JPS61168542A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS61168542A
JPS61168542A JP1026085A JP1026085A JPS61168542A JP S61168542 A JPS61168542 A JP S61168542A JP 1026085 A JP1026085 A JP 1026085A JP 1026085 A JP1026085 A JP 1026085A JP S61168542 A JPS61168542 A JP S61168542A
Authority
JP
Japan
Prior art keywords
temperature
quartz glass
hours
sol
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1026085A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Sadao Kanbe
貞男 神戸
Motoyuki Toki
元幸 土岐
Tetsuhiko Takeuchi
哲彦 竹内
Hirohito Kitabayashi
北林 宏仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1026085A priority Critical patent/JPS61168542A/en
Publication of JPS61168542A publication Critical patent/JPS61168542A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:Dried gel obtained from an alkyl silicate and ultrafine silica powder is sintered in a closed vessel in an appropriate temperature zone for hours to give a quartz glass of low water content and high mechanical strength at elevated temperatures. CONSTITUTION:In the low-temperature synthesis of quartz glass through the sol-gel method where a dried gel obtained at least from an alkyl silicate and an ultrafine silica powder, the sintering temperature is kept in a range from 900-1,300 deg.C over 20hr, preferably the temperature range is divided into several zones or the temperature is gradually raised. Thus, the water formed by dehydrative polymerization is sufficiently diffused to give quartz glass of low water content.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゾル−ゲル法による石英ガラスの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass by a sol-gel method.

〔従来の技術〕[Conventional technology]

石英ガラスはIC製造工程中でるつぼやボード拡散炉等
に使用されるようになり、その有用性が認められ、更に
水酸基の少ないものや光学的均一性の良いものが開発さ
れたことによって、各種の光学的用途に使用されるよう
になり、特に光通信用の石英ガラス7アイパーが最近注
目されている。
Quartz glass has come to be used in crucibles, board diffusion furnaces, etc. during the IC manufacturing process, and its usefulness has been recognized, and with the development of products with fewer hydroxyl groups and better optical uniformity, various types of quartz glass have been used. In particular, quartz glass 7-eye glass for optical communication has been attracting attention recently.

このように石英ガラスは種々の分野で使用されその利用
範囲も広がっている。しかし、石英ガラスの製造コスト
は高く、高価なことが問題罠なっている。安価で高品質
の石英ガラスを製造する方法として、ゾル−ゲル法が試
みられている。
As described above, quartz glass is used in various fields, and its range of applications is expanding. However, the manufacturing cost of quartz glass is high, and its high price is a problem. A sol-gel method has been attempted as a method for manufacturing inexpensive, high-quality quartz glass.

ゾル−ゲル法を用いて歩留シ良く、大型の石英ガラスを
得る方法として、アルキルシリケートを加水分解したゾ
ル中に超微粉末シリカを加え、超音波等で分散し更にP
Hを3〜6に調整した後、50〜90℃で乾燥し、焼結
する方法がある。ドライゲル作製中の割れの問題と、焼
結中の割れやクラック生成の問題を同時に解決したもの
であり、かなり大きな石英ガラス(41nckφ以上)
が低コストで製造できるようになった。
As a method of obtaining large-sized quartz glass with good yield using the sol-gel method, ultrafine powdered silica is added to a sol obtained by hydrolyzing alkyl silicate, dispersed by ultrasonic waves, etc., and further P
There is a method of adjusting H to 3 to 6, then drying and sintering at 50 to 90°C. This solution simultaneously solves the problem of cracking during dry gel production and the problem of cracks and cracks during sintering.
can now be manufactured at low cost.

水酸基が少なく、気泡を含まない高品質の石英ガラスを
製造する為には、ドライゲルを緻密な構造の耐熱材によ
る閉容器中で焼結する方法が非常に有効である。
In order to produce high-quality quartz glass with few hydroxyl groups and no bubbles, it is very effective to sinter dry gel in a closed container made of a heat-resistant material with a dense structure.

