JPH0114178B2 - - Google Patents

Info

Publication number
JPH0114178B2
JPH0114178B2 JP14485184A JP14485184A JPH0114178B2 JP H0114178 B2 JPH0114178 B2 JP H0114178B2 JP 14485184 A JP14485184 A JP 14485184A JP 14485184 A JP14485184 A JP 14485184A JP H0114178 B2 JPH0114178 B2 JP H0114178B2
Authority
JP
Japan
Prior art keywords
quartz glass
container
gel
dry gel
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14485184A
Other languages
Japanese (ja)
Other versions
JPS6126522A (en
Inventor
Motoyuki Toki
Sadao Kanbe
Satoru Myashita
Tetsuhiko Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14485184A priority Critical patent/JPS6126522A/en
Publication of JPS6126522A publication Critical patent/JPS6126522A/en
Publication of JPH0114178B2 publication Critical patent/JPH0114178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、金属アルコキシドを原料とするゾル
−ゲル法による石英ガラスの製造方法に関し、さ
らに詳しくは、気泡の少ない品質の良い石英ガラ
スの製造法に係わり、また、耐熱性の高い石英ガ
ラスの製造法に係わる。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for producing quartz glass using a sol-gel method using metal alkoxide as a raw material, and more specifically, to a method for producing quartz glass of good quality with few bubbles. , and also relates to a method for producing quartz glass with high heat resistance.

〔従来技術〕[Prior art]

石英ガラスは耐熱性や耐薬品性が高く高純度で
ある等の性質から、半導体の製造において、ルツ
ボ、ボードあるいは拡散炉の炉心管等に使用され
また、その透明性、均質性から光学用のセルある
いはレンズ等に使用されたりしている。また、水
酸基を少なくする技術が開発されたことや、光学
的に均一なものが開発されたことによつて、光通
信用の石英ガラスフアイバーや、半導体の石英フ
オトマスクの開発が行われ、今後ますます石英ガ
ラスの需要は拡大すると期待される。
Due to its properties such as high heat resistance, high chemical resistance, and high purity, quartz glass is used for crucibles, boards, and diffusion furnace core tubes in semiconductor manufacturing, and due to its transparency and homogeneity, it is used for optical applications. It is used for cells, lenses, etc. Additionally, with the development of technology to reduce hydroxyl groups and the development of optically uniform products, silica glass fibers for optical communications and quartz photomasks for semiconductors have been developed, and will continue to grow in the future. Demand for quartz glass is expected to increase.

しかし、石英ガラスは製造する際に高温処理が
必要であることや、石英ガラス特有の粘性など製
造工程上の困難さから製造コストが高く、非常に
高価なものとなつている。そのために石英ガラス
を安価に製造する方法が望まれている。
However, quartz glass requires high-temperature treatment during production and has difficulty in the production process, such as viscosity unique to quartz glass, making it very expensive. Therefore, a method for producing quartz glass at low cost is desired.

その方法として、金属アルコキシドを原料とす
るゾル−ゲル法が検討されており、特に、ケイ酸
エチルおよび微粉末シリカを原料とし、ゾルのPH
値を3〜6に調整するゾル−ゲル法は安価な石英
ガラスの製造方法として実用化されつつある。
As a method, a sol-gel method using metal alkoxide as a raw material is being considered, and in particular, a sol-gel method using ethyl silicate and finely powdered silica as raw materials is being considered.
The sol-gel method, in which the value is adjusted to 3 to 6, is being put into practical use as an inexpensive method for producing quartz glass.

ケイ酸エチルおよび微粉末シリカを原料としゾ
ルのPH値を3〜6に調整するゾル−ゲル法は、従
来のゾル−ゲル法の、ドライゲル作成時の割れの
問題と、焼結時の割れの問題を同時に解決したも
のであり、次の特徴を有している。
The sol-gel method, which uses ethyl silicate and finely powdered silica as raw materials and adjusts the PH value of the sol to 3 to 6, solves the problem of cracking during dry gel creation and the cracking during sintering of the conventional sol-gel method. It solves the problems at the same time and has the following characteristics.

