al (OR),, B (OR) □.

Ge(OR)、、Z r(OR)、、Nd(OR)、(
こぎにRは上記に同じ)で示されるドーパント剤を添加
することは任意とされる。
Ge(OR), , Z r(OR), , Nd(OR), (
It is optional to add a dopant agent (R is the same as above).

また、このアルコキシシランを塩基性触媒の存在下で加
水分解してシリカ微粒子を含有するゾル液を作るには、
アルコキシシラン1モルに対して水2〜20モル、溶媒
5〜lOOモル、アンモニア0.1〜10モルと必要量
のドーパントとを添加し、0〜50℃で加水分解すれば
よい、この場合、アンモニアはアルコキシシランの加水
分解で生成したシリカを粒径の揃った球状粒子とする作
用をもっているので、これによれば0.1〜2−の粒径
をもつシリカ微粒子を含む溶液が得られるし、この粒径
はこの温度を20〜45℃、アルコキシシランをテトラ
メトキシシランとすれば0゜01〜0.1umの範囲と
することもできるが、この粒径は0.05μs以下とす
ると乾燥ゲルが細孔径の小さいものとなってゲル内部に
離しよう水やアルコールが残留して焼結ガラス化時に発
泡や焼結化の原因となるし、ゲルの強度が弱くなって乾
燥工程で割れが生じ、1.0.より大きいとゲル化以前
に自然沈降してゲル内部にシリカ濃度の分布ができて収
縮率が不均一化し、乾燥工程で割れてしまうので、これ
は0.05〜1.0/ffiの範囲のものとすることが
よい。また、このようにして得られた微粒状シリカを含
有する溶液は蒸留操作によってそのシリカ濃度を50重
量%程度にまで濃縮することがよく、これには単蒸留、
特には減圧単蒸留で水、溶媒およびアンモニアを留去し
てpHを8以下とし、シリカ濃度を50重量%以下、好
ましくは25〜40重量%とすればよい。
In addition, to create a sol containing silica particles by hydrolyzing this alkoxysilane in the presence of a basic catalyst,
To 1 mol of alkoxysilane, 2 to 20 mol of water, 5 to 10 mol of solvent, 0.1 to 10 mol of ammonia, and the required amount of dopant are added and hydrolyzed at 0 to 50°C. In this case, Ammonia has the effect of converting the silica produced by hydrolysis of alkoxysilane into spherical particles of uniform particle size, so that a solution containing fine silica particles with a particle size of 0.1 to 2 - can be obtained. If the temperature is 20 to 45℃ and the alkoxysilane is tetramethoxysilane, the particle size can be in the range of 0.01 to 0.1 um, but if the particle size is 0.05 μs or less, the dry gel The pores become smaller and water and alcohol remain inside the gel, causing foaming and sintering during sintering and vitrification, and the strength of the gel weakens and cracks occur during the drying process. , 1.0. If it is larger, it will naturally settle before gelation, creating a distribution of silica concentration inside the gel, making the shrinkage rate uneven, and cracking during the drying process. It is better to take it as a fact. In addition, the solution containing finely divided silica obtained in this way is often concentrated to a silica concentration of about 50% by weight by distillation, and this can be done by simple distillation,
In particular, water, solvent, and ammonia may be distilled off by simple distillation under reduced pressure to adjust the pH to 8 or less, and the silica concentration to be 50% by weight or less, preferably 25 to 40% by weight.

このようにして得られた酸性触媒の存在下で加水分解し
た線状ポリシロキサンを含有するゾル液とシリカ濃度が
50重量%以下でPHが8以下とされたシリカ微粒子含
有ゾル液との混合は、この酸性加水分解ゾル液を攪拌し
ながらニーにシリカ微粒子含有ゾル液を添加するか、シ
リカ微粒子含有ゾル液を攪拌しなからこ\に酸性加水分
解ゾル液を添加すればよいが、この混合時における急激
なゲル化をおさえるためにはこれを水冷下で行なうのが
よく、この攪拌も気泡の混入を避けるためにゆるやかな
ものとすることがよい、また、この両液の混合比は酸性
加水分解ゾルを(a)液とし。
Mixing the thus obtained sol containing linear polysiloxane hydrolyzed in the presence of an acidic catalyst with a silica fine particle-containing sol having a silica concentration of 50% by weight or less and a pH of 8 or less The sol solution containing silica fine particles may be added to the knee while stirring this acidic hydrolyzed sol solution, or the acidic hydrolyzed sol solution may be added to the knee without stirring the sol solution containing silica fine particles. In order to prevent rapid gelation, this should be done under water cooling, and this stirring should be done slowly to avoid the inclusion of air bubbles.Also, the mixing ratio of both liquids should be acidic. Let the hydrolyzed sol be liquid (a).

球状シリカ微粒子含有ゾル液を(b)液としたときそれ
ぞれのシリカ重量をSiO□(a)、51oz(b)と
するとSun、 (a)/SiO,(b) < 0 、
1ではCa)液が少ないために構造補強材となる球状シ
リカ微粒子同志を結合させるのに十分なシロキサン結合
がつくれないために乾燥工程で割れ、クラックが発生し
、5in2(a)/5iOi (b) > 6 、0で
は(b)液が少なすぎて球状シリカ微粒子の数密度が薄
くなり、乾燥工程で割れ、クラックが発生するので、こ
れは0 、1 <SiO、(a)/SiO,(b) <
 6 、0の範囲とすることがよい。
When the sol containing spherical silica particles is used as the liquid (b), and the respective silica weights are SiO□ (a) and 51 oz (b), Sun, (a)/SiO, (b) < 0,
In No. 1, due to the small amount of Ca) liquid, sufficient siloxane bonds were not created to bond together the spherical silica fine particles that serve as the structural reinforcement, resulting in cracks occurring during the drying process, resulting in 5in2(a)/5iOi(b ) > 6, 0, (b) liquid is too small and the number density of spherical silica fine particles becomes thin, causing cracks to occur in the drying process; b) <
It is preferable to set it in the range of 6.0.