〔問題点〕〔problem〕

しかし閉容器中で単純に昇温し、焼結する従来技術では
、石英ガラスの含水率を1100ppまで低下させるの
が限界で、熔融石英の含水率300ppmは達成できな
い、含水率は高温域での機械的強度に影響を与え、薄層
トランジスタ(TPT)基盤のように高温で使用する場
合、含水率の低下が必要となる。塩素処理によシ、水酸
基を塩素で置換し、見かけの含水率を低下させる方法で
は高温域での機械的強度の改善にはならない。
However, with the conventional technology that simply raises the temperature in a closed container and sinters it, the limit is to reduce the water content of quartz glass to 1100 ppm, and it is impossible to achieve a water content of 300 ppm in fused silica. It affects mechanical strength and requires lower moisture content when used at high temperatures, such as in thin layer transistor (TPT) substrates. Chlorination, which replaces hydroxyl groups with chlorine and lowers the apparent moisture content, does not improve mechanical strength at high temperatures.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは石英ガラスの含水率(水酸基の数
)を減少させ、高温域での機械的強度を強くするところ
にある。
The present invention is intended to solve these problems, and its purpose is to reduce the water content (number of hydroxyl groups) of quartz glass and increase its mechanical strength in a high temperature range.

〔手段〕〔means〕

本発明の石英ガラスの製造方法は、少なくともアルキル
シリケートおよび超微粉末シリカを原料とし、ドライゲ
ルを緻密な構造の耐熱材による閉容器中で焼結するゾル
−ゲル法による石英ガラスの低温合成法において、90
0〜130”0℃の温度域で20時間以上保持すること
を特徴とする。
The method for producing quartz glass of the present invention is a low-temperature synthesis method of quartz glass using at least an alkyl silicate and ultrafine powder silica as raw materials, and a sol-gel method in which dry gel is sintered in a closed container made of a heat-resistant material with a dense structure. , 90
It is characterized by being maintained in a temperature range of 0 to 130" for 20 hours or more.

保持する温度を単一温度ではなく、何段かの温度に分け
るか、あるいは低速で徐々に昇温させると更に効果的で
ある。
It is more effective to maintain the temperature not at a single temperature, but to divide it into several stages, or to raise the temperature gradually at a low rate.

〔作用〕[Effect]

アルキルシリケートおよび超微粉末シリカを原料として
作製したドライゲルは、900〜1300℃の温度域で
焼結が進行する。通常の金属やセラミックス粉末の焼結
と異なシ、水酸基の脱水重合を伴うため、水の生成が同
温度域で起こる。そこで、石英ガラスの含水率を減少さ
せる為には、生成した水分子を拡散させなければならず
、焼結が完結する前段階での長時間保持が必要となる6
焼結が始まらない900℃以下、あるいは表面の焼き付
きが終了する1300℃以上で長時間保持しても、含水
率低下には何ら効果がない。焼結を徐々に進行させなが
ら生成する水を遂時拡散させる為には、900〜130
0℃の温度域で何段かに分けて長時間保持するか、徐々
に昇温させる°方法が効果的である。
Sintering of a dry gel made from alkyl silicate and ultrafine powdered silica proceeds in a temperature range of 900 to 1300°C. Unlike ordinary sintering of metal or ceramic powders, water generation occurs in the same temperature range because it involves dehydration polymerization of hydroxyl groups. Therefore, in order to reduce the water content of quartz glass, it is necessary to diffuse the generated water molecules, and it is necessary to hold them for a long time before sintering is completed6.
Even if it is held for a long time at 900° C. or lower, at which sintering does not start, or at 1,300° C. or higher, at which surface seizing ends, there is no effect on lowering the water content. In order to gradually diffuse the water generated while sintering progresses, the temperature should be 900 to 130.
It is effective to keep the temperature in the 0°C temperature range for a long time in several stages, or to gradually raise the temperature.

〔実施例〕〔Example〕

保持温度・保持時間と含水率との関係、高温域での機械
的強度との関係について実例を挙げて説明する。また、
アルキルシリケートと超微粉末シリカとの混合比を変化
させた場合についても、いくつか例を挙げる。
The relationship between holding temperature/holding time and moisture content, and the relationship between mechanical strength in a high temperature range will be explained using examples. Also,
Some examples will also be given of cases in which the mixing ratio of alkyl silicate and ultrafine powder silica is changed.