大きな塊状石英ガラスの作成が可能 高純度な石英ガラスの作成が可能 熱処理温度が低いことから低コスト化が可能
等である。
It is possible to create large chunks of quartz glass.It is possible to create highly pure quartz glass.It is possible to reduce costs because the heat treatment temperature is low.

しかし、この方法の欠点は、焼結中に気泡が発
生しやすく、焼結後の透明石英ガラス中に気泡が
存在することから均一さを要求する、フオトマス
クやレンズ、光導波路、光フアイバー等の光学的
な用途に使用しにくいということである。また、
焼結中に気泡が発生しなくても、焼結温度より高
い温度に保持した場合に、気泡が発生する傾向が
あり、高温で使用する薄層トランジスタ基板等へ
の応用においても問題がある。
However, the disadvantage of this method is that bubbles are easily generated during sintering, and the presence of bubbles in the transparent quartz glass after sintering requires uniformity for photomasks, lenses, optical waveguides, optical fibers, etc. This means that it is difficult to use for optical purposes. Also,
Even if no air bubbles are generated during sintering, air bubbles tend to form when the temperature is maintained at a temperature higher than the sintering temperature, which poses a problem when applied to thin-layer transistor substrates and the like that are used at high temperatures.

以上のような気泡の発生は、ゲル中に存在する
水酸基に起因するものと思われる。したがつてゲ
ルあるいは石英ガラス中の水酸基を減少させる方
法が望まれている。
The generation of bubbles as described above is thought to be caused by the hydroxyl groups present in the gel. Therefore, a method for reducing the hydroxyl groups in gel or quartz glass is desired.

〔目的〕〔the purpose〕

本発明の目的は、従来のゾル−ゲル法による石
英ガラスの製造において、上記したような石英ガ
ラス中の水酸基量を減らし、さらに気泡の発生を
少なくする方法を提供することである。
An object of the present invention is to provide a method for reducing the amount of hydroxyl groups in quartz glass as described above and further reducing the generation of bubbles in the production of quartz glass by the conventional sol-gel method.

〔概要〕〔overview〕

アルキルシリケートに酸を加え加水分解し、
Aerosil(Deggussa社)やCab−O−sil(cab−o
−t社)等のホワイトカーボンである微粉末シリ
カを加え、よく均一に分散した後適当な塩基を添
加しPHを3〜6に調整する。このようにして得ら
れるゾルを適当な形状、材質の容器に加えゲル化
さて収縮・乾燥しドライゲルとする。このドライ
ゲルを、緻密な構造の耐熱材による容器に入れ、
フタをすることで、ドライゲルを閉空間中で焼結
し石英ガラスとする方法である。
Add acid to alkyl silicate to hydrolyze it,
Aerosil (Deggussa) and Cab-O-sil (cab-o
Finely powdered silica, which is a white carbon produced by A-T Co., Ltd., is added and dispersed well and uniformly, and then an appropriate base is added to adjust the pH to 3 to 6. The sol thus obtained is added to a container of an appropriate shape and material, gelled, and then shrunk and dried to form a dry gel. This dry gel is placed in a container made of heat-resistant material with a dense structure.
This is a method in which the dry gel is sintered into quartz glass in a closed space by putting a lid on it.

上記方法においては、PH値を3〜6に調整する
工程において、塩化アンモニウム等の酸と塩基の
中和生成物が発生し、中和生成物はドライゲル中
に残留することになる。ドライゲルを焼結する際
に中和生成物は分解し、塩化水素ガスやアンモニ
アガス等を発生する。これらのガスはドライゲル
の焼結時に、ゲルの水酸基をハロゲン基、スルホ
ン基、ニトロ基、アミノ基等に置換するため、焼
結後の石英ガラス中の水酸基量を減らす効果を有
している。したがつて、本発明は、塩化水素ガス
やアンモニアガス等の分解生成ガスが焼結中にゲ
ルの周辺に残留するように緻密な構造の閉容器中
で焼結する方法を考案したものである。
In the above method, in the step of adjusting the pH value to 3 to 6, neutralization products of acids and bases such as ammonium chloride are generated, and the neutralization products remain in the dry gel. When the dry gel is sintered, the neutralized product decomposes and generates hydrogen chloride gas, ammonia gas, etc. These gases replace the hydroxyl groups of the gel with halogen groups, sulfone groups, nitro groups, amino groups, etc. during sintering of the dry gel, and therefore have the effect of reducing the amount of hydroxyl groups in the silica glass after sintering. Therefore, the present invention has devised a method for sintering in a closed container with a dense structure so that gases produced by decomposition such as hydrogen chloride gas and ammonia gas remain around the gel during sintering. .