また、混合後の混合ゾル液のシリカ濃度はそれが10重
量%以下では球状シリカ微粒子同志を結合させるのに十
分なシロキサン結合をつくることができず、乾燥工程で
この混合ゲルが大きく収縮して割れ、クラックが発生す
るようになり、50重量%以上とすると混合後のpHに
もよるがゲル化し易くなり、水冷下で混合してもその後
の操作ができなくなってしまうので10〜50重量%の
範囲のものとすることがよい、なお、この混合ゾルのp
Hは酸加水分解ゾルが酸性であり1球状機粒子シリカゾ
ルのPHが6〜8であるので大略pH=2〜6のものと
なるが、このゾルをゲル化するときのゲル化時間に影響
をもつ因子が温度、PH値であり、温度との関係上一義
的にこのpH値を決めることはできないけれども最も好
ましいゲル化のためのpH値が3〜5とされることから
、このものは予じめ酸、アルカリとしてのアンモニアを
添加してこのpH値を調整しておくことがよい。
In addition, if the silica concentration of the mixed sol solution after mixing is less than 10% by weight, sufficient siloxane bonds cannot be created to bond the spherical silica fine particles, and the mixed gel will shrink significantly during the drying process. Breaks and cracks will occur, and if it is more than 50% by weight, it will tend to gel, depending on the pH after mixing, and subsequent operations will not be possible even if mixed under water cooling, so 10 to 50% by weight. It is preferable that the p of this mixed sol be within the range of
Since the acid hydrolysis sol is acidic and the pH of one spherical particle silica sol is 6 to 8, the pH of H is approximately 2 to 6, but it does not affect the gelation time when gelling this sol. The factors involved are temperature and pH value, and although this pH value cannot be determined uniquely due to the relationship with temperature, the most preferable pH value for gelation is 3 to 5, so this is a predicted value. It is preferable to adjust this pH value by adding ammonia as a hydrochloric acid or alkali.

本発明の方法ではこのようにして得られた混合ゾルをゲ
ル化し湿式ゲルを得、乾燥して乾燥ゲルとし、これを焼
結ガラス化するのであるが、この混合ゾルのゲル化は昇
温によって行えばよい、しかして、このゲル化は温度の
高い程速く進行するが、余り高温とすると溶媒が沸騰現
象を起こして湿性ゲルが割れてしまうので、これは密閉
系において30〜80℃に加熱して行なわせることがよ
い。
In the method of the present invention, the mixed sol thus obtained is gelled to obtain a wet gel, dried to form a dry gel, and this is sintered and vitrified. However, the higher the temperature, the faster this gelation will proceed, but if the temperature is too high, the solvent will boil and the wet gel will crack, so it should be heated to 30-80℃ in a closed system. It is better to let them do it.

また、この湿式ゲルを乾燥して乾燥ゲルとするためには
、この湿式ゲル中に含有されている水およびアルコール
などの残留溶媒を除去する必要があるのであるが、ゲル
内部での加水分解、重縮合反応を促進させる必要がある
ことから、これは密閉系でてきるだけ長い時間をかけて
、できるだけ高温で行なうことがよい。しかし、余り高
温にすると溶媒の沸騰現象によって割れが発生するので
生産性向上を画るということから30〜80℃で1〜3
日間熟成したのち、開口率が0.1〜10%である容器
中において50〜120℃の温度で乾燥させて、最終ガ
ラス体重量の105〜130重量%になるまで乾燥する
ことがよい。
In addition, in order to dry this wet gel into a dry gel, it is necessary to remove residual solvents such as water and alcohol contained in this wet gel, but hydrolysis inside the gel, Since it is necessary to accelerate the polycondensation reaction, it is preferable to carry out this in a closed system for as long as possible time and at as high a temperature as possible. However, if the temperature is too high, cracks will occur due to the boiling phenomenon of the solvent.
After aging for days, it is preferable to dry the glass at a temperature of 50 to 120° C. in a container having an open area ratio of 0.1 to 10% until the final glass weight becomes 105 to 130% by weight.

また、この乾燥ゲルの焼結ガラス化はこれを1゜200
〜1,400℃に加熱することによって行なえばよいが
、この乾燥ゲルには表面吸着水や残留有機物が含まれて
いるし、目的とする石英ガラスはOH基含有量の少ない
ものとすることが必要とされるので、このものはその焼
結ガラス化に先立って100〜300℃に加熱して表面
吸着水を脱着したのち、空気雰囲気中で300〜500
℃に加熱して残留有機物を酸化し、脱炭させ、ついで塩
素化剤としてのCI□ガス、5OCI、ガスの存在下に
700〜900℃に加熱脱OH処理したのち02ガスな
どの酸化剤の存在下に900〜1,100℃に加熱して
酸化脱塩素処理を行なうことがよいし、これらの熱処理
における熱歪みによって割れの発生するのを防止するこ
とが必要とされるのでこの乾燥ゲルは10〜b 室温から1,100℃まで段階的に昇温させて上記した
各種の処理を行なったのち、焼結ガラス化することがよ
い。なお、この焼結ガラス化は1゜100〜1,200
℃に加熱して細孔を閉孔させたのち減圧下又はHeガス
雰囲気下に1,200〜1,400℃で30分以上加熱
することによって行なえばよく、これによれば透明な石
英ガラスを容易に再現性よく、かつ効率よく得ることが
できる。
In addition, sintering and vitrification of this dry gel can be performed at a temperature of 1°200
This can be done by heating to ~1,400°C, but this dry gel contains surface-adsorbed water and residual organic matter, and the target quartz glass must have a low OH group content. Prior to sintering and vitrification, this product is heated to 100-300°C to desorb surface adsorbed water, and then heated to 300-500°C in an air atmosphere.
℃ to oxidize residual organic matter and decarburize it, then heat to 700 to 900℃ in the presence of CI□ gas, 5OCI gas as a chlorinating agent, deOH treatment, and then remove the oxidizer using an oxidizing agent such as 02 gas. It is preferable to carry out oxidative dechlorination treatment by heating to 900 to 1,100°C in the presence of chlorine, and it is necessary to prevent cracks from occurring due to thermal distortion during these heat treatments. 10-b It is preferable to gradually raise the temperature from room temperature to 1,100° C. and perform the various treatments described above, and then sinter and vitrify it. Note that this sintered vitrification is performed at a temperature of 1°100 to 1,200°.
℃ to close the pores, and then heating at 1,200 to 1,400℃ for 30 minutes or more under reduced pressure or He gas atmosphere. According to this method, transparent quartz glass can be It can be easily obtained with good reproducibility and efficiency.

本発明の方法は上記したように、モル比が0゜5≦水/
アルコキシシラン≦3.0であるアルコ  lキシシラ
ンと水との混合物を酸性触媒の存在下で加水分解して高
分子の線状ポリシロキサンプル液を作り、これにアルコ
キシシランを塩基性触媒の存在下で加水分解して得た球
状シリカ微粒子懸濁液ゾルを混合して混合ゾルを作った
のち、これをゲル化し湿式ゲルを得、乾燥して乾燥ゲル
とし。
As mentioned above, in the method of the present invention, the molar ratio is 0°5≦water/
A mixture of alkoxysilane (alkoxysilane≦3.0) and water is hydrolyzed in the presence of an acidic catalyst to prepare a polymeric linear polysiloxane sample solution, and alkoxysilane is added to this in the presence of a basic catalyst. The spherical silica fine particle suspension sol obtained by hydrolysis was mixed to make a mixed sol, which was then gelled to obtain a wet gel, which was then dried to form a dry gel.

