JPS63215526A - Production of silica glass - Google Patents

Production of silica glass

Info

Publication number
JPS63215526A
JPS63215526A JP4727987A JP4727987A JPS63215526A JP S63215526 A JPS63215526 A JP S63215526A JP 4727987 A JP4727987 A JP 4727987A JP 4727987 A JP4727987 A JP 4727987A JP S63215526 A JPS63215526 A JP S63215526A
Authority
JP
Japan
Prior art keywords
gel
furnace
silica glass
dried
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4727987A
Other languages
Japanese (ja)
Inventor
Akihito Iwai
明仁 岩井
Fusaji Hayashi
林 房司
Keizo Hirai
圭三 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4727987A priority Critical patent/JPS63215526A/en
Publication of JPS63215526A publication Critical patent/JPS63215526A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To sufficiently eliminate moisture and obtain excellent silica glass without foaming and bursting, by gelatinizing a silica sol, drying the resultant gel, placing the resultant dried gel into a furnace, introducing a Cl2-containing gas into the furnace under reduced pressure,hydrating the gel while heating at a high temperature and sintering the dehydrated gel. CONSTITUTION:A silica sol obtained by hydrolyzing a silicon alkoxide and/or polycondensate thereof (e.g. polycondensate of silicon tetramethoxide) is gelatinized and dried to provide a dried gel, which is then introduced into a furnace decomposed to <=100Torr pressure. A Cl2-containing gas prepared by blending one or more of Cl2, HCl, CCl4, SOCl2 and SiCl4 with a carrier gas, such as He, is introduced into the furnace to dehydrate the gel at 400-1,100 deg.C and sufficiently eliminate moisture. The resultant dehydrated gel is then sintered at a temperature above the dehydration treatment temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学用、半導体工業用、電子工業用。[Detailed description of the invention] (Industrial application field) The present invention is applicable to optics, semiconductor industry, and electronic industry.

理化学用等に使用されるシリカガラスの製造法に関する
This article relates to a method for manufacturing silica glass used for physical and chemical purposes.

(従来の技術) シリカガラスは耐熱性及びその優れた光学的性質等から
、最近特に半導体工業において有用性が認められている
。そのシリカガラスの新たな製造法として最近注目をあ
びているのがゾル−ゲル法である。
(Prior Art) Silica glass has recently been recognized as useful especially in the semiconductor industry due to its heat resistance and excellent optical properties. The sol-gel method has recently been attracting attention as a new method for producing silica glass.

ゾル−ゲル法によるシリカガラスの製造法の例を説明す
ると次のとおりである。
An example of a method for producing silica glass using the sol-gel method is as follows.

シリカゾルを製造する工程は次に示す様な糧々の方法が
提案されている。l)シリコンアルコキシドあるいはシ
リコン塩化物等を加水分解する方法(例えば、ジャーナ
ル・オブ・マテリアルズ・サイエンス(J、 Mate
r、 Sci、 ) +414巻(1979年)、第6
07〜611頁)、+1)シリカ超微粉末を溶媒中に分
散する方法(特開昭60−21821号公報)、1il
)珪酸ナトリウム水溶液をイオン交換してナトリウムを
除去する方法、 Iv)  I)、 II)を両方用い
る方法(特開昭60−131833号公報)などである
。この様にして得たシリカゾルを静置、昇温、あるいは
ゲル化剤添加などによりゲル化させる。さらにゲル中の
溶媒を蒸発乾燥することによりシリカ乾燥ゲルを得る。
The following methods have been proposed for producing silica sol. l) A method of hydrolyzing silicon alkoxide or silicon chloride, etc. (for example, Journal of Materials Science (J, Mate
r, Sci, ) +414 volume (1979), No. 6
07-611 pages), +1) Method of dispersing ultrafine silica powder in a solvent (Japanese Patent Application Laid-Open No. 60-21821), 1il
) A method in which sodium silicate aqueous solution is ion-exchanged to remove sodium, Iv) A method in which both I) and II) are used (Japanese Unexamined Patent Publication No. 131833/1983). The silica sol thus obtained is gelled by standing still, raising the temperature, or adding a gelling agent. Furthermore, a dry silica gel is obtained by evaporating and drying the solvent in the gel.