従来、多孔質シリカに塩素ガスやアンモニアガ
ス等を通じ無孔化することで、低含水量の高シリ
カガラスや石英ガラスにする方法が知られてい
る。しかし、これらの方法は、塩素ガスやアンモ
ニアガス等のように危険性の高いガスを使用する
ため装置的にも高価になり、量産性も悪い。
Conventionally, a method is known in which porous silica is made non-porous by passing chlorine gas, ammonia gas, etc. into high silica glass or quartz glass with a low water content. However, since these methods use highly dangerous gases such as chlorine gas and ammonia gas, they are expensive in terms of equipment and have poor mass productivity.

それに対して、本発明の方法は、ドライゲル中
に存在する中和生成物の分解ガスを用いて脱水酸
基処理をするということなので、装置は簡単なも
ので良く、量産性も良い。
On the other hand, the method of the present invention performs the dehydroxylation treatment using the decomposed gas of the neutralized product present in the dry gel, and therefore requires a simple apparatus and is suitable for mass production.

〔実施例〕〔Example〕

実施例 1 精製した市販のシリコンエトキシド208g(1
モル)に0.01規定の塩酸280mlを加え、激しく撹
拌して加水分解した。次にこの溶液に微粉末シリ
カ(表面積50m2/gのアエロジルOX50)90g
(1.5モル)を撹拌しながら加え、超音波振動をか
けた。さらに遠心分離によつてダマ状物を取り除
いた。このゾルに0.1規定のアンモニア水を滴下
してPH値が4.0になるように調整した。次にこの
ゾルをポリプロピレン製の箱型容器(W30×D30
×H10cm)に高さが1cmになるように仕込んだ。
密閉し、20℃で放置しゲル化し、一夜放置してウ
エツトゲルを得た。次に容器のフタを開口率0.8
%のものに換え、室温から60℃に昇温し、10日間
この温度で乾燥させたところ、室温に放置しても
割れない安定なドライゲル(20×20×0.7cm)が
得られた。
Example 1 208 g of purified commercially available silicon ethoxide (1
mol) was added with 280 ml of 0.01 N hydrochloric acid and stirred vigorously for hydrolysis. Next, add 90 g of finely powdered silica (Aerosil OX50 with a surface area of 50 m 2 /g) to this solution.
(1.5 mol) was added with stirring and ultrasonic vibration was applied. Further, clumps were removed by centrifugation. 0.1N aqueous ammonia was added dropwise to this sol to adjust the pH value to 4.0. Next, store this sol in a polypropylene box-shaped container (W30 x D30).
x H10cm) so that the height was 1cm.
It was sealed tightly and allowed to stand at 20°C to form a gel, and was allowed to stand overnight to obtain a wet gel. Next, open the container lid with an opening ratio of 0.8.
When the temperature was raised from room temperature to 60°C and dried at this temperature for 10 days, a stable dry gel (20 x 20 x 0.7 cm) that did not crack even when left at room temperature was obtained.

同じ条件で実験した10個のうち割れた物はな
く、歩留り100%で10個のドライゲルが得られた。
Of the 10 gels tested under the same conditions, none were cracked, and 10 dry gels were obtained with a yield of 100%.

次に、この10個のドライゲルを第1図に示した
ような仕方で、石英容器(15cm×43cm×23cm)に
仕込んだ。第1図において、1はドライゲル、2
は石英ガラスによるついたてと容器であり、ドラ
イゲルを入れた場合、石英ガラスにより、ほぼ密
閉状態とすることができる構造である。
Next, these 10 dry gels were placed in a quartz container (15 cm x 43 cm x 23 cm) in the manner shown in Figure 1. In Figure 1, 1 is dry gel, 2
The container is made of quartz glass, and when filled with dry gel, the quartz glass makes it possible to create an almost airtight state.