実施例1 エチルシリケー) 4.41と005規定塩酸水溶液五
61を激しく攪拌し、無色透明の均一溶液を得た。そこ
に超微粉末シリカ(、Aerosil  OX −50
)1.5に9を徐々に添加し、充分く攪拌した。
Example 1 Ethyl silica) 4.41 and 005N aqueous hydrochloric acid solution 561 were vigorously stirred to obtain a colorless and transparent homogeneous solution. There, ultrafine powdered silica (Aerosil OX-50
) 9 was gradually added to 1.5 and stirred thoroughly.

このゾルを20℃に保ちながら28KHzの超音波を2
時間照射し、更に1300Gの遠心力を10分間かけた
後、1μmのフィルターを通過させた。
While keeping this sol at 20℃, 28KHz ultrasonic waves were applied for 2 hours.
After irradiation for a period of time and further applying a centrifugal force of 1300 G for 10 minutes, the sample was passed through a 1 μm filter.

得られた均質度の高いゾルを、CL1規定アンモニア水
でpHtzに調整してからポリプロピレン製容器(幅2
5(mX 25Ci#LX高さ10cm)K深さが1ス
になる量注入した。開口率1%のフタをし、60℃で1
0日間乾燥させたところ、−辺1Bcrrts厚さα7
CIl+のドライゲルが作製できた。
The obtained highly homogeneous sol was adjusted to pHtz with CL1 normal ammonia water, and then placed in a polypropylene container (width 2
5 (mX 25Ci #LX height 10cm) K was injected in an amount to give a depth of 1 s. Cover with a lid with an opening ratio of 1% and heat at 60°C.
After drying for 0 days, -side 1Bcrrts thickness α7
A CIl+ dry gel was successfully prepared.

はぼ密閉構造となっている石英容器にドライゲルを入れ
、90℃/hrの速度で1100℃まで昇温し、110
0℃で50時間保持した。その後、90℃/hrの速度
で1300℃まで昇温し、1時間保持して完全に透明化
させた。得られた石英ガラスはI Z5x 12.5x
α5cIILの大きさで、含水率は700 ppm だ
った。石英ガラス中の超微粉末シリカの支める割合は5
5チである。
Dry gel was placed in a quartz container with a sealed structure, heated to 1100°C at a rate of 90°C/hr, and heated to 110°C.
It was held at 0°C for 50 hours. Thereafter, the temperature was raised to 1300° C. at a rate of 90° C./hr and maintained for 1 hour to make it completely transparent. The obtained quartz glass is I Z5x 12.5x
The size of α5cIIL was 700 ppm. The supporting ratio of ultrafine powder silica in quartz glass is 5
It is 5chi.

厚さ1.21K、フラットネス5μm以下に研磨し、1
150℃の拡散炉内に5時間室てかけたところ、フラッ
トネスは30μmに変化した。同じ大きさの熔融石英に
ついて同様の熱処理をしたところ、フラットネスは10
μm以下だった。
Polished to thickness 1.21K, flatness 5μm or less, 1
When placed in a diffusion furnace at 150° C. for 5 hours, the flatness changed to 30 μm. When fused silica of the same size was subjected to the same heat treatment, the flatness was 10.
It was less than μm.

比較例1 実施例1と同様の方法で作製したドライゲルを石英容器
内に入れ、90℃/ h rの速度で1300℃まで昇
温し、1時間保持したところ、完全に透明化した。得ら
れた石英ガラスの含水率は1200ppmだった。研磨
後、1150℃の拡散炉内に5時間室てかけたところ、
フラットネスは5μ風以下から60μ風に変化した。
Comparative Example 1 A dry gel prepared in the same manner as in Example 1 was placed in a quartz container, heated to 1300°C at a rate of 90°C/hr, and held for 1 hour, where it became completely transparent. The moisture content of the obtained quartz glass was 1200 ppm. After polishing, it was placed in a diffusion furnace at 1150°C for 5 hours.
The flatness changed from less than 5μ wind to 60μ wind.