ついでこれを焼結してガラス化するものであるが、これ
によれば酸性加水分解ゾルが高分子の線状ポリシロキサ
ンを含むものとなるので、これを球状シリカ微粒子を含
有するゾル液と混合した混合ゾルをゲル化し湿式ゲルを
得、さらにはこれを乾燥して得られる乾燥ゲルが機械的
強度の大きいものとなり、このものは乾燥工程、焼結工
程で割れることがなく、これはまたそり発泡を生じるこ
ともないので、このゲルを肉厚の大型品に成形しても透
明な石英ガラス部品を再現性よく、容易にかつ効率よく
生産することができるという有利性が与えられる。
This is then sintered and vitrified. According to this method, the acidic hydrolyzed sol contains a polymeric linear polysiloxane, so this is mixed with a sol solution containing spherical silica fine particles. The mixed sol is gelatinized to obtain a wet gel, and the dry gel obtained by drying this has a high mechanical strength.This product does not crack during the drying or sintering process, and it also has a high resistance to warping. Since foaming does not occur, this gel has the advantage of being able to easily and efficiently produce transparent quartz glass parts with good reproducibility even when molded into large, thick products.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例1 )酸性加水分解ゾルの製造 テトラエトキシシラン2,400 gと無水エタノール
672鳳Ωとからなる混合液を25℃に保ち、これを激
しく攪拌しながらこれに0.04規定の塩酸水208g
を加え、2時間激しく攪拌してテトラエトキシシランを
加水分解させたのち、攪拌をゆるやかにして密閉状態に
40℃で1日間放置したところ、高分子状のポリシロキ
サンプルが得られた。
Example 1) Production of acidic hydrolysis sol A mixed solution consisting of 2,400 g of tetraethoxysilane and 672 g of anhydrous ethanol was kept at 25°C, and while stirring vigorously, 208 g of 0.04 N hydrochloric acid water was added to it.
was added and stirred vigorously for 2 hours to hydrolyze the tetraethoxysilane, then the stirring was slowed down and the mixture was left in a sealed state at 40° C. for 1 day, yielding a polymeric polysiloxy sample.

このポリシロキサンプルはこれからサンプルを採取して
エタノールで種々の濃度に希釈し、その粘度を測定して
還元粘度−シリカ濃度のプロットを求めたところ、勾配
をもつ直線となったことからとのシロキサンは線状構造
のものであることが確認されたが、このものはまたこれ
を少量取り出して放置したところ、ゲル化前に曳糸性を
示した。
This polysiloxane sample was taken from this, diluted with ethanol to various concentrations, its viscosity was measured, and a plot of reduced viscosity vs. silica concentration was obtained, and a straight line with a slope was obtained. was confirmed to have a linear structure, but when a small amount of this material was taken out and left to stand, it showed stringiness before gelation.

2)塩基性加水分解による球状シリカ微粒子懸濁液の製
造 テトラエトキシシラン4,940 gに無水エタノール
26.4 m、アンモニア水(NH,濃度29重量%)
1,584■Qおよび水1,714gを混合してこの液
温を35℃に保ち、3時間激しく攪拌してテトラエトキ
シシランを加水分解させたのち。
2) Production of suspension of spherical silica fine particles by basic hydrolysis 4,940 g of tetraethoxysilane, 26.4 m of absolute ethanol, and aqueous ammonia (NH, concentration 29% by weight)
1,584 ■Q and 1,714 g of water were mixed, the temperature of the mixture was maintained at 35°C, and the mixture was vigorously stirred for 3 hours to hydrolyze the tetraethoxysilane.

12時間暗所に放置して球状微粒子を安定させ、ロータ
リーエバポレーターを用いてこの加水分解液に断続的に
純水を加えつN減圧下でエタノール、水およびアンモニ
アを留去しながらpHが6.6になるまで濃縮したとこ
ろ、シリカ濃度が36重量%であり、シリカの平均粒径
が0.25taである球状シリカ微粒子懸濁液が得られ
た。
The spherical fine particles were left in a dark place for 12 hours to stabilize them, and while adding pure water intermittently to the hydrolyzed solution using a rotary evaporator, ethanol, water, and ammonia were distilled off under N reduced pressure until the pH reached 6. 6, a suspension of spherical silica particles was obtained with a silica concentration of 36% by weight and an average silica particle size of 0.25ta.

3)酸性加水分解ゾルと塩基性加水分解ゾルの混合およ
びゲル化 上記したl)で得られた線状ポリシロキサンゾル3.1
40+aQと2)で得られた塩基性加水分解球状シリカ
微粒子懸濁液3,160a+Qとを水冷下(5℃)に混
合し、攪拌したところ、pHが5.0である混合ゾル液
が得られた。
3) Mixing and gelation of acidic hydrolyzed sol and basic hydrolyzed sol Linear polysiloxane sol obtained in step 1) above 3.1
When 40+aQ and the basic hydrolyzed spherical silica fine particle suspension 3,160a+Q obtained in 2) were mixed under water cooling (5°C) and stirred, a mixed sol solution with a pH of 5.0 was obtained. Ta.

ついで、この混合ゾル液6,300mj2を20cmφ
X30cmHのテフロン製円筒容器に入れて5℃に保ち
、密閉して40℃の恒温槽に3日間入れたところ、この
ものはゲル化、熟成されたが、本実施例では上記したl
)〜3)の工程によって同一寸法の湿式ゲル体を10個
作成した。
Next, 6,300mj2 of this mixed sol liquid was made into a 20cmφ
When placed in a Teflon cylindrical container of 30cm
10 wet gel bodies of the same size were created by the steps of ) to 3).

4)乾燥、焼結、ガラス化 上記した密閉式テフロン容器の密閉用蓋を開口率が0.
5%である蓋と交換した湿性ゲルを収容した容器10個
を60℃の恒温槽に移し、その温度で20日間放置した
のち、この蓋を開口率が5%のものとし100℃に保持
した恒温槽中で3日間乾燥したところ、この間1つのゲ
ル体も割れることがなく、14.4cmφX14.5c
mHの室温でも割れない乾燥ゲル10個が得られ、これ
らには何の変形もみられなかった。
4) Drying, sintering, and vitrification The sealing lid of the above-mentioned sealed Teflon container has an open area ratio of 0.
The 10 containers containing the wet gel replaced with the 5% lids were transferred to a constant temperature bath at 60°C and left at that temperature for 20 days, then the lids were changed to a 5% open area and kept at 100°C. When dried in a constant temperature bath for 3 days, not a single gel body cracked during this time, and the size was 14.4 cmφ x 14.5 cm.
Ten dry gels were obtained that did not crack even at room temperature of mH, and no deformation was observed in these gels.