ドライゲルの入つた石英容器を炉の中に入れ、
適当な昇温プログラムにより室温から、1300℃ま
で昇温し1時間1300℃に保持することで無孔化し
透明な石英ガラス(15×15×0.5cm)が10個得ら
れた。
Place the quartz container containing the dry gel into the furnace,
The temperature was raised from room temperature to 1300°C using an appropriate heating program and held at 1300°C for 1 hour to obtain 10 pieces of non-porous transparent quartz glass (15 x 15 x 0.5 cm).

本実施例で得られた石英ガラスは、比重が2.2、
ビツカース硬度が821、熱膨張係数が5.5×10-7
あり市販の石英ガラスと一致した。また、得られ
た石英ガラスの含水量を赤外吸収スペクトルで測
定すると300ppmであつた。このものには気泡は
発生していなかつた。比較のため、上記条件と同
一方法で作成したドライゲルを石英容器外で同一
炉、同一昇温プログラムで焼結した。得られた石
英ガラスは10〜50μmの気泡が多数発生し少し不
透明なものとなつた。このものの含水量は赤外吸
収スペクトルによると、1500ppmであつた。
The quartz glass obtained in this example has a specific gravity of 2.2,
The Vickers hardness was 821 and the coefficient of thermal expansion was 5.5×10 -7 , which matched that of commercially available quartz glass. Furthermore, the water content of the obtained quartz glass was measured by infrared absorption spectrum and was found to be 300 ppm. No air bubbles were generated in this product. For comparison, a dry gel prepared under the same conditions as above was sintered outside the quartz container in the same furnace and with the same temperature program. The obtained quartz glass had many bubbles of 10 to 50 μm in size and became slightly opaque. According to infrared absorption spectrum, the water content of this material was 1500 ppm.

このように、本実施例のごとく石英容器中で焼
結すると含水率が減少し、気泡の発生が少なく光
学的に品質の良い石英ガラスが得られる。
As described above, when sintered in a quartz container as in this example, the water content is reduced, and a quartz glass with good optical quality with few bubbles can be obtained.

実施例 2 実施例1と同様にして作成したドライゲル10個
を緻密な構造のジルコニアで作成した第1図と同
形の容器を作成し、同様にドライゲルを入れた。
ドライゲルの入つたジルコニア容器を炉の中に入
れ、適当な昇温プログラムにより室温から1300℃
まで昇温し1時間1300℃に保持することで無孔化
し透明な石英ガラス(15×15×0.5cm)が10個得
られた。得られた石英ガラスの含水量を赤外吸収
スペクトルで測定すると450ppmであつた。
Example 2 Ten dry gels prepared in the same manner as in Example 1 were made into a container of the same shape as shown in FIG. 1 made of zirconia with a dense structure, and the dry gels were similarly placed therein.
The zirconia container containing the dry gel is placed in a furnace and heated from room temperature to 1300℃ using an appropriate temperature increase program.
By raising the temperature to 1,300°C for 1 hour, 10 pieces of nonporous and transparent quartz glass (15 x 15 x 0.5 cm) were obtained. The water content of the obtained quartz glass was measured by infrared absorption spectrum and was found to be 450 ppm.

従つて、本実施例のように緻密な構造の容器中
で焼結すると気泡の発生がなく、含水量も減らす
ことができることがわかる。
Therefore, it can be seen that when the material is sintered in a container with a dense structure as in this example, no air bubbles are generated and the water content can be reduced.

実施例 3 実施例1と同様にして作成したドライゲル10個
を緻密な構造のアルミナで作成した第1図と同形
の容器を作成し、同様にドライゲルを入れた。ド
ライゲルの入つたアルミナ容器を炉の中に入れ適
当な昇温プログラムにより室温から1300℃まで昇
温し1時間1300℃に保持することで無孔化し透明
な石英ガラス(15×15×0.5cm)が10個得られた。
得られた石英ガラスの含水量を赤外吸収スペクト
ルで測定すると500ppmであつた。
Example 3 Ten dry gels prepared in the same manner as in Example 1 were made into a container of the same shape as shown in FIG. 1, which was made of alumina with a dense structure, and the dry gels were similarly placed therein. Place the alumina container containing the dry gel in a furnace, raise the temperature from room temperature to 1300℃ using an appropriate heating program, and hold it at 1300℃ for 1 hour to make it non-porous and transparent quartz glass (15 x 15 x 0.5 cm). 10 pieces were obtained.
The water content of the obtained quartz glass was measured by infrared absorption spectrum and was found to be 500 ppm.