比較例2 比較例1と同様の温度プログラムで昇温しだが、700
〜1000℃の温度域ではC1z含有雰囲気、1000
〜1100℃の温度域では02 含有雰囲気、1100
〜1300℃の温度式ではHe雰囲気で焼結を行なった
。IR(赤外線吸収スペクトル)で含水率を測定したと
ころOppmだった。
Comparative Example 2 The temperature was raised using the same temperature program as Comparative Example 1, but
In the temperature range of ~1000℃, C1z-containing atmosphere, 1000℃
In the temperature range of ~1100℃, 02 containing atmosphere, 1100
In the temperature formula of ~1300°C, sintering was performed in a He atmosphere. The moisture content was measured by IR (infrared absorption spectrum) and was found to be Oppm.

厚さ1.2 龍、フラットネス5μm以下に研磨し、4
150℃の拡散炉内ycs時間立てかけたところ、フラ
ットネスは60μmに変化した。
Thickness: 1.2 Dragon, polished to a flatness of 5 μm or less, 4
When the film was stood in a diffusion furnace at 150° C. for ycs, the flatness changed to 60 μm.

実施例2 実施例1と同様の方法で作製したドライゲルを石英容器
内に入れ、90℃/ h rの速度で1100℃まで昇
温し、  1100℃で80時間保持した。
Example 2 A dry gel prepared in the same manner as in Example 1 was placed in a quartz container, heated to 1100°C at a rate of 90°C/hr, and held at 1100°C for 80 hours.

その後90℃/ h rの速度で1300℃まで昇温し
、1時間保持して完全に透明化させた。得られた石英ガ
ラスの含水率は500 ppmだった。
Thereafter, the temperature was raised to 1300°C at a rate of 90°C/hr and maintained for 1 hour to make it completely transparent. The moisture content of the obtained quartz glass was 500 ppm.

実施例1と同様の研磨、及び熱処理btSたところ、フ
ラットネスは20μmに変化した。
When the same polishing and heat treatment btS as in Example 1 were carried out, the flatness changed to 20 μm.

実施例3 実施例1と同様の方法で作製したドライゲルを石英容器
内に入れ、90℃/hrの速度で11001.1で昇温
し、1100℃で80時間保持した。
Example 3 A dry gel prepared in the same manner as in Example 1 was placed in a quartz container, heated to 11001.1 at a rate of 90°C/hr, and held at 1100°C for 80 hours.

一旦室温まで冷却し、半透明になったドライゲルを石英
容器から取り出し、再び90℃/ h rの速度で13
00℃まで昇温し、1時間保持して完全に透明化させた
。、得られた石英ガラスの含水率は5 G Oppmだ
った。
Once cooled to room temperature, the translucent dry gel was taken out of the quartz container and heated again at a rate of 90°C/hr for 13
The temperature was raised to 00° C. and maintained for 1 hour to make it completely transparent. The moisture content of the obtained quartz glass was 5 G Oppm.

実施例1と同様の研磨、及び熱処理をしたところ、フラ
ットネスは20μmに変化した。
When the same polishing and heat treatment as in Example 1 were performed, the flatness changed to 20 μm.

実施例4 実施例1と同様の方法で作製したドライゲルを石英容器
内に入れ、90℃/ h rの速度で昇温し、1050
℃で20時間、1100℃で40時間、1150℃で2
0時間それぞれ保持した。その後90℃/ h rの速
度で1300℃まで昇温し、1時間保持して完全に透明
化させた。得られた石英ガラスの含水率はS Q Op
pmで、熔融石英とほぼ同じ値となった。
Example 4 A dry gel prepared in the same manner as in Example 1 was placed in a quartz container, heated at a rate of 90°C/hr, and heated to 1050°C.
℃ for 20 hours, 1100℃ for 40 hours, 1150℃ for 2 hours
Each was held for 0 hours. Thereafter, the temperature was raised to 1300°C at a rate of 90°C/hr and maintained for 1 hour to make it completely transparent. The moisture content of the obtained quartz glass is S Q Op
The pm value was almost the same as that of fused silica.

実施例1と同様の研磨、及び熱処理をしたところ、フラ
ットネスは10μm以下だった。
When the same polishing and heat treatment as in Example 1 were performed, the flatness was 10 μm or less.