この乾燥ゲル10個をマツフル炉に入れ、脱吸着水処理
のために空気中において室温から昇温速度30℃/ H
rで300℃まで加熱し、この温度で10時間保持した
のち、軌炭処理のために空気中において昇温速度30℃
/時で300℃から700℃まで加熱し、さらに細孔が
開いている状態で表面シラノールの脱水縮合のためにこ
の温度に20時間保持した。
10 of these dried gels were placed in a Matsufuru furnace and heated at a heating rate of 30°C/H from room temperature in air for desorption water treatment.
After heating to 300℃ with R and holding at this temperature for 10 hours, the heating rate was increased to 30℃ in air for rail coal treatment.
/hour from 300°C to 700°C, and further maintained at this temperature for 20 hours in order to dehydrate and condense the surface silanol while the pores were open.

ついで、このものを別の電気炉に入れ、ヘリウムガス雰
囲気下において昇温速度30℃/時で7.00〜1,0
00℃まで昇温し、この温度に1時間保持したのち、昇
温速度30℃/時で1,100℃まで昇温して5時間保
持して細孔の閉孔化を行なった。
Then, this product was placed in another electric furnace and heated to 7.00 to 1.0 at a heating rate of 30°C/hour in a helium gas atmosphere.
The temperature was raised to 00°C and held at this temperature for 1 hour, and then raised to 1,100°C at a heating rate of 30°C/hour and held for 5 hours to close the pores.

つぎにこのものを昇温速度30℃/時で1,100℃か
)v 1 、350℃まで昇温し、この温度に5時間保
持してガラス化したところ、10.5c+*φX 10
.6c■Hの肉厚円筒状の透明な石英ガラス体10個が
得られた。
Next, this material was heated to 1,100°C (1,100°C)v 1 at a heating rate of 30°C/hour, and 350°C, and kept at this temperature for 5 hours to vitrify it, resulting in 10.5c + *φX 10
.. Ten cylindrical transparent quartz glass bodies with a thickness of 6cH were obtained.

実施例2 1)酸性加水分解ゾルの製造 テトラメトキシシラン5,500 gと無水エタノール
2.1gとからなる混合液を10℃に保ち、これを激し
く攪拌しながらこれに0.02規定の塩酸水1.3Qを
加え、激しく攪拌して混合液が均一となったところで徐
々に昇温しで45℃まで上昇させ、その後攪拌をゆるや
かにして1日後に攪拌を停止したところ、高分子状のポ
リシロキサンプルが得られた。
Example 2 1) Production of acidic hydrolysis sol A mixed solution consisting of 5,500 g of tetramethoxysilane and 2.1 g of absolute ethanol was kept at 10°C, and while stirring vigorously, 0.02 N hydrochloric acid solution was added to it. 1.3Q was added, stirred vigorously, and when the mixture became homogeneous, the temperature was gradually raised to 45°C. After that, the stirring was slowed down and stirring was stopped after one day. A siloxane sample was obtained.

このポリシロキサンプルはこれからサンプルを採取して
エタノールで種々の濃度に希釈してその粘度を測定して
還元粘度−シリカ濃度のプロットを求めたところ、勾配
をもつ直線となったことからこのポリシロキサンは線状
構造のものであることが確認されたが、このものはまた
これを少量取り出して放置したところゲル化直前に曳糸
性を示した。
This polysiloxane sample was taken from this, diluted with ethanol to various concentrations, its viscosity was measured, and a plot of reduced viscosity vs. silica concentration was obtained, and a straight line with a slope was obtained, indicating that this polysiloxane was confirmed to have a linear structure, but when a small amount of this material was taken out and left to stand, it showed stringiness just before gelation.

2)塩基性加水分解による球状シリカ微粒子懸濁液の製
造 テトラメトキシシラン9.78 k gに無水メタノー
ル94.3 Q、アンモニア水(N)+3濃度29重量
%)6.83Qおよび水24.02kgを混合してこの
液温を0℃に保ち、3時間激しく攪拌してテトラメトキ
シシランを加水分解させたのち、12時間暗所に放置し
て球状微粒子を安定させ、ロータリーエバポレーターを
用いてこの加水分解液に断続的に純水を加えつへ減圧下
でメタノール、水およびアンモニアを留去しながら濃縮
し、濃縮後0.2規定の塩酸でpHを6.5としたとこ
ろ、シリカ濃度が36重量%であり、シリカの平均粒径
が0.20.である球状シリカ微粒子懸濁液が得られた
2) Production of a suspension of spherical silica fine particles by basic hydrolysis 9.78 kg of tetramethoxysilane, 94.3 Q of anhydrous methanol, 6.83 Q of ammonia water (N) + 3 (concentration 29% by weight) and 24.02 kg of water The liquid temperature was maintained at 0°C, and the tetramethoxysilane was hydrolyzed by stirring vigorously for 3 hours. The spherical fine particles were stabilized by being left in a dark place for 12 hours, and the water was added using a rotary evaporator. Pure water was added intermittently to the decomposition solution, and it was concentrated under reduced pressure while distilling off methanol, water, and ammonia. After concentration, the pH was adjusted to 6.5 with 0.2 N hydrochloric acid, and the silica concentration was 36. % by weight, and the average particle size of silica is 0.20. A suspension of spherical silica particles was obtained.

3)a性加水分解ゾルと塩基性加水分解ゾルの混合およ
びゲル化 上記したl)で得られた線状ポリシロキサンゾル8.4
00+mQと2)で得られた塩基性加水分解球状シリカ
微粒子懸濁液8,580mQとを水冷下(5℃)に混合
し、攪拌したところ、pHが5.5である混合ゾル液が
得られた。
3) Mixing and gelation of a-based hydrolyzed sol and basic hydrolyzed sol Linear polysiloxane sol obtained in step 1) above 8.4
When 00+mQ and 8,580 mQ of the basic hydrolyzed spherical silica fine particle suspension obtained in 2) were mixed under water cooling (5°C) and stirred, a mixed sol solution with a pH of 5.5 was obtained. Ta.

ついで、この混合ゾル液を60cm+φX30cmHの
SUS製円筒容器に入れて5℃に保ち、密閉して40℃
の恒温槽に2日間入れたのち、容器中の離しよう水を除
去し、0.2規定の塩酸中に1昼夜静置し、その後塩酸
水を除去し、超純水で洗浄したところ、このものはゲル
化、熟成された0本実施例では上記した1)〜3)の工
程によって同一寸法の湿式ゲル体を10個作成した。
Next, this mixed sol liquid was placed in a 60 cm + φ x 30 cm H SUS cylindrical container, kept at 5°C, and sealed at 40°C.
After putting it in a constant temperature bath for 2 days, the separating water in the container was removed, and it was left standing in 0.2N hydrochloric acid for 1 day and night.Then, the hydrochloric acid water was removed and the container was washed with ultrapure water. In this example, 10 wet gel bodies of the same size were prepared by the steps 1) to 3) described above.