従つて、本実施例のように緻密な構造の容器中
で焼結すると気泡の発生がなく、含水量も減らす
ことができることが分かる。
Therefore, it can be seen that when sintering is performed in a container with a dense structure as in this example, no air bubbles are generated and the water content can be reduced.

実施例 4 第1図と同型の箱型容器を炭化ケイ素で作成し
その表面をアルミナでコーテイングして無孔化処
理をした。実施例1と同様にして作成したドライ
ゲルを上記無孔化炭化ケイ素の箱型容器に入れ炉
により、1300℃まで適当な昇温プログラムで昇温
し、1時間1300℃に保持した。これにより透明で
気泡の発生のない光学的に均質な石英ガラス(15
×15×0.5cm)が10個得られた。得られた石英ガ
ラスの含水量を赤外吸収スペクトルで測定すると
512ppmであつた。
Example 4 A box-shaped container of the same type as shown in FIG. 1 was made of silicon carbide, and its surface was coated with alumina to make it non-porous. The dry gel prepared in the same manner as in Example 1 was placed in the above-mentioned non-porous silicon carbide box-shaped container, heated to 1300°C using an appropriate heating program in a furnace, and held at 1300°C for 1 hour. This results in transparent, bubble-free, optically homogeneous quartz glass (15
10 x 15 x 0.5 cm) were obtained. When the water content of the obtained quartz glass was measured using an infrared absorption spectrum,
It was 512ppm.

実施例 5 第1図と同型の箱型容器をムライトで作成し、
エチルシリケートの加水分解溶液につけた後、
300℃にベイキングした。これにより無孔化した
ムライト箱型容器を作成した。実施例1と同様に
して作成したドライゲルを上記無孔化処理ムライ
トの箱型容器に入れ、炉により1300℃まで適当な
昇温プログラムで昇温し、1時間1300℃に保持し
た。これにより透明で気泡のない光学的に均質な
石英ガラス(15×15×0.5cm)が10個得られた。
得られた石英ガラスの含水量を赤外吸収スペクト
ルで測定すると360ppmであつた。
Example 5 A box-shaped container of the same type as in Fig. 1 was made of mullite,
After soaking in a hydrolyzed solution of ethyl silicate,
Baked at 300℃. As a result, a non-porous mullite box-shaped container was created. A dry gel prepared in the same manner as in Example 1 was placed in a box-shaped container made of the above-mentioned non-porous treated mullite, heated to 1300°C in a furnace using an appropriate heating program, and maintained at 1300°C for 1 hour. As a result, 10 pieces of transparent, bubble-free, optically homogeneous quartz glass (15 x 15 x 0.5 cm) were obtained.
The water content of the obtained quartz glass was measured by infrared absorption spectrum and was found to be 360 ppm.

〔効果〕〔effect〕

以上実施例で示したように、中和生成物の含有
しているドライゲルを、緻密な構造の耐熱材によ
るほぼ密閉された容器内で焼結すると気泡の発生
がなく、透明性の良い低含水量の石英ガラスが得
られることが分かつた。本発明による製造法を用
いることで、光学的用途や、耐熱性が要求される
用途に用いられる石英ガラスを容易にかつ安価に
製造できるようになる。たとえば、理化学分析用
の光学セルや、光学レンズ、また光導波路、フオ
トマスク用サブストレート、石英フアイバーのブ
リフオーム、FET、TFT等の基板、EL等の基板
等へ応用できる。本発明の製造法の応用はここに
記したものに限るものではない。
As shown in the examples above, when the dry gel containing the neutralized product is sintered in a nearly sealed container made of a heat-resistant material with a dense structure, no air bubbles are generated, and the dry gel has a low content with good transparency. It was found that quartz glass with the same amount of water could be obtained. By using the manufacturing method according to the present invention, silica glass used for optical applications and applications requiring heat resistance can be easily and inexpensively manufactured. For example, it can be applied to optical cells for physical and chemical analysis, optical lenses, optical waveguides, substrates for photomasks, quartz fiber briefs, substrates for FETs, TFTs, etc., substrates for ELs, etc. Applications of the manufacturing method of the present invention are not limited to those described here.