実施例5 実施例1と同様の方法で作製したドライゲルを石英容器
内に入れ、90℃/hrの速度で1000℃まで昇温し
た。その後1200℃まで2℃/ h rの速度で10
0時間かけて昇温した。再び90℃/hrの速度で13
00℃まで昇温し、1時間保持して完全に透明化させた
。得られた石英ガラスの含水率は300 ppmだった
Example 5 A dry gel prepared in the same manner as in Example 1 was placed in a quartz container, and the temperature was raised to 1000°C at a rate of 90°C/hr. Then 10 at a rate of 2°C/hr up to 1200°C.
The temperature was increased over 0 hours. 13 again at a rate of 90°C/hr.
The temperature was raised to 00° C. and maintained for 1 hour to make it completely transparent. The moisture content of the obtained quartz glass was 300 ppm.

実施例1と同様の研磨、及び熱処理をしたところ、フラ
ットネスは10μm以下だった。
When the same polishing and heat treatment as in Example 1 were performed, the flatness was 10 μm or less.

実施例6 エチルシリケー) 4.41と0−05規定塩酸水溶液
1.8ノを激しく攪拌し、無色透明の均一溶液を得た。
Example 6 Ethyl silica) 4.41 and 1.8 μm of a 0-05N aqueous hydrochloric acid solution were vigorously stirred to obtain a colorless and transparent homogeneous solution.

そこに超微粉末シリカ(Aerosil 0X−50)
15′に9を徐々に添加し、充分に攪拌した。このゾル
を20℃に保ちながら28KHzの超音波を2時間照射
し、更に1300Gの遠心力を10分間かけた後、1μ
mのフィルターを通過させた。
Ultrafine powder silica (Aerosil 0X-50)
9 was gradually added to 15' and thoroughly stirred. This sol was irradiated with 28KHz ultrasonic waves for 2 hours while keeping it at 20℃, and then subjected to a centrifugal force of 1300G for 10 minutes.
It was passed through a filter of m.

得られた均質度の高いゾルを、α1規定アンモニア水で
P H4,2に調整してからポリプロピレン製容器(幅
25clIL×25cIIL×高さ10cIrL)に深
さが1αになる量注入した。開口率1%のフタをし、6
0℃で10日間乾燥させたところ、−辺18a1厚さα
7σのドライゲルが作製できた。
The resulting highly homogeneous sol was adjusted to pH 4.2 with α1 normal ammonia water, and then poured into a polypropylene container (width 25 cIIL x height 10 cIrL) in an amount to give a depth of 1α. Close the lid with an opening ratio of 1%, and
When dried at 0°C for 10 days, -side 18a1 thickness α
A 7σ dry gel was produced.

はぼ密閉構造となっている石英容器にドライゲル金入れ
、90℃/ h rの速度で昇温し、950℃で20時
間、1000℃で40時間、1050℃で20時間それ
ぞれ保持した。その後90℃/ h rの速度で130
0℃まで昇温し、完全に透明化させた。得られた石英ガ
ラスはI Z5X 12.5Xα5(lfflの大きさ
で、含水率q500ppmだった。石英ガラス中の超微
粉末シリカの支める割合は50%である。
A dry gel gold container was placed in a quartz container with a sealed structure, and the temperature was raised at a rate of 90°C/hr, and held at 950°C for 20 hours, 1000°C for 40 hours, and 1050°C for 20 hours. Then 130 at a rate of 90 °C/hr
The temperature was raised to 0°C and the mixture became completely transparent. The obtained quartz glass had a size of IZ5X12.5Xα5 (lffl) and a water content of q500 ppm.The supporting ratio of ultrafine powder silica in the quartz glass was 50%.

実施例1と同様の研磨、及び熱処理をしたところ、7ラ
ソトネスは20μmに変化した。
When the same polishing and heat treatment as in Example 1 were performed, the 7 lasotoneness changed to 20 μm.

実施例7 エチルシリケー) 4.4 lとQ、05規定塩酸水溶
液s、41を激しく攪拌し、無色透明の均一溶液を得た
。そこに超微粉末シリカ(Aerosil 0X−50
)2.8ユを徐々に添加し、充分に攪拌した。以下実施
例1、及び実施例6と同様の処理を行ない、−辺18c
rIL1厚さく17cr!Lのドライゲルを作製した。
Example 7 Ethyl silica) 4.4 l, Q, 05N aqueous hydrochloric acid solution s, and 41 were vigorously stirred to obtain a colorless and transparent homogeneous solution. There, ultrafine powdered silica (Aerosil 0X-50
) 2.8 units were gradually added and stirred thoroughly. Hereinafter, the same processing as in Example 1 and Example 6 is performed, and -side 18c is
rIL1 thickness 17cr! A dry gel of L was prepared.