この乾燥ゲルを所望の雰囲気中で焼結することによりシ
リカガラスを得るというものである。
Silica glass is obtained by sintering this dried gel in a desired atmosphere.

このゾル−ゲル法には以下の特長がある。This sol-gel method has the following features.

(1)  5iC1a等を原料として酸水素炎でガラス
スートを堆積してい〈従来からのシリカガラス製造法よ
りも低温で製造できるため、省エネルギーで低コストで
ある。
(1) Glass soot is deposited using an oxyhydrogen flame using 5iC1a as a raw material (it can be produced at a lower temperature than the conventional silica glass production method, so it is energy saving and low cost).

(2)原料が液体である丸め、精製が容易であり。(2) Since the raw material is liquid, it is easy to roll and refine.

高純度な製品が得られる。High purity products can be obtained.

(3)室温で、液相で混合することかできるため。(3) Because they can be mixed in a liquid phase at room temperature.

AI!zOs e Zr0z * Ti1t * Bz
Oa * PzOs* Nb、o。
AI! zOs e Zr0z * Ti1t * Bz
Oa * PzOs * Nb, o.

などを均一にドープしたシリカガラスが得られる。Silica glass uniformly doped with

これらの大変有用な特長があるために、これまでにも多
くの研究がなされてきた。
Due to these very useful features, much research has been conducted to date.

(発明が解決しようとする問題点) しかしながら、ゾル−ゲル法では、乾燥ゲルを焼結する
際、焼結がかなり進行したところで発泡あるいは破裂と
いった現象が発生するという問題がある。これは、焼結
が進行し、閉気孔ができた後に水分が脱離するためであ
ることが判ってきた。
(Problems to be Solved by the Invention) However, the sol-gel method has a problem in that when dry gel is sintered, phenomena such as foaming or bursting occur after sintering has progressed considerably. It has been found that this is because water is released after sintering progresses and closed pores are formed.

この様な高温で脱離する水分は、乾燥ゲル中にシラノー
ル基(Si  OH)として存在する。発泡あるいは破
裂を防止するためには、シラノール基を閉気孔ができる
よりも低温で脱離させる方法がある。例えば、乾燥ゲル
を塩素中で処理して、シラノール基を塩素で置換する方
法C特開昭55−167143号公報)や四塩化珪素雰
囲気で処理して一8iOHを一8i08iC1sに置換
する方法(4?開昭59−26937号公報)などが知
られている。
The water released at such high temperatures exists as silanol groups (Si OH) in the dried gel. In order to prevent foaming or bursting, there is a method in which the silanol groups are eliminated at a temperature lower than the temperature at which closed pores are formed. For example, a method C in which a dried gel is treated in chlorine to replace the silanol groups with chlorine (Japanese Patent Application Laid-open No. 167143/1982) and a method in which 18iOH is replaced with 18i08iC1s by treatment in a silicon tetrachloride atmosphere (4 ?Kokai No. 59-26937) and the like are known.

しかし、乾燥ゲルの細孔径が小さくなると、これら公知
の方法を用いた場合には、置換に多大な時間を要し、は
なはだしい場合には、置換処理中に乾燥ゲルが収縮して
しまい閉気孔ができてしまい、水分の脱離が不充分であ
つ九。
However, when the pore size of the dried gel becomes small, when these known methods are used, a large amount of time is required for replacement, and in extreme cases, the dried gel shrinks during the replacement process, resulting in closed pores. This may result in insufficient water removal.

本発明は上記した問題を解消し、水分の脱離を充分にし
て発泡あるいけ破裂が発生しないシリカガラスの製造法
を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and provide a method for producing silica glass that sufficiently removes water and prevents foaming or bursting.

(問題点を解決するための手段) 発明者等は、塩素などによる置換の速度は、細孔内のガ
スの拡散速度と関連があることをつきとめ、細孔内のガ
スの拡散速度を速めれば、置換速度が速くなり、乾燥ゲ
ルの水分を十分に脱離できるものと考え、鋭意研究の結
果、減圧中で置換処理を行えばガスの拡散速度が速くな
り、前記目的を達成し得ることを見出し9本発明を完成
するに至った。
(Means for Solving the Problems) The inventors have found that the rate of substitution with chlorine etc. is related to the rate of gas diffusion within the pores, and have developed a method to increase the rate of gas diffusion within the pores. For example, we thought that the replacement rate would be faster and the moisture from the dried gel could be sufficiently removed, and as a result of intensive research, we found that if the replacement treatment was performed under reduced pressure, the gas diffusion rate would be faster and the above objective could be achieved. This discovery led to the completion of the present invention.