4)乾燥、焼結、ガラス化 上記した密閉式テフロン容器の密閉用蓋を開口率が0.
5%である蓋と交換した湿性ゲルを収容した容器10個
を60℃の恒温槽に移し、その温度で25日間放置した
のち、この蓋を開口率が5%のものとし100℃に保持
した恒温槽中で5日間乾燥したところ、この間1つのゲ
ル体も割れることがなく、43.5c脂φX4.3cm
Hの室温でも割れない乾燥ゲル10個が得られ、これら
には何の変形もみられなかった。
4) Drying, sintering, and vitrification The sealing lid of the above-mentioned sealed Teflon container has an open area ratio of 0.
The 10 containers containing the wet gel replaced with the 5% lid were transferred to a constant temperature bath at 60°C and left at that temperature for 25 days, and then the lid was changed to a 5% open area and maintained at 100°C. When dried in a constant temperature bath for 5 days, not a single gel body cracked during this time, and the size of the gel was 43.5cm x 4.3cm.
Ten dried gels that did not crack even at room temperature were obtained, and no deformation was observed in them.

この乾燥ゲル10個をマツフル炉に入れ、脱吸着水処理
のために空気中において室温から昇温速度30℃/ H
rで300℃まで加熱し、この温度で10時間保持した
のち、脱炭処理のために空気中において昇温速度30℃
/時で300℃から700℃まで加熱し、さらに細孔が
開いている状態で表面シラノールの脱水縮合のためにこ
の温度に20時間保持した。
10 of these dried gels were placed in a Matsufuru furnace and heated at a heating rate of 30°C/H from room temperature in air for desorption water treatment.
After heating to 300℃ with R and holding at this temperature for 10 hours, the heating rate was increased to 30℃ in air for decarburization treatment.
/hour from 300°C to 700°C, and further maintained at this temperature for 20 hours in order to dehydrate and condense the surface silanol while the pores were open.

ついで、このものを別の電気炉に入れ、ヘリウムガス雰
囲気下において昇温速度30℃/時で700〜1,00
0℃まで昇温し、この温度に1時間保持したのち、昇温
速度30℃/時で1,1゜0℃まで昇温しで5時間保持
して細孔の閉孔化を行なった。
Next, this product was placed in another electric furnace and heated to 700 to 1,000 ℃ at a heating rate of 30°C/hour in a helium gas atmosphere.
The temperature was raised to 0° C., held at this temperature for 1 hour, and then raised to 1.1° 0° C. at a heating rate of 30° C./hour and held for 5 hours to close the pores.

つぎにこのものを昇温速度30℃/時で1,100℃か
ら1,350℃まで昇温し、この温度に5時間保持して
ガラス化したところ、32.Oc■φX3.2cmHの
肉厚円筒状の透明な石英ガラス体10個が得られた。
Next, this material was heated from 1,100°C to 1,350°C at a heating rate of 30°C/hour and kept at this temperature for 5 hours to vitrify it. Ten thick cylindrical transparent quartz glass bodies measuring Oc■φX3.2 cmH were obtained.

実施例3 1)酸性加水分解ゾルの製造 テトラエトキシシラン903gと無水エタノール266
mQとからなる混合液を30℃に保ち。
Example 3 1) Production of acidic hydrolysis sol 903g of tetraethoxysilane and 266g of absolute ethanol
The mixed solution consisting of mQ was kept at 30°C.

これを激しく攪拌しながらこれに0.02規定の塩酸水
82.2 gを加え、混合液が均一になったときに攪拌
をゆるやかにして1日放置後、再び激PO32,Ogを
徐々に加え、ついで0.02規定の塩酸41.1 gを
添加して均一になったところで1日間放置したところ、
リンでドープされた高分子状のポリシロキサンゾルが得
られた。
Add 82.2 g of 0.02N hydrochloric acid to this while stirring vigorously, and when the mixture becomes homogeneous, slow down the stirring and let it stand for a day, then gradually add PO32, Og again. Then, 41.1 g of 0.02N hydrochloric acid was added, and when it became homogeneous, it was left for one day.
A polymeric polysiloxane sol doped with phosphorus was obtained.

このポリシロキサンプルはこれからサンプルを採取して
エタノールで種々の濃度に希釈して、その粘度を測定し
て還元粘度−シリカ濃度のプロットを求めたところ、勾
配をもつ直線となったことからこのポリシロキサンは線
状構造のものであることが確認されたが、このものはま
たこれを少量取り出して放置したところゲル化直前に曳
糸性を示した。
This polysiloxy sample was taken from this, diluted with ethanol to various concentrations, its viscosity was measured, and a plot of reduced viscosity vs. silica concentration was obtained, and a straight line with a slope was obtained. It was confirmed that the siloxane had a linear structure, but when a small amount of this siloxane was taken out and left to stand, it showed stringiness just before gelation.

2)塩基性加水分解による球状シリカ微粒子懸濁液の製
造 テトラエトキシシラン2,594g、リン酸トリメチル
91.9 g、アンモニア水876層党及び無水エタノ
ール14.6g、水947gの混合物を使用したほかは
実施例1の2)と同様に処理ところ、シリカ濃度が36
重量%であり、シリカの平均粒径が0.20tnsであ
るリンドープされた球状3)酸性加水分解ゾルと塩基性
加水分解ゾルの混合およびゲル化 上記した1)で得られたリンドープされた線状ポリシロ
キサンプル1,400+Qと2)で得られたリンドープ
された塩基性加水分解球状シリカ微粒子懸濁液1,75
0mff1とを水冷下(10℃)に混合し、攪拌したと
ころ、pHが3.5である混合ゾル液が得られたので、
これを0.2規定のアンモニア水でPH4,5に調整し
た。
2) Production of suspension of spherical silica fine particles by basic hydrolysis A mixture of 2,594 g of tetraethoxysilane, 91.9 g of trimethyl phosphate, 876 layers of aqueous ammonia, 14.6 g of absolute ethanol, and 947 g of water was used. was treated in the same manner as 2) of Example 1, and the silica concentration was 36.
% by weight and the average particle size of silica is 0.20 tns 3) Mixing and gelation of acidic hydrolysis sol and basic hydrolysis sol Phosphorus-doped linear obtained in 1) above Phosphorus-doped basic hydrolyzed spherical silica fine particle suspension obtained with polysiloxy samples 1,400+Q and 2) 1,75
When mixed with 0mff1 under water cooling (10°C) and stirred, a mixed sol solution with a pH of 3.5 was obtained.
This was adjusted to pH 4.5 with 0.2N ammonia water.