はぼ密閉構造となっている石英容器にドライゲルを入れ
、90℃/ h rの速度で昇温し、1100℃で20
時間、1150℃で40時間、1200℃で20時間そ
れぞれ保持した。その後90℃/hrの速度で1300
’Cまで昇温し、3時間保持して完全に透明化させた。
Dry gel was placed in a quartz container with a sealed structure, heated at a rate of 90℃/hr, and heated to 1100℃ for 20 minutes.
The temperature was maintained at 1150°C for 40 hours and at 1200°C for 20 hours. Then 1300 at a rate of 90℃/hr
The temperature was raised to 'C' and maintained for 3 hours to make it completely transparent.

得られた石英ガラスは12.5x12.5xα5(mの
大きさで、含水率は1100ppだった。石英ガラス中
の超微粉末シリカの支める割合は70%である。
The obtained quartz glass had a size of 12.5 x 12.5 x α5 (m) and a water content of 1100 pp. The supporting ratio of ultrafine powder silica in the quartz glass was 70%.

実施例1と同様の研磨、及び熱処理をしたところ、フラ
ットネスは5μm以下だった。
When the same polishing and heat treatment as in Example 1 were performed, the flatness was 5 μm or less.

以上述べたように、超微粉末シリカの含有率により、最
適保持温度は若干具なる。また、超微粉末シリカの含有
率が高いほど、石英ガラスの含水率は減少する傾向にあ
る。それを第1図゛に示す。
As mentioned above, the optimum holding temperature varies depending on the content of ultrafine silica powder. Furthermore, the higher the content of ultrafine silica powder, the lower the water content of quartz glass tends to be. This is shown in Figure 1.

超微粉末シリカの含有率50%が■、55%が■、70
%が■でおる。しかし、いずれの場合も900〜130
0℃での保持時間が20時間以下だと、含水率が急激に
上昇する。
The content of ultrafine silica powder is 50% ■, 55% is ■, 70
% is ■. However, in both cases 900 to 130
If the holding time at 0°C is less than 20 hours, the moisture content will increase rapidly.

1150℃における熱的強度を第2図に示す。The thermal strength at 1150°C is shown in Figure 2.

フラットネスの変化は50μm以下が望ましく、その意
味からも20時間以上の保持が必要となる。
The change in flatness is desirably 50 μm or less, and from this point of view, it is necessary to hold the film for 20 hours or more.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、少なくともアルキル
シリケートおよび超微粉末シリカを原料とし、ドライゲ
ルを緻密な構造の耐熱材による閉容器中で焼結するゾル
−ゲル法による石英ガラスの低温合成法において、90
0〜1300℃の温度域で20時間以上保持することに
より、石英ガラスの含水率を減少させ、高温域での機械
的強度を強くする効果を有する。
As described above, according to the present invention, there is provided a low-temperature synthesis method of quartz glass using at least alkyl silicate and ultrafine powder silica as raw materials, using a sol-gel method in which dry gel is sintered in a closed container made of a heat-resistant material with a dense structure. In, 90
Holding the glass in the temperature range of 0 to 1300°C for 20 hours or more has the effect of reducing the water content of the quartz glass and increasing its mechanical strength in the high temperature range.