本発明は、シリコンアルコキシド及ヒ/又ti。The present invention relates to silicon alkoxide and/or ti.

その重縮合物を加水分解してシリカゾルとし、これをゲ
ル化後乾燥して乾燥ゲルとし1次いで焼結するシリカガ
ラスの製造法において、前記乾燥ゲルを400〜110
0℃の温度で、減圧下に塩素含有ガスを炉内に導入して
脱水処理し、しかる後。
In a method for producing silica glass, the polycondensate is hydrolyzed to obtain a silica sol, which is gelled and then dried to form a dry gel, which is then sintered.
At a temperature of 0° C., a chlorine-containing gas is introduced into the furnace under reduced pressure for dehydration treatment, and then after that.

前記脱水処理温度より高い温度で焼結するシリカガラス
の製造法に関する。
The present invention relates to a method for producing silica glass in which sintering is performed at a temperature higher than the dehydration treatment temperature.

本発明において、脱水処理温度は400〜1100℃と
される。400℃未満では塩素含有ガスによる乾燥ゲル
中の脱水反応が遅<、1000℃を越えると塩素含有ガ
スの存在にもかかわらず焼結が進行し、乾燥ゲル中の細
気孔が閉鎖され易くなるからである。塩素含有ガスはシ
ラノール基との反応により塩素等と置換可能なものであ
ればよく。
In the present invention, the dehydration treatment temperature is 400 to 1100°C. If the temperature is below 400°C, the dehydration reaction in the dried gel due to the chlorine-containing gas will be slow; if it exceeds 1000°C, sintering will proceed despite the presence of the chlorine-containing gas, and the pores in the dried gel will tend to close. It is. The chlorine-containing gas may be any gas that can be substituted with chlorine etc. by reaction with silanol groups.

特に制限はないが、塩素(Clz ) 、塩化水素(H
C/)。
There are no particular restrictions, but chlorine (Clz), hydrogen chloride (H
C/).

四塩化炭素(CCl4 )−塩化チオニルC3OClz
)−四塩化珪素(5iC1!i)等の1種又は2種以上
を。
Carbon tetrachloride (CCl4) - thionyl chloride C3OClz
)-silicon tetrachloride (5iC1!i) and the like.

ヘリウム等のキャリアガスと混合したものが好ましい。Preferably, it is mixed with a carrier gas such as helium.

これらのガスの拡散係数を増大させ、乾燥ゲルの脱水反
応を促進させるために9本発明では炉内を1気圧以下に
減圧する。炉内の圧力を100Torr以下にすれば脱
水処理の効率が向上し好ましい。
In order to increase the diffusion coefficient of these gases and promote the dehydration reaction of the dried gel, the pressure inside the furnace is reduced to 1 atmosphere or less in the present invention. It is preferable to set the pressure in the furnace to 100 Torr or less because this improves the efficiency of dehydration treatment.

上記した条件下で乾燥ゲル内の細気孔が閉鎖する前に脱
水処理を行った後、脱水処理温度より高い温度に昇温し
てシリカガラスの焼結を行う。
After dehydration treatment is performed under the above-mentioned conditions before the pores in the dried gel are closed, the temperature is raised to a temperature higher than the dehydration treatment temperature to sinter the silica glass.

(作用) 気体の拡散係数りは、気体分子の平均速度を7゜平均自
由行程をλとすると D→マλ である。ここで平均自由行程λは単位体積中の気体分子
数をn、気体分子の有効断面積をσとすれば λ=12./Tnσ であるから、単位体積中の気体分子数を減少、すなわち
、圧力を減少させると、平均自由行程が増大し、拡散係
数が増大する。したがって減圧にすると拡散係数が大き
くなり、置換を容易にし2発泡や破裂を防止することが
できる。
(Function) The diffusion coefficient of gas is D→maλ, where the average velocity of gas molecules is 7° and the mean free path is λ. Here, the mean free path λ is λ=12, where n is the number of gas molecules in a unit volume and σ is the effective cross-sectional area of the gas molecules. /Tnσ Therefore, when the number of gas molecules in a unit volume is decreased, that is, when the pressure is decreased, the mean free path increases and the diffusion coefficient increases. Therefore, reducing the pressure increases the diffusion coefficient, facilitates replacement, and prevents foaming and bursting.