ついで、この混合ゾル液を20cmφXIOcmHのS
US製円筒容器に入れて5℃に保ち、密閉して40℃の
恒温槽に3日間入れたところ、このものはゲル化、熟成
されたが本実施例では上記した1)〜3)の工程によっ
て同一寸法の湿式ゲル体を10個作成した。
Next, this mixed sol liquid was poured into a S of 20cmφXIOcmH.
When placed in a US-made cylindrical container and kept at 5°C, sealed and placed in a constant temperature bath at 40°C for 3 days, this product gelled and matured, but in this example, steps 1) to 3) described above. Ten wet gel bodies of the same size were prepared by the following method.

4)乾燥、焼結、ガラス化 上記で得た湿式ゲルを実施例の4)と同様に処理して乾
燥ゲルを作ったところ、13.7cmφ×6゜9c+w
Hの乾燥ゲルが得られたので、ついでこれを実施例1の
4)と同様に焼結してガラス化したところ、10.5c
mφX5,3cmHの肉厚円筒状の透明な石英ガラス体
10個を割れなど全くないものとして得ることができた
4) Drying, sintering, and vitrification The wet gel obtained above was processed in the same manner as in Example 4) to make a dry gel.
Since a dry gel of H was obtained, this was then sintered and vitrified in the same manner as in Example 1, 4).
It was possible to obtain 10 thick cylindrical transparent quartz glass bodies having a diameter of 5.3 cmH and no cracks at all.

実施例4 1)酸性加水分解ゾルの製造 テトラエトキシシラン185gと無水エタノール103
IIQとからなる混合液を20℃に保ち。
Example 4 1) Production of acidic hydrolysis sol 185 g of tetraethoxysilane and 103 g of absolute ethanol
A mixed solution consisting of IIQ was maintained at 20°C.

これを激しく攪拌しながらこれに0.02規定の塩酸水
21.3 gを加え、混合液が均一になったときに攪拌
をゆるやかにして密閉下に2日放置後、再び激しく攪拌
しながら0.2規定の塩酸5gを徐々に加え、チタンイ
ソプロポキシドTi(0−iPr)484.0gを徐々
に加え、ついで0.02規定の塩酸16.4 gを添加
して均一な溶液とし、チタンをドープした高分子状のシ
ロキサンゾルが得られた。
Add 21.3 g of 0.02 N hydrochloric acid to this while stirring vigorously, and when the mixture becomes homogeneous, turn the stirring slowly and leave it in a sealed container for 2 days. .5 g of 2 N hydrochloric acid was gradually added, 484.0 g of titanium isopropoxide Ti (0-iPr) was gradually added, and then 16.4 g of 0.02 N hydrochloric acid was added to make a homogeneous solution. A polymeric siloxane sol doped with

このポリシロキサンプルはこれからサンプルを採取して
エタノールで種々の濃度に希釈して、その粘度を測定し
て還元粘度−シリカ濃度のプロットを求めたところ、勾
配をもつ直線となったことからこのポリシロキサンは線
状構造のものであることが確認されたが、このものはま
たこれを少量取り出して放置したところゲル化直前に曳
糸性を示した。
This polysiloxy sample was taken from this, diluted with ethanol to various concentrations, its viscosity was measured, and a plot of reduced viscosity vs. silica concentration was obtained, and a straight line with a slope was obtained. It was confirmed that the siloxane had a linear structure, but when a small amount of this siloxane was taken out and left to stand, it showed stringiness just before gelation.

2)塩基性加水分解による球状シリカ微粒子懸濁液の製
造 テトラエトキシシラン354g、チタンイソプロポキシ
ド161.1 g、無水エタノール2,520van、
アンモニア水151mAおよび水163gの混合物を使
用し実施例1の2)と同様に処理ところ、シリカ濃度が
34.5重量%であり、シリカの平均粒径が0.20u
Mであるチタンドープされた球状シリカ微粒子懸濁液が
得られた。
2) Production of spherical silica fine particle suspension by basic hydrolysis 354 g of tetraethoxysilane, 161.1 g of titanium isopropoxide, 2,520 vans of absolute ethanol,
Using a mixture of 151 mA of ammonia water and 163 g of water, the treatment was carried out in the same manner as in 2) of Example 1, and the silica concentration was 34.5% by weight, and the average particle size of silica was 0.20 u.
A titanium-doped spherical silica fine particle suspension of M was obtained.

3)酸性加水分解ゾルと塩基性加水分解ゾルの混合およ
びゲル化 上記した1)で得られたチタンドープされた線状ポリシ
ロキサンゾル410mflと2)で得られたチタンドー
プされた塩基性加水分解球状シリカ微粒子懸濁液340
腸Ωとを水冷下(5℃)に混合し。
3) Mixing and gelation of acidic hydrolyzed sol and basic hydrolyzed sol 410 mfl of the titanium-doped linear polysiloxane sol obtained in 1) above and the titanium-doped basic hydrolyzed sol obtained in 2) Spherical silica fine particle suspension 340
and intestine Ω were mixed under water cooling (5°C).

攪拌したところ、pHが4.7である混合ゾル液が得ら
れた。
Upon stirring, a mixed sol solution having a pH of 4.7 was obtained.

ついで、この混合ゾル液を15cmφX20c膳HのS
US製円筒容器に入れて5℃に保ち、密閉して50℃の
恒温槽に3日間入れたところ、このものはゲル化、熟成
されたが本実施例では上記した1)〜3)の工程によっ
て同一寸法の湿式ゲル体を10個作成した。
Next, this mixed sol liquid was poured into a 15cmφX20c tray H.
When placed in a US-made cylindrical container and kept at 5°C, sealed and placed in a constant temperature bath at 50°C for 3 days, this product gelled and matured, but in this example, steps 1) to 3) above. Ten wet gel bodies of the same size were prepared by the following method.

4)乾燥、焼結、ガラス化 上記した密閉式テフロン容器の密閉用蓋を開口率が0.
5%である蓋と交換した湿性ゲルを収容した容器10個
を70℃の恒温槽に移し、その温度で15日間放置した
のち、この蓋を開口率が5%のものとし100℃に保持
した恒温槽中で3日間乾燥したところ、この間1つのゲ
ル体も割れることがなく、10.3ci+φX2.9c
lI)Iの室温でも割れない乾燥ゲル10個が得られ、
これらには何の変形もみられなかった。
4) Drying, sintering, and vitrification The sealing lid of the above-mentioned sealed Teflon container has an open area ratio of 0.
The 10 containers containing the wet gel replaced with the 5% lid were transferred to a constant temperature bath at 70°C and left at that temperature for 15 days, and then the lid was changed to a 5% open area and maintained at 100°C. When dried in a constant temperature bath for 3 days, not a single gel body cracked during this time, and the size was 10.3ci + φX2.9c.
lI) 10 dry gels that do not crack even at room temperature of I were obtained,
No deformation was observed in these.

ついでこの乾燥ゲルを前記した実施例1の4)と同様に
焼結してガラス化したところ、7.3ci+φX2.1
c+*Hの透明な石英ガラス体10個が得られた。
This dried gel was then sintered and vitrified in the same manner as in 4) of Example 1 above, resulting in 7.3ci+φX2.1
Ten c+*H transparent quartz glass bodies were obtained.

比較例1 1)酸性加水分解ゾルの製造 テトラエトキシシラン2,215 gと0.02規定の
塩酸水767gの混合液を激しく攪拌し、加水分解させ
てゾル液を作り、これからサンプルを採取してこれをエ
タノールで種々の濃度に希釈して粘度を測定し、還元粘
度−シリカ濃度のプロットを求めたところ、このものは
シリカ濃度に無関係な一定の還元粘度を示したので二へ
に共存するシロキサンは線状のものでないことが確認さ
れ、このものはそのX線小角散乱強度の・測定値からこ
のシロキサンはクラスター状の高分子であることが判っ
たが、これは曳糸状を示さなかった。
Comparative Example 1 1) Production of acidic hydrolysis sol A mixed solution of 2,215 g of tetraethoxysilane and 767 g of 0.02 N hydrochloric acid water was vigorously stirred and hydrolyzed to produce a sol solution, from which a sample was collected. When this was diluted with ethanol to various concentrations and its viscosity was measured, and a plot of reduced viscosity vs. silica concentration was obtained, it showed a constant reduced viscosity that was unrelated to the silica concentration. It was confirmed that the siloxane was not linear, and the measured value of the small-angle X-ray scattering intensity showed that this siloxane was a cluster-like polymer, but it did not show a string-like shape.

2)塩基性加水分解状シリカ微粒子懸濁液の合成前記し
た実施例1の2)と同様の方法で塩基性加水分解球状シ
リカ微粒子懸濁液を作った。
2) Synthesis of basic hydrolyzed silica fine particle suspension A basic hydrolyzed spherical silica fine particle suspension was prepared in the same manner as in 2) of Example 1 above.

3)酸性加水分解ゾルと塩基性加水分解ゾルの混合、ゲ
ル化 上記で得た酸性加水分解ゾルと塩基性加水分解ゾルとを
実施例1の3)と同様の方法で混合し、ゲル化して湿式
混合ゾルを作った。
3) Mixing of acidic hydrolyzed sol and basic hydrolyzed sol and gelation The acidic hydrolyzed sol and basic hydrolyzed sol obtained above are mixed in the same manner as in 3) of Example 1, and gelled. A wet mixed sol was made.

4)熟成、乾燥、焼結、ガラス化 つぎに上記で得た湿式混合ゲルを実施例1め4)の方法
で乾燥したところ、14.2c+sφX14.3c+m
 Hの乾燥ゲル10個が得られたが、これはその内3個
が割れており、5個にクラックが発生していた。
4) Aging, drying, sintering, vitrification Next, when the wet mixed gel obtained above was dried by the method of Example 1 and 4), the result was 14.2c+sφX14.3c+m
Ten dried gels of H were obtained, of which three were broken and five had cracks.

そこで、残り2個について実施例1の4)の方法にした
がって焼結してガラス化したところ、1個が結晶体であ
り、他の1個は発泡体であった。
Therefore, when the remaining two pieces were sintered and vitrified according to the method 4) of Example 1, one piece was a crystalline body and the other one was a foamed body.

比較例2 1)酸性加水分解ゾルの製造 テトラエトキシシラン185gと無水エタノール103
+sQの混合溶液に0.2規定の塩酸水24gを加え、
5℃の温度に保った状態でこれを部分的に加水分解させ
たのち、これにチタンイソプロポキシド84.0 gを
加え激しく攪拌してから0゜2規定の塩酸水61.5 
gを加えて加水分解を終了させてゾル液を作った。
Comparative Example 2 1) Production of acidic hydrolysis sol 185 g of tetraethoxysilane and 103 g of absolute ethanol
Add 24g of 0.2N hydrochloric acid to the mixed solution of +sQ,
After partially hydrolyzing this while keeping the temperature at 5°C, 84.0 g of titanium isopropoxide was added to it, stirred vigorously, and then 61.5 g of 0°2N hydrochloric acid solution was added.
g was added to complete the hydrolysis and a sol solution was prepared.

つぎにこのゾル液からサンプルを採取し、こ九をエタノ
ールで種々の濃度に希釈して粘度を測定し、還元粘度−
シリカ濃度でプロットを求めたところ、これはシリカ濃
度に無関係に一定の還元粘度を示したので、こシに共存
しているポリシロキサンは構造が線状のものでないこと
が確認され。
Next, samples were taken from this sol solution, diluted with ethanol to various concentrations, the viscosity was measured, and the reduced viscosity -
When plotting the silica concentration, it showed a constant reduced viscosity regardless of the silica concentration, confirming that the polysiloxane coexisting in this material did not have a linear structure.

このものはまたそのX線小角散乱強度測定値からクラス
ター状高分子であることが判ったがこのものはゲル化以
前に曳糸性を示さなかった。
This material was also found to be a cluster polymer based on the small-angle X-ray scattering intensity measurements, but this material did not exhibit stringiness before gelation.

2)塩基性加水分解球状シリカ微粒子懸濁ゾルの調整前
記した実施例4の2)と同様の方法でエトラエトキシシ
ランとチタンイソプロポキシドとの加水分解を行なわせ
て、チタンでドープされた球状シリカ微粒子懸濁ゾルを
作成した。
2) Preparation of basic hydrolyzed spherical silica fine particle suspension sol Etraethoxysilane and titanium isopropoxide were hydrolyzed in the same manner as in 2) of Example 4 to obtain titanium-doped spherical sol. A silica fine particle suspension sol was created.

3)酸性加水分解ゾルと塩基性加水分解ゾルとの混合。3) Mixing of acidic hydrolysis sol and basic hydrolysis sol.

ゲル化 前記した酸性加水分解ゾルと塩基性加水分解ゾルを氷点
下(5℃)に混合し攪拌したところ、pHが3.5であ
る混合ゾルが得られたので、0.2規定のアンモニア水
でPHを4.7に調整し、以下実施例4の3)と同じ方
法で同一寸法の湿式ゲル体を10個作成した。
Gelation When the acidic hydrolyzed sol and basic hydrolyzed sol described above were mixed at below freezing point (5°C) and stirred, a mixed sol with a pH of 3.5 was obtained. The pH was adjusted to 4.7, and 10 wet gel bodies having the same dimensions were prepared in the same manner as in Example 4, 3).

4)乾燥、焼結、ガラス化 上記のようにして作った湿式ゲル体10個を実施例4の
4)の方法で乾燥したところ、乾燥工程で3個が割れ、
2個にクラックが発生していたので、残りの5個につい
て同様の方法で焼結しガラス化したところ、2個は結晶
体、2個は発泡体となり、1個は透明ガラス体となった
がこれもクラックが入っていた。
4) Drying, sintering, and vitrification When 10 wet gel bodies made as described above were dried by the method 4) of Example 4, three of them cracked during the drying process.
Two of the pieces had cracks, so when the remaining five pieces were sintered and vitrified using the same method, two pieces became crystals, two pieces became foam bodies, and one piece became a transparent glass body. But this one also had a crack in it.

Claims (1)

【特許請求の範囲】 1、アルコキシシランと水との混合物を酸性触媒の存在
下で加水分解して得た均一の線状ポリシロキサンゾル液
に、アルコキシシランを塩基性触媒の存在下で加水分解
して得た球状シリカ微粒子懸濁液ゾルを混合して混合ゾ
ルを作り、ついでこれをゲル化して湿式ゲルとしたのち
、これを乾燥して乾燥ゲルとし、この乾燥ゲルを焼結し
てガラス化することを特徴とする石英ガラスの製造方法
。 2、上記線状ポリシロキサン状のシリカゾル液のアルコ
キシシランと水との混合比がモル比で0.5≦水/アル
コキシシラン≦3.0である特許請求の範囲第1項記載
の石英ガラスの製造方法。 3、アルコキシシランがドーパントとしてのけい素以外
の金属アルコキシドを含有するものである特許請求の範
囲第1項または第2項記載の石英ガラスの製造方法。
[Claims] 1. Hydrolyzing alkoxysilane in the presence of a basic catalyst into a uniform linear polysiloxane sol solution obtained by hydrolyzing a mixture of alkoxysilane and water in the presence of an acidic catalyst. The resulting spherical silica fine particle suspension sol is mixed to make a mixed sol, which is then gelled to form a wet gel, dried to form a dry gel, and this dried gel is sintered to form glass. A method for producing quartz glass characterized by 2. The silica glass according to claim 1, wherein the mixing ratio of alkoxysilane and water in the linear polysiloxane-like silica sol liquid is 0.5≦water/alkoxysilane≦3.0 in terms of molar ratio. Production method. 3. The method for producing quartz glass according to claim 1 or 2, wherein the alkoxysilane contains a metal alkoxide other than silicon as a dopant.
JP884188A 1988-01-19 1988-01-19 Production of quartz glass Pending JPH01183421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP884188A JPH01183421A (en) 1988-01-19 1988-01-19 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP884188A JPH01183421A (en) 1988-01-19 1988-01-19 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPH01183421A true JPH01183421A (en) 1989-07-21

Family

ID=11703998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP884188A Pending JPH01183421A (en) 1988-01-19 1988-01-19 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPH01183421A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132649A (en) * 1999-01-29 2000-10-17 Lucent Technologies Inc. Fabrication including sol-gel processing
KR100549424B1 (en) * 1999-03-17 2006-02-06 삼성전자주식회사 Silica glass composition for sol-gel process
USRE39535E1 (en) 1990-08-16 2007-04-03 Corning Incorporated Method of making fused silica by decomposing siloxanes
JP2016102038A (en) * 2014-11-28 2016-06-02 新技術創造研究所株式会社 Production method of metal oxide glass film
CN111868159A (en) * 2020-02-17 2020-10-30 浙江三时纪新材科技有限公司 Preparation method of spherical silicon dioxide powder filler, powder filler obtained by preparation method and application of powder filler
JP2022523589A (en) * 2019-03-12 2022-04-25 浙江三時紀新材科技有限公司 Method for producing spherical silica powder filler, spherical silica powder filler obtained thereby and its application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39535E1 (en) 1990-08-16 2007-04-03 Corning Incorporated Method of making fused silica by decomposing siloxanes
US6132649A (en) * 1999-01-29 2000-10-17 Lucent Technologies Inc. Fabrication including sol-gel processing
KR100549424B1 (en) * 1999-03-17 2006-02-06 삼성전자주식회사 Silica glass composition for sol-gel process
JP2016102038A (en) * 2014-11-28 2016-06-02 新技術創造研究所株式会社 Production method of metal oxide glass film
JP2022523589A (en) * 2019-03-12 2022-04-25 浙江三時紀新材科技有限公司 Method for producing spherical silica powder filler, spherical silica powder filler obtained thereby and its application
CN111868159A (en) * 2020-02-17 2020-10-30 浙江三时纪新材科技有限公司 Preparation method of spherical silicon dioxide powder filler, powder filler obtained by preparation method and application of powder filler
WO2021164209A1 (en) * 2020-02-17 2021-08-26 浙江三时纪新材料科技有限公司 Method for preparing spherical silica powder filler, powder filler obtained thereby and application thereof

Similar Documents

Publication Publication Date Title
JP6655776B2 (en) Silica airgel, heat insulating material and method for producing silica airgel
JP2939889B2 (en) Manufacturing method of airgel monolith
EP0293064B1 (en) Sol-gel method for making ultra-low expansion glass
KR100501759B1 (en) Sol-gel process for the production of tridimensional dry gels, and silica dry gels and silica glasses produced therefrom
JPH072513A (en) Production of synthetic quartz glass powder
JPH01183421A (en) Production of quartz glass
JPH01317155A (en) Production of ceramic compact
JPH038729A (en) Production of porous glass
JP2635313B2 (en) Method for producing silica glass
JP4912190B2 (en) Method for producing porous silica gel and silica glass
JP4027625B2 (en) Method for producing SiO2-TiO2 glass having a low coefficient of thermal expansion and the glass
JPH0114177B2 (en)
JP2504148B2 (en) Method for producing silica glass
JPH11268923A (en) Production of silica gel, synthetic quartz glass powder and quartz glass molding
JPH035329A (en) Production of synthetic quartz glass
JPH0735257B2 (en) Quartz glass manufacturing method
JPH1121139A (en) Production of foamed quartz glass
JPS643812B2 (en)
JPS63215526A (en) Production of silica glass
JP2621491B2 (en) Method for producing silica glass
JPS63182222A (en) Production of silica glass
JPH02172832A (en) Synthesized quartz glass and production thereof
JPH02217323A (en) Production of quartz glass
JPH0822749B2 (en) Glass manufacturing method
JPS632820A (en) Production of glass