平板を例に説明したが、チューブでもロンドでも同様の
効果が得られ、炉心管として利用できるなど、合成石英
の応用範囲を著しく拡大するものである。
Although the explanation was given using a flat plate as an example, the same effect can be obtained with a tube or a rond, and it can be used as a furnace tube, significantly expanding the range of applications of synthetic quartz.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は900〜1300℃の温度域で最適なプログラ
ムにより保持を行なった場合の、保持時間に対する含水
率の変化を示した図。 石英ガラス中の超微粉末シリカの割合で含水率が異なる
為、5例を示した、 1・・・50% 2・・・55チ 5・・・70% 第2図は12.5x I Z5xα12cIILの石英
ガラス板を1150℃の拡散炉内に5時間室てかけた時
の、含水率とフラットネスの関係を示す図。 以上 惺糟縛聞 〔し〕 第1図 古人ヤ(介〕 電つM
FIG. 1 is a diagram showing the change in moisture content with respect to holding time when holding is carried out using an optimal program in the temperature range of 900 to 1300°C. Since the moisture content varies depending on the proportion of ultrafine powdered silica in the quartz glass, five examples are shown: 1...50% 2...55chi 5...70% Figure 2 shows 12.5x I Z5xα12cIIL FIG. 3 is a diagram showing the relationship between moisture content and flatness when a quartz glass plate of 100 is placed in a diffusion furnace at 1150° C. for 5 hours. That's all for now.

Claims (1)

【特許請求の範囲】 1)少なくともアルキルシリケートおよび超微粉末シリ
カを原料とし、ドライゲルを緻密な構造の耐熱材による
閉容器中で焼結するゾル−ゲル法による石英ガラスの低
温合成法において、900〜1300℃の温度域で20
時間以上保持することを特徴とする石英ガラスの製造方
法。 2)保持する温度は単一温度ではなく何段かの温度に分
けるか、あるいは低速で徐々に昇温させることを特徴と
する特許請求の範囲第1項記載の石英ガラスの製造方法
[Scope of Claims] 1) A low-temperature synthesis method of quartz glass using at least an alkyl silicate and ultrafine powder silica as raw materials, using a sol-gel method in which a dry gel is sintered in a closed container made of a heat-resistant material with a dense structure. 20 in the temperature range of ~1300℃
A method for producing quartz glass characterized by holding it for a period of time or more. 2) The method for producing quartz glass according to claim 1, wherein the temperature to be maintained is not a single temperature but divided into several stages, or the temperature is gradually increased at a low rate.
JP1026085A 1985-01-23 1985-01-23 Production of quartz glass Pending JPS61168542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026085A JPS61168542A (en) 1985-01-23 1985-01-23 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026085A JPS61168542A (en) 1985-01-23 1985-01-23 Production of quartz glass

Publications (1)

Publication Number Publication Date
JPS61168542A true JPS61168542A (en) 1986-07-30

Family

ID=11745341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026085A Pending JPS61168542A (en) 1985-01-23 1985-01-23 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS61168542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354125A (en) * 1989-07-21 1991-03-08 Shinetsu Sekiei Kk Production of high-purity synthetic silica glass powder for producing crucible to pull silicon single crystal
US5114881A (en) * 1988-03-04 1992-05-19 Mitsubishi Kasei Corporation Process for producing a ceramic preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114881A (en) * 1988-03-04 1992-05-19 Mitsubishi Kasei Corporation Process for producing a ceramic preform
JPH0354125A (en) * 1989-07-21 1991-03-08 Shinetsu Sekiei Kk Production of high-purity synthetic silica glass powder for producing crucible to pull silicon single crystal

Similar Documents

Publication Publication Date Title
JPS61168542A (en) Production of quartz glass
JPS62105936A (en) Production of quartz glass
JPS64331B2 (en)
JPS62265130A (en) Production of silica glass
JPS61236618A (en) Production of quartz glass
JPS6191021A (en) Production of quartz glass
JPH0124735B2 (en)
JPH0114177B2 (en)
JPH0512290B2 (en)
JPS6191022A (en) Production of quartz glass
JPS63107821A (en) Production of glass
JPS6126522A (en) Production of quartz glass
JPS6330335A (en) Production of quartz glass
JPS63117917A (en) Production of glass
JPS6046937A (en) Manufacture of quartz glass
JPS62292624A (en) Production of glass
JPH025693B2 (en)
JPS61168539A (en) Production of quartz glass
JPS63190724A (en) Production of glass
JPH03137028A (en) Production of large-sized massive glass
JPS58199733A (en) Synthesis of lump silica glass at low temperature
JPS643814B2 (en)
JPH03174330A (en) Production of glass
JPS59107937A (en) Manufacture of quartz glass
JPS61201627A (en) Production of low oh glass