(実施例) 本発明を実施例により説明する。(Example) The present invention will be explained by examples.

実施例1 シリコンテトラメトキシドの重縮金物 (CHsO)ss i (O8i(OCHs)z) n
 ・O8i (OCHs)s(n=3に中心にもつもの
)のシリコン原子1molに対してメタノールを4.5
 moI!加え攪拌した。これに10”rnol/lに
調整した希塩酸4molを加え、さらに十分攪拌してシ
リカゾルを得た。このシリカゾルを内面にフッ素樹脂を
コーティングした直径60−のシャーレに深さが5−と
なる様に充填し9両面テープを用いてアルミ箔でふたを
した。室温で静置しておくと約26時間後にゲル化した
。その後アルミ箔のふたにピンホールを開け50℃の乾
燥機で2週間乾燥をした。次いで120℃で24時間乾
燥してシリカ乾燥ゲルを得た。得られた乾燥ゲルは直径
36mm、厚さ3−9かさ密度1.1 g/an”であ
った。この乾燥ゲルを焼成炉に入れ、50℃/時の昇温
速度で酸素を500mJ/分流しながら600℃まで昇
温した。
Example 1 Polycondensed metal of silicon tetramethoxide (CHsO)ss i (O8i(OCHs)z) n
・4.5 methanol per 1 mol of silicon atoms of O8i (OCHs)s (those with n = 3 at the center)
moI! It was added and stirred. To this was added 4 mol of dilute hydrochloric acid adjusted to 10"rnol/l and stirred thoroughly to obtain a silica sol. This silica sol was placed in a 60-diameter petri dish whose inner surface was coated with fluororesin so that the depth was 5-mm. It was filled and covered with aluminum foil using double-sided tape.It gelled after about 26 hours when left at room temperature.Then, a pinhole was made in the aluminum foil lid and it was dried in a dryer at 50℃ for 2 weeks. Then, it was dried at 120° C. for 24 hours to obtain a dried silica gel.The obtained dried gel had a diameter of 36 mm, a thickness of 3-9, and a bulk density of 1.1 g/an”. This dried gel was placed in a firing furnace, and the temperature was raised to 600°C at a heating rate of 50°C/hour while flowing oxygen at 500 mJ/minute.

次いでt00ml!/分ヘリウムをキャリアガスとして
30℃に保った四塩化炭素をバブリングし前記焼成炉内
に導入した。さらに炉内を油回転真空ポンプにより減圧
し、約10TorrK制御して。
Then t00ml! Carbon tetrachloride kept at 30° C. was bubbled into the firing furnace using helium as a carrier gas. Furthermore, the pressure inside the furnace was reduced using an oil rotary vacuum pump and controlled at approximately 10 TorrK.

そのまま3時間保持した。その後ガスの導入を止め、炉
内を1O−1Torrに減圧しなから50’C/時で昇
温し、950℃で焼結し9発泡、破裂のない良好なシリ
カガラスをiた。
It was kept as it was for 3 hours. Thereafter, the introduction of gas was stopped, and while the pressure inside the furnace was reduced to 10-1 Torr, the temperature was raised at a rate of 50'C/hour, and sintered at 950°C to produce a good quality silica glass with 9 bubbles and no rupture.

比較例1 実施例1における600℃で処理中、減圧にせ−j50
0ml!/分のヘリウムをキャリアガスとして用いた以
外は実施例1と同様な操作を行った。
Comparative Example 1 During the treatment at 600°C in Example 1, -j50
0ml! The same operation as in Example 1 was performed except that helium of 1/min was used as the carrier gas.

950℃まで昇温したところ、わずかに発泡して。When the temperature was raised to 950℃, it foamed slightly.

良好なシリカガラスは得られなかった。Good silica glass was not obtained.

(発明の効果) 本発明によれば2発泡及び破裂のない良好なシリカガラ
スを製造することができる。
(Effects of the Invention) According to the present invention, it is possible to produce good silica glass without double foaming or bursting.

Claims (1)

【特許請求の範囲】 1、シリコンアルコキシド及び/又はその重縮合物を加
水分解してシリカゾルとし、これをゲル化後乾燥して乾
燥ゲルとし、次いで焼結するシリカガラスの製造法にお
いて、前記乾燥ゲルを400〜1100℃の温度で、減
圧下に塩素含有ガスを炉内に導入して脱水処理し、しか
る後、前記脱水処理温度より高い温度で焼結することを
特徴とするシリカガラスの製造法。 2、脱水処理を100Torr以下の減圧下で行う特許
請求の範囲第1項記載のシリカガラスの製造法。
[Scope of Claims] 1. A method for producing silica glass in which a silicon alkoxide and/or a polycondensate thereof is hydrolyzed to obtain a silica sol, which is gelled and dried to obtain a dry gel, and then sintered. Production of silica glass, characterized in that the gel is dehydrated at a temperature of 400 to 1100°C by introducing a chlorine-containing gas into a furnace under reduced pressure, and then sintered at a temperature higher than the dehydration temperature. Law. 2. The method for producing silica glass according to claim 1, wherein the dehydration treatment is performed under reduced pressure of 100 Torr or less.
JP4727987A 1987-03-02 1987-03-02 Production of silica glass Pending JPS63215526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4727987A JPS63215526A (en) 1987-03-02 1987-03-02 Production of silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4727987A JPS63215526A (en) 1987-03-02 1987-03-02 Production of silica glass

Publications (1)

Publication Number Publication Date
JPS63215526A true JPS63215526A (en) 1988-09-08

Family

ID=12770850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4727987A Pending JPS63215526A (en) 1987-03-02 1987-03-02 Production of silica glass

Country Status (1)

Country Link
JP (1) JPS63215526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469532A (en) * 1987-09-08 1989-03-15 Sumitomo Electric Industries Production of glass
WO2002074704A1 (en) * 2001-03-19 2002-09-26 Yazaki Corporation Process for reducing or eliminating bubble defects in sol-gel silica glass
WO2012021317A1 (en) * 2010-08-12 2012-02-16 Corning Incorporated Treatment of silica based soot or an article made of silica based soot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469532A (en) * 1987-09-08 1989-03-15 Sumitomo Electric Industries Production of glass
WO2002074704A1 (en) * 2001-03-19 2002-09-26 Yazaki Corporation Process for reducing or eliminating bubble defects in sol-gel silica glass
WO2012021317A1 (en) * 2010-08-12 2012-02-16 Corning Incorporated Treatment of silica based soot or an article made of silica based soot
CN103068754A (en) * 2010-08-12 2013-04-24 康宁股份有限公司 Treatment of silica based soot or an article made of silica based soot
US10829403B2 (en) 2010-08-12 2020-11-10 Corning Incorporated Treatment of silica based soot or an article made of silica based soot

Similar Documents

Publication Publication Date Title
US5076980A (en) Method of making sol-gel monoliths
US6381986B1 (en) Sintered quartz glass products and methods for making same
JP2939889B2 (en) Manufacturing method of airgel monolith
KR101409884B1 (en) Preparation method of hydrophobic monolith type silica aerogel
WO1984002519A1 (en) Process for producing quartz glass
JPS5858292B2 (en) Silica glass manufacturing method
TW201736288A (en) Preparation of a quartz glass body in a hanging sinter crucible
TW201738179A (en) Glass fibers and pre-forms made of homogeneous quartz glass
TW201731780A (en) Preparation of a quartz glass body in a hanging metal sheet crucible
KR100501759B1 (en) Sol-gel process for the production of tridimensional dry gels, and silica dry gels and silica glasses produced therefrom
JPS63215526A (en) Production of silica glass
Wang et al. The sintering and crystallization of colloidal silica gel
JP2635313B2 (en) Method for producing silica glass
JPH01183421A (en) Production of quartz glass
JP2602813B2 (en) Method for producing silica glass
JPS62265127A (en) Production of silica glass
JPS60131833A (en) Manufacture of quartz glass
JPH0114177B2 (en)
JPS63185837A (en) Production of silica glass
JPH0776093B2 (en) Quartz glass manufacturing method
JP3092626B2 (en) Manufacturing method of quartz glass
JPS61256928A (en) Production of glass
JPS5969434A (en) Manufacture of quartz glass
JPH03275528A (en) Production of quartz glass
JPH0114178B2 (en)