また本実施例において、ゾルの調整条件をすべ
て同一にしてあるが、本発明の製造法は、中和生
成物の分解ガスが脱水酸基を生じせしめるもので
あるから、他のゾル調整条件でも同様の効果が期
待されることは明白である。
In addition, in this example, all the sol preparation conditions were the same, but since the production method of the present invention is such that the decomposed gas of the neutralization product generates dehydroxyl groups, the same may be applied to other sol preparation conditions. It is clear that this effect is expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に用いた焼結用の箱
型容器と、それにドライゲルを仕込んだ状況を示
した図である。
FIG. 1 is a diagram showing a box-shaped container for sintering used in an example of the present invention, and a state in which dry gel is charged therein.

Claims (1)

【特許請求の範囲】 1 金属アルコキシドを酸で加水分解し、これに
微粉末シリカを加えて攪拌して酸性のゾルとし、
これを塩基でPHを3〜6の範囲に調整したのち、
前記ゾルを容器に入れてゲル化してウエツトゲル
とし、前記ウエツトゲルを前記容器より取り出し
て、開口部を有する容器に移したのち、前記ウエ
ツトゲルを乾燥してドライゲルとし、 前記ドライゲルを密閉した耐熱材容器に納めた
のち、前記耐熱材容器とともに前記ドライゲルを
高温で焼結することを特徴とする石英ガラスの製
造方法。
[Claims] 1. Hydrolyzing a metal alkoxide with an acid, adding finely powdered silica to it and stirring to form an acidic sol,
After adjusting the pH to a range of 3 to 6 with a base,
The sol is placed in a container and gelled to form a wet gel, the wet gel is taken out from the container and transferred to a container with an opening, the wet gel is dried to form a dry gel, and the dry gel is placed in a sealed heat-resistant container. A method for manufacturing quartz glass, comprising: sintering the dry gel together with the heat-resistant container at a high temperature after the dry gel is stored.
JP14485184A 1984-07-12 1984-07-12 Production of quartz glass Granted JPS6126522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14485184A JPS6126522A (en) 1984-07-12 1984-07-12 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14485184A JPS6126522A (en) 1984-07-12 1984-07-12 Production of quartz glass

Publications (2)

Publication Number Publication Date
JPS6126522A JPS6126522A (en) 1986-02-05
JPH0114178B2 true JPH0114178B2 (en) 1989-03-09

Family

ID=15371890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14485184A Granted JPS6126522A (en) 1984-07-12 1984-07-12 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS6126522A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131544A (en) * 1989-06-29 1991-06-05 Sumitomo Electric Ind Ltd Furnace for glass perform for optical fiber and production thereof
US5139597A (en) * 1990-10-26 1992-08-18 Moore Business Forms, Inc. Detacher to folder or pressure sealer shingle conveyor

Also Published As

Publication number Publication date
JPS6126522A (en) 1986-02-05

Similar Documents

Publication Publication Date Title
JPH0114178B2 (en)
JPS59131538A (en) Production of quartz glass
JPS62265130A (en) Production of silica glass
JPH0114177B2 (en)
JPS5969434A (en) Manufacture of quartz glass
JPH0123420B2 (en)
JPS6126523A (en) Production of quartz glass
JPH01119526A (en) Production of silica glass
JPS6428243A (en) Cerium-doped quartz glass and production thereof
JPS6330335A (en) Production of quartz glass
JPS61168542A (en) Production of quartz glass
JPS62241836A (en) Production of glass having low defect content
JPS59107937A (en) Manufacture of quartz glass
JPS63112430A (en) Production of glass
JPH01138138A (en) Production of silica glass
JPH0124735B2 (en)
JPS63107821A (en) Production of glass
JPH01138139A (en) Production of silica glass
JPS62292624A (en) Production of glass
JPS643814B2 (en)
JPS6086037A (en) Production of quartz glass
JPS6086034A (en) Production of quartz glass
JPS58208144A (en) Method for synthesizing lump silica glass at low temperature
JPS6086033A (en) Production of quartz glass
JPS6090834A (en) Manufacture of quartz glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees