JPH03257029A - Production of quartz glass - Google Patents
Production of quartz glassInfo
- Publication number
- JPH03257029A JPH03257029A JP5514490A JP5514490A JPH03257029A JP H03257029 A JPH03257029 A JP H03257029A JP 5514490 A JP5514490 A JP 5514490A JP 5514490 A JP5514490 A JP 5514490A JP H03257029 A JPH03257029 A JP H03257029A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- sol
- alkoxysilane
- hydrolysis
- quartz glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000003513 alkali Substances 0.000 claims abstract description 28
- 239000003054 catalyst Substances 0.000 claims abstract description 21
- 239000003377 acid catalyst Substances 0.000 claims abstract description 14
- 238000010304 firing Methods 0.000 claims description 20
- 238000001879 gelation Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 4
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 40
- 230000007062 hydrolysis Effects 0.000 abstract description 35
- 238000001035 drying Methods 0.000 abstract description 16
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 abstract description 10
- 238000005245 sintering Methods 0.000 abstract description 5
- 238000011282 treatment Methods 0.000 abstract description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 abstract description 3
- -1 alkoxy silane Chemical compound 0.000 abstract description 2
- 125000000217 alkyl group Chemical group 0.000 abstract description 2
- 238000002834 transmittance Methods 0.000 abstract description 2
- 229910000077 silane Inorganic materials 0.000 abstract 1
- 239000000499 gel Substances 0.000 description 70
- 239000011148 porous material Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 43
- 238000003980 solgel method Methods 0.000 description 22
- 238000009826 distribution Methods 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000010419 fine particle Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000005373 porous glass Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006068 polycondensation reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Landscapes
- Glass Melting And Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、透明な多孔質または無孔質の石英ガラスの製
造方法に関するものである。更に詳しく言えば、本発明
は、アルコキシシランを原料物質として、その加水分解
生成物であるゾルを重縮合させてゲルとしたのち、乾燥
、および焼結して透明な多孔質の石英ガラス、または、
無孔質の石英ガラスを製造する方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing transparent porous or non-porous quartz glass. More specifically, the present invention uses alkoxysilane as a raw material and polycondenses its hydrolysis product sol to form a gel, then dries and sinters it to produce transparent porous quartz glass or ,
The present invention relates to a method of manufacturing non-porous quartz glass.
[従来の技術]
近年、石英ガラスの低温合成法としてゾルゲル法が注目
されている。このゾルゲル法には、■溶融法に比べて非
常に低温(800〜1100℃)で製造できる、■出発
物質が液体で、精留操作により容易に高純度化すること
ができる、■ゲルの段階で各種の形状を付与することが
できる等の特徴がある。また、焼結工程に於ける当該ゲ
ルの焼結操作を適宜に制御することによって、種々の機
能性の付与が可能な多孔質体を製造することもできる。[Prior Art] In recent years, the sol-gel method has attracted attention as a low-temperature synthesis method for quartz glass. This sol-gel method includes: 1. It can be produced at a much lower temperature (800 to 1100°C) compared to the melting method; 2. The starting material is a liquid and can be easily purified to a high degree by rectification; and 2. The gel stage. It has features such as being able to give various shapes to it. Moreover, by appropriately controlling the sintering operation of the gel in the sintering process, it is possible to produce a porous body that can be endowed with various functionalities.
ゾルゲル法では、アルコキシシランS+ (OR) 4
を出発原料として用い、それを加水分解してゾルとした
後、重縮合させてゲルとし、次いで、乾燥、焼結して目
的とする石英ガラスが製造される。最も簡単なゾルゲル
法では、アルコキシシランの加水分解触媒として、酸、
またはアルカリが単独で使用される。In the sol-gel method, alkoxysilane S+ (OR) 4
is used as a starting material, which is hydrolyzed to form a sol, then polycondensed to form a gel, and then dried and sintered to produce the desired quartz glass. In the simplest sol-gel method, acids,
Or alkali is used alone.
石英ガラスをゾルゲル法で製造する際の最も重要な技術
的課題は、乾燥工程、$よび、焼結工程で発生する割れ
を防止し、製品石英ガラスの収率(歩留り)を同上させ
ることである。加水分解触媒として酸触媒を単独で用い
る(以下酸触媒法という)と、加水分解生成物である珪
酸Sl (DH) 4 は該条件下で重縮合反応がそ
れほど進行しないため、ゾル中では高々四量体程度の低
分子のままで存在し、該ゾルのゲル化によって生じるゲ
ルは全体が均一で強固なものとなる。ここに得られたゲ
ルは、乾燥収縮時に割れを生じ難いという特徴を有して
いるが、ゲル内部の細孔が小さい(平均直径2nm程度
以下)ため、焼結時に生成する水の放散速度が遅く、焼
成時に割れ易い欠点を有している。The most important technical issue when manufacturing quartz glass using the sol-gel method is to prevent cracks that occur during the drying, heating, and sintering processes, and to increase the yield of the product quartz glass. . When an acid catalyst is used alone as a hydrolysis catalyst (hereinafter referred to as the acid catalyst method), the polycondensation reaction of the hydrolysis product silicic acid Sl (DH) 4 does not proceed much under these conditions, so at most four The sol exists as a low molecular weight substance, and the gel produced by gelation of the sol becomes homogeneous and strong as a whole. The gel obtained here has the characteristic that it does not easily crack during drying shrinkage, but because the pores inside the gel are small (average diameter of about 2 nm or less), the dissipation rate of water generated during sintering is slow. It has the disadvantage of being slow and prone to cracking during firing.
加水分解触媒としてアルカリ触媒を単独で用いる(以下
アルカリ触媒法という)と、加水分解と同時に生成物で
ある珪酸の重縮合反応が平行して進行する。従って、加
水分解反応系のアルコキシシラン濃度が高濃度の場合に
は、ゾル全体のゲル化が生じる。しかし、低濃度の場合
にはシルカ微粒子が個々の球状シリカ粒子として成長し
て分散系となりゲル化しない。When an alkali catalyst is used alone as a hydrolysis catalyst (hereinafter referred to as an alkali catalyst method), the polycondensation reaction of the silicic acid product proceeds in parallel with the hydrolysis. Therefore, when the alkoxysilane concentration in the hydrolysis reaction system is high, gelation of the entire sol occurs. However, when the concentration is low, the silica fine particles grow as individual spherical silica particles, forming a dispersed system and not gelling.
通常ゾルゲル法に於いてアルカリ触媒法と称する場合は
、アルコキシシランの加水分解条件を反応系のアルコキ
シシラン濃度を高濃度に設定したことを意味する。ただ
しこの場合でも、ゾルを構成する粒子は酸触媒法に比べ
て大きな球状微粒子に成長するため、生成したゲルはこ
れらの粒子が互いに弱(結合したものとなる。When the sol-gel method is usually referred to as an alkali catalyst method, it means that the hydrolysis conditions for alkoxysilane are set such that the alkoxysilane concentration in the reaction system is high. However, even in this case, the particles constituting the sol grow into larger spherical fine particles than in the acid catalyst method, so the resulting gel is one in which these particles are weakly bonded to each other.
従って、このゲルは、個々の粒子が大きい分だけ細孔が
相対的に大きく (直径10nm前後のものを多く含む
)なり、焼成時には割れ難くなるが、乾燥収縮時に割れ
易いという欠点を持つ。Therefore, this gel has relatively large pores (including many with a diameter of around 10 nm) corresponding to the large individual particles, making it difficult to crack during firing, but has the disadvantage of being susceptible to cracking during drying and shrinkage.
上述したように、酸触媒法にも、また、アルカリ触媒法
にも、各々、乾燥時、或は焼成時に割れを生じて製品石
英ガラスの歩留りが低下するという重大な欠点・問題点
がある。 この問題点を解決する一つの試みとして、酸
触媒でアルコキシシランを完全に加水分解した後にアル
カリを加えて、系のpH値を4〜6に調節して重縮合反
応を促進させるという、二段階のゾルゲル法(以下二段
階ゾルゲル法という)が提案されている(例えば、特公
平1−24734)。この二段階ゾルゲル法では、ゲル
の収縮が促進されて強面なゲルが形成されるため、酸触
媒法に比べて乾燥時の歩留りが向上し、大型のゲルが得
られる。しかし、焼成時(無孔化時)の割れ防止に対し
ては顕著な改善効果を得ることができず、なお、不満足
なものである。As mentioned above, both the acid catalyst method and the alkali catalyst method each have serious drawbacks and problems in that cracks occur during drying or firing and the yield of product quartz glass decreases. One attempt to solve this problem has been made in a two-step process, in which the alkoxysilane is completely hydrolyzed with an acid catalyst, and then an alkali is added to adjust the pH value of the system to 4 to 6 to accelerate the polycondensation reaction. A sol-gel method (hereinafter referred to as a two-step sol-gel method) has been proposed (for example, Japanese Patent Publication No. 1-24734). In this two-step sol-gel method, shrinkage of the gel is promoted to form a strong gel, so compared to the acid catalyst method, the yield during drying is improved and a large gel can be obtained. However, it is not possible to obtain a significant improvement effect in preventing cracking during firing (during non-porous formation), and it is still unsatisfactory.
他の試みとして、低重合度の珪酸のみを含む酸加水分解
法によるゾルと別途に合成・製造したシリカの微粒子と
を混合した混合ゾルを用いるゾルゲル法(以下混合ゾル
ゲル法という、例えば、特公平1−23420、特公昭
64−3811、特公昭64−3812)が提案されて
いる。As another attempt, a sol-gel method (hereinafter referred to as mixed sol-gel method, for example, 1-23420, Japanese Patent Publication No. 64-3811, Special Publication No. 64-3812) have been proposed.
混合ゾルゲル法には、CVD法等の気相法で得た粉体微
粒子を用いる方法(特公平1−2340)と液相で低濃
度のアルコキシシランをアルカリ触媒を用いて加水分解
して得た微粒子を含んだゾル(!I[粒子分散系)を用
いる方法(特公昭64−3811、特公昭64−381
2 )とが知られている。The mixed sol-gel method includes a method using fine powder particles obtained by a gas phase method such as the CVD method (Japanese Patent Publication No. 1-2340), and a method using powder particles obtained by using an alkali catalyst to hydrolyze a low concentration alkoxysilane in a liquid phase. Method using a sol containing fine particles (!I [particle dispersion system])
2) is known.
しかし、添加する微粒子として粉体を用いる方法は、粉
体の分散、特に、−次粒子までの分散が容易ではなく、
均質な混合ゾルを製造することは極めて困難であるため
、工業的な実施方法として最適であるとは言えない。ま
た、アルカリ加水分解法によるゾルを用いる方法には、
アルコキシシランを完全に加水分解して微粒子を製造す
るのに極めて長時間を要すること、および、微粒子の濃
度を高めるためにゾルの濃縮操作を行う必要があるなど
の問題点が残されている。However, in the method of using powder as the fine particles to be added, it is not easy to disperse the powder, especially down to the second particle.
Since it is extremely difficult to produce a homogeneous mixed sol, this method cannot be said to be optimal as an industrial implementation method. In addition, methods using sol by alkaline hydrolysis method include
Problems remain, such as that it takes an extremely long time to completely hydrolyze alkoxysilane to produce fine particles, and that it is necessary to perform a sol concentration operation to increase the concentration of fine particles.
しかし、これらの混合ゾルゲル法では、二段階ゾルゲル
法の欠点である焼成(無孔化)時の割れを微粒子の添加
による細孔径の増大によって解決しており、また、その
長所である乾燥時の歩留りの高さも保持しているため、
より大型の石英ガラスの製造も可能である。However, in these mixed sol-gel methods, the drawback of the two-step sol-gel method, cracking during firing (making it non-porous), is solved by increasing the pore diameter by adding fine particles, and the advantage is that the cracking during drying is solved. Because it maintains a high yield,
It is also possible to manufacture larger quartz glasses.
既に詳述したように、ゾルゲル法で大型石英ガラスを歩
留りよく作製するためには、ゲルの強度を高めて乾燥時
の収縮による割れを防止すると共にゲルの細孔径をより
大きくして焼成(無孔化)時の割れを防止するといった
二律背反の条件を同時に満足する必要がある。As already detailed, in order to produce large quartz glass with a good yield using the sol-gel method, it is necessary to increase the strength of the gel to prevent cracking due to shrinkage during drying, and to increase the pore diameter of the gel and to perform firing (no firing). It is necessary to simultaneously satisfy the contradictory conditions of preventing cracking during pore formation.
混合ゾルゲル法はこれらの条件を満足しているが、微粒
子として比較的大きなく直径数十nm)ものを混合して
いたため、多孔質ガラスの段階では光を散乱し、一般に
白色不透明である。このため、ゲルの透光性を利用して
機能付与を行うことや、透光性そのものを応用した機能
性部材としてゲルを実用化することが難しいという用途
面での制約を有している。なお、透光性の点では二段階
ゾルゲル法が優れているが、前述のように大きな石英ガ
ラスを歩留り良く製造できないと言う重大な欠点を有し
ている。The mixed sol-gel method satisfies these conditions, but because it contains relatively large fine particles (several tens of nanometers in diameter), it scatters light at the porous glass stage and is generally white and opaque. For this reason, it is difficult to use the gel's translucency to impart functions, or to put the gel into practical use as a functional member by applying its translucency itself, which is a limitation in terms of use. Although the two-step sol-gel method is superior in terms of light transmittance, it has the serious drawback of not being able to manufacture large quartz glass with a high yield as described above.
本発明者らは、ゾルゲル法で製造した石英多孔質ガラス
の透光性の利用について種々の研究実験を実施して、例
えば、多孔質ガラスの細孔に光重合性のモノマーを含浸
し、フォトマスクを通した紫外線露光によって位置選択
的にモノマーを重合させ細孔を閉塞した後、屈折率差を
与える物質を未閉塞部分に導入、固定して、光導波路を
作製する方法(特願平1−78301)を完成させたが
、この場合にも多孔質ガラスが紫外領域で透明であるこ
とが必須の条件である。混合ゾルゲル法で製造した多孔
質ガラスのように不透明なゲルでは、ゲルの表面付近の
モノマーしか重合しないため、均一に、任意に細孔を閉
塞させることができない。そのため、この微細加工技術
は全く使えず、その応用範囲は狭いものにならざるを得
なかった。The present inventors have conducted various research experiments on the utilization of the translucency of porous quartz glass manufactured by the sol-gel method. A method of fabricating an optical waveguide by position-selectively polymerizing monomers by exposing them to ultraviolet light through a mask to close the pores, and then introducing and fixing a substance that provides a refractive index difference into the unblocked portions (Patent Application No. 1999). -78301), but in this case as well, it is an essential condition that the porous glass be transparent in the ultraviolet region. In opaque gels such as porous glass produced by the mixed sol-gel method, only the monomers near the surface of the gel are polymerized, so it is not possible to uniformly and arbitrarily close the pores. Therefore, this microfabrication technology could not be used at all, and its range of applications had to be limited.
また、多孔質ガラスの細孔分布を任意に制御できる手法
は、上記のような光学的な応用のみならず、各種の触媒
、或は、固定化酵素の担体への応用を考えた時に非常に
重要であるが、これまでのゾルゲル法ではこの細孔分布
の制御は一般に困難であった。In addition, a method that can arbitrarily control the pore distribution of porous glass is extremely useful not only for optical applications as described above, but also for applications as supports for various catalysts or immobilized enzymes. Although important, it has generally been difficult to control this pore distribution using conventional sol-gel methods.
[発明が解決しようとする問題点]
本発明の目的は、従来技術の有する前記問題点を解決し
て、透光性に優れた大型の透明なゲル・石英ガラスを歩
留り良く製造する方法を提供することにある。更に、簡
便な手法で多孔質ガラスの細孔分布を制御する手法にも
関連するものである。[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned problems of the prior art and provide a method for manufacturing large-sized transparent gel/quartz glass with excellent translucency with a high yield. It's about doing. Furthermore, the present invention relates to a method for controlling the pore distribution of porous glass using a simple method.
本発明者らは、ゾルゲル法の保有している優れた特徴を
損なうことなく、その欠点を改良・改善して簡便な方法
で透光性に優れた大型の透明な多孔質ガラス、或は、石
英ガラスを歩留り良く製造することを目的として種々の
実験検討を行った結果、酸触媒法で得られたゲルの細孔
分布とアルカリ触媒法で得られたゲルの細孔分布との中
間の細孔分布を有するゲルが、透明で、しかも乾燥工程
、および、゛焼成(無孔化)工程で割れを生じ難いとの
知見を得て、更に鋭意検討を行い本発明を完成させた。The present inventors have developed a large transparent porous glass with excellent light transmission by a simple method by improving and ameliorating the drawbacks of the sol-gel method without impairing its excellent features, or As a result of various experimental studies aimed at producing quartz glass with good yield, we found that the pore distribution of gels obtained by acid catalyst method and gels obtained by alkali catalyst method are intermediate in pore distribution. After finding out that a gel with a pore distribution is transparent and less prone to cracking during the drying process and the firing (making it non-porous) process, the inventors conducted further intensive studies and completed the present invention.
[問題点を解決するための手段]
本発明は、アルコキシシランをアルカリ触媒により部分
的に加水分解する第1工程と、鉄液に酸触媒を加えて該
液中の未反応のアルコキシシランを加水分解する第2工
程と、該ゾルに再度アルカリを加えて該ゾルのゲル化を
促進する第3工程を経てゾルを製造し、該ゾルをゲル化
、乾燥させて紫外および可視光領域で透明なゲルを製造
し、該ゲルを焼成する工程によって、多孔質または無孔
質の石英ガラスを得ることを特徴とする石英ガラスの製
造方法に関する。[Means for solving the problems] The present invention includes a first step of partially hydrolyzing alkoxysilane with an alkali catalyst, and a step of adding an acid catalyst to an iron solution to hydrolyze unreacted alkoxysilane in the solution. A sol is produced through a second step of decomposition and a third step of adding alkali to the sol again to promote gelation of the sol.The sol is then gelled and dried to become transparent in the ultraviolet and visible light regions. The present invention relates to a method for producing quartz glass, characterized in that porous or non-porous quartz glass is obtained through the steps of producing a gel and firing the gel.
本発明に於いて、アルコキシシランとは、般式5l(O
R)4 (但し、Rは低級アルキル基を意味する〕で表
される低級アルコキシシランを意味し、更に具体的に言
えば、例えば、テトラメトキシシランSl (OCH3
) a、テトラエトキシシランSL (OC2H3)−
等を意味する。In the present invention, alkoxysilane is defined by the general formula 5l(O
R)4 (wherein, R means a lower alkyl group) means a lower alkoxysilane represented by the following formula, and more specifically, for example, tetramethoxysilane Sl (OCH3
) a, Tetraethoxysilane SL (OC2H3)-
etc.
第1工程のアルコキシシランのアルカリ触媒による加水
分解工程では、アルコキシシランの加水分解率が重要で
ある。それは加水分解率によって、本工程で生成する微
粒子の最終ゾル中での相互間隔が決定されるからである
。加水分解重が小さいと微粒子相互の間隔が長くなりす
ぎ、酸触媒法で製造したゲルと同じ性質のゲルとなり、
本発明の効果を期待することができない。逆に、アルコ
キシシランの加水分解が完結してしまうと、実質的にア
ルカリ触媒法で製造したゲルと同じ性質のゲルとなるた
め、同様に本発明の効果を期待できない。従って、本発
明を実施する時、第1工程の効果が、生成するゲルに現
れる範囲に加水分解率を設定する必要がある。好ましい
範囲として、第1工程に於ける加水分解率を30〜90
%程度になるように制御してやれば、本発明の効果が十
分期待できる。In the first step of hydrolyzing alkoxysilane using an alkali catalyst, the hydrolysis rate of alkoxysilane is important. This is because the mutual spacing of the fine particles produced in this step in the final sol is determined by the hydrolysis rate. If the hydrolysis weight is small, the distance between the fine particles becomes too long, resulting in a gel with the same properties as the gel produced by the acid catalyst method.
Therefore, the effects of the present invention cannot be expected. On the other hand, once the hydrolysis of the alkoxysilane is completed, the gel will have substantially the same properties as the gel produced by the alkaline catalyst method, and therefore the effects of the present invention cannot be expected. Therefore, when carrying out the present invention, it is necessary to set the hydrolysis rate within a range where the effect of the first step appears in the gel produced. As a preferable range, the hydrolysis rate in the first step is 30 to 90.
%, the effects of the present invention can be fully expected.
第1工程に於けるアルコキシシランの加水分解率、およ
び、生成する微粒子の平均粒径は、原料アルコキシシラ
ンの水に対する濃度、アルカリ触媒の濃度、加水分解温
度、加水分解時間(ここでは第2工程の酸触媒による加
水分解を始するまでの時間)等を適切に選択して制御す
ることによって連続的に、任意に変化させることができ
る(第1図、第2図参照)。第1図に例示した実験結果
は、加水分解条件の適切な設定によって任意の細孔分布
、更に詳しく言えば、酸触媒法とアルカリ触媒法との中
間の細孔分布を有する石英ガラス(乾燥ゲル)を製造し
得ることを示している。また、第2図に例示した実験結
果は、加水分解時間の制御によって石英ガラス(乾燥ゲ
ル)の細孔体積、および、細孔表面積を制御し得ること
を示している。上述した制御条件のうち、加水分解時間
は、極めて容易に制御することが可能であるため、工業
的実施に於いて極めて有効な品質管理手段である。The hydrolysis rate of the alkoxysilane in the first step and the average particle size of the fine particles produced are determined by the concentration of the raw material alkoxysilane in water, the concentration of the alkali catalyst, the hydrolysis temperature, and the hydrolysis time (here, in the second step). By appropriately selecting and controlling the time required to start hydrolysis using an acid catalyst, etc., it is possible to continuously change the amount of water as desired (see FIGS. 1 and 2). The experimental results illustrated in Figure 1 show that by appropriately setting the hydrolysis conditions, silica glass (dry gel ) can be produced. Furthermore, the experimental results illustrated in FIG. 2 show that the pore volume and pore surface area of quartz glass (dry gel) can be controlled by controlling the hydrolysis time. Among the above-mentioned control conditions, the hydrolysis time can be controlled extremely easily and is therefore an extremely effective quality control means in industrial practice.
また、アルコキシシランの濃度とアルカリ触媒の濃度、
および、加水分解温度の設定によってもアルコキシシラ
ンの加水分解反応速度と加水分解反応生成物である珪酸
の重縮合反応速度が決まる。これらの加水分解反応条件
の設定を誤ると、反応の制御が不能となって、反応混合
物、即ち、ゾル全体がゲル化してしまう恐れがある。従
って、操作が容易な程度に長いゲル化時間を与えるよう
に各濃度と温度を設定して第1工程を実施することが必
要である。さらに、アルコキシシランの濃度が低いとゾ
ルの濃度も低くなり、乾燥時の収縮と変形が増加するた
め、この濃度を適当な範囲に設定することも実際のゲル
作製では注意を要する。最終的なゾル濃度は、第1工程
だけでなく、第2工程、および、第3工程で添加する水
の量によって決定されるが、最終的に添加する水の全モ
ル数に対する原料アルコキシドのモル数の比、[H2O
3/ [アルコキシド]として、20以下、より好まし
くは、4以上10以下の範囲になるように各工程での水
の添加量を決定すればよい。In addition, the concentration of alkoxysilane and the concentration of alkali catalyst,
The hydrolysis reaction rate of alkoxysilane and the polycondensation reaction rate of silicic acid, which is a hydrolysis reaction product, are also determined by the setting of the hydrolysis temperature. If these hydrolysis reaction conditions are incorrectly set, the reaction may become uncontrollable and the reaction mixture, ie, the entire sol, may turn into a gel. Therefore, it is necessary to carry out the first step by setting each concentration and temperature so as to provide a long gelation time to the extent that the operation is easy. Furthermore, if the concentration of alkoxysilane is low, the concentration of the sol will also be low, leading to increased shrinkage and deformation during drying, so care must be taken in setting this concentration within an appropriate range in actual gel production. The final sol concentration is determined by the amount of water added not only in the first step but also in the second and third steps. Ratio of numbers, [H2O
3/ The amount of water added in each step may be determined so that [alkoxide] is in the range of 20 or less, more preferably 4 or more and 10 or less.
次いで、酸触媒を添加して、第1工程で残存しているア
ルコキシシランを酸性条件下で加水分解させることを目
的とする第2工程に移行させる。第2工程の酸触媒によ
る加水分解操作は、第1工程で得られた反応混合物、即
ち、ゾルに所定量の酸溶液を単に添加するだけで、極め
て容易に実施することができる。本工程では酸の量と濃
度が重要となる。添加する酸水溶液の量は、第1工程の
所で述べた事を考慮して、最終ゾルの濃度が適当な範囲
に入るように設定する必要がある。また、酸の濃度は、
反応生成物、即ち、ゾルを酸性、より具体的に言えば、
pH値で2以下の酸性にするために必要な濃度であれば
よい。酸の添加量が少ない時には高濃度に設定する必要
があるが、あまり高濃度であると局所的なゲル化などが
生じるた袷、通常はIN程度以下の酸が適当である。Next, an acid catalyst is added to proceed to the second step, the purpose of which is to hydrolyze the alkoxysilane remaining in the first step under acidic conditions. The acid-catalyzed hydrolysis operation in the second step can be carried out very easily by simply adding a predetermined amount of acid solution to the reaction mixture, ie, the sol, obtained in the first step. In this step, the amount and concentration of acid are important. The amount of the acid aqueous solution to be added needs to be set so that the concentration of the final sol falls within an appropriate range, taking into account what was stated in the first step. Also, the concentration of acid is
The reaction product, i.e. the sol, is acidic, more specifically,
The concentration may be as long as it is necessary to make it acidic with a pH value of 2 or less. When the amount of acid added is small, it is necessary to set the concentration to be high, but if the concentration is too high, local gelation may occur, so an acid of about IN or less is usually appropriate.
また、この第2工程で生成するゾルは長時間にわたり安
定でゲル化しないため、この工程の終了後もさらにゾル
を放置することが可能である。このため、第2工程と、
第3工程との間隔は、完全加水分解に必要な時間以上で
あれば任意である。Further, since the sol produced in this second step is stable for a long time and does not gel, it is possible to leave the sol still after this step is completed. For this reason, the second step
The interval with the third step is arbitrary as long as it is longer than the time required for complete hydrolysis.
次いで、再びアルカリ触媒を添加して、ゾル全体のゲル
化とゲルの収縮とを促進させる第3工程に移行させる。Next, the alkali catalyst is added again to promote gelation of the entire sol and shrinkage of the gel, which is the third step.
第2工程を終えた反応生成物にアルカリ触媒を添加する
と、水酸化物イオン(DH−)の触媒作用によってゲル
化が促進されるが、ゲル化の促進効果はゾルのpH値が
3以上の時に認められ、pH値の増大と共にゲル化に要
する時間は短くなる。従って、ゾルを容器に注ぐために
必要な時間も考慮して最終ゾルのpH値を決定する必要
があり、好ましい範囲を例示すれば、pH4〜5が挙げ
られる。このpH範囲に設定するためのアルカリ添加量
は、第1工程、及び、第2工程の場合と同様に、最終ゾ
ル濃度の要請により決まる。高濃度のアルカリを用いれ
ば少量の添加で済むが、高濃度のアルカリを急速に添加
すると、局所的なゲル化等の好ましくない現象が生じる
ため注意を要する。アルカリの濃度は用いるアルカリの
種類によっても最適な値は変化し得るが、よく用いられ
る塩基であるアンモニア水の場合であれば、0.1〜I
Nが好ましい範囲として挙げられる。When an alkali catalyst is added to the reaction product after the second step, gelation is promoted by the catalytic action of hydroxide ions (DH-). It is sometimes observed that the time required for gelation decreases with increasing pH value. Therefore, it is necessary to determine the pH value of the final sol by taking into consideration the time required to pour the sol into a container, and a preferable range is, for example, pH 4 to 5. The amount of alkali added to set this pH range is determined by the final sol concentration as in the first and second steps. If a high concentration of alkali is used, only a small amount is required to be added, but care must be taken because if a high concentration of alkali is rapidly added, undesirable phenomena such as local gelation will occur. The optimal concentration of alkali may vary depending on the type of alkali used, but in the case of aqueous ammonia, which is a commonly used base, it is 0.1 to I
N is mentioned as a preferable range.
ここに得られたゾルは、公知の方法に従って任意の形状
の容器に注いでゲル化させた後、乾燥させて乾燥ゲルと
し、次いで、焼成することによって、容易に無孔質の石
英ガラス、或は、多孔質の石英ガラスとなる(第3図参
照)。第3図に例示した実験結果から、本発明の方法に
よって製造されたゾルをゲル化、乾燥゛させて得た乾燥
ゲルが、その焼成温度を適宜に制御することによって、
任意の細孔体積、細孔表面積を有する透明な多孔質ガラ
スになることが分かる。The sol obtained here can be poured into a container of any shape to gel according to a known method, dried to form a dry gel, and then fired to easily form non-porous quartz glass or becomes porous quartz glass (see Figure 3). From the experimental results illustrated in FIG. 3, it is clear that the dry gel obtained by gelling and drying the sol produced by the method of the present invention can be obtained by appropriately controlling the firing temperature.
It can be seen that transparent porous glass having arbitrary pore volume and pore surface area can be obtained.
このような制御性は、多孔質石英ガラスを既に述べたよ
うな機能性材料として利用する上で極めて有用であると
言える。Such controllability can be said to be extremely useful when using porous quartz glass as a functional material as described above.
[作用]
第1工程のアルカリ加水分解終了時には、未反応のアル
コキシシランとシリカ微粒子の混合物が得られ、第2工
程の酸添加過程で未反応のアルコキシシランが酸性条件
下での加水分解を起こす。即ち、第2工程終了時にはあ
る程度粒成長したシリカと珪酸の低重合物の混合ゾルが
得られる。第3工程のアルカリ添加によってこのゾルの
ゲル化が促進される。このように三段階で製造したゾル
のゲル化で生じるゲルは、アルコキシシランを酸、或は
アルカリ単独で加水分解したものの中間の細孔構造を持
つため、両者の長所である乾燥収縮時、無孔化時の歩留
りの高さを保持するものであるとともに、紫外および可
視光領域で透明となる。[Effect] At the end of the alkaline hydrolysis in the first step, a mixture of unreacted alkoxysilane and silica particles is obtained, and in the acid addition process of the second step, the unreacted alkoxysilane undergoes hydrolysis under acidic conditions. . That is, at the end of the second step, a mixed sol of a low polymer of silica and silicic acid with grain growth to some extent is obtained. The gelation of this sol is promoted by the addition of alkali in the third step. The gel produced by the gelation of the sol produced in this three-step process has a pore structure intermediate to that of alkoxysilane hydrolyzed with acid or alkali alone, so it is free from drying shrinkage, which is the advantage of both. It maintains a high yield when forming pores, and is transparent in the ultraviolet and visible light regions.
[実施例] 以下、本発明を実施例と比較例により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples.
実施例1
テトラメトキシシラン300Cm’ とメタノール15
0cm3 の混合液に、0.01Nアンモニア水溶液
150Cm3 を加え、0℃で1時間攪拌した。この
第1段階のゾルに於けるテトラメトキシシランの加水分
解率(ガスクロマトグラフによる)は37%であった。Example 1 Tetramethoxysilane 300Cm' and methanol 15
150 Cm3 of a 0.01N ammonia aqueous solution was added to 0 cm3 of the mixed liquid, and the mixture was stirred at 0°C for 1 hour. The hydrolysis rate of tetramethoxysilane in this first stage sol (as measured by gas chromatography) was 37%.
さらに、このゾルに0.05N塩酸水溶液150Cm3
を加え、0℃で1時間攪拌して加水分解を終了させて第
2段階のゾルとし、0゜5Nアンモニア水溶液11.5
cm3 を加えてpHを4.5に調節した第3段階の
ゾルを作製した。Furthermore, 150 Cm3 of 0.05N hydrochloric acid aqueous solution was added to this sol.
was added and stirred at 0°C for 1 hour to complete the hydrolysis to obtain a second-stage sol.
A third stage sol was prepared by adding cm3 and adjusting the pH to 4.5.
このゾルを底面34mm X64mmの複数の容器に注
ぎ、開口率3%の蓋をしてゲル化させた後、恒温恒湿器
中で最初40℃、80%RHの条件から、全体で15日
をかけて、40℃、20%RHの条件に移行させて乾燥
し、乾燥ゲルを得た。このゲルは、可視、紫外域で透明
性の高いものであった。得られた乾燥ゲルの比表面積と
細孔体積を、N2吸着法で測定したところ、各々、68
0m”/gと0.40Cm3/gであった。なお、乾燥
過程で割れやヒビを生じた試料は皆無であった。This sol was poured into multiple containers with a bottom surface of 34 mm x 64 mm, covered with lids with an open area ratio of 3%, and allowed to gel. The sol was then placed in a constant temperature and humidity chamber at 40°C and 80% RH for a total of 15 days. The gel was then dried under the conditions of 40° C. and 20% RH to obtain a dry gel. This gel was highly transparent in the visible and ultraviolet regions. When the specific surface area and pore volume of the obtained dry gel were measured by N2 adsorption method, they were 68.
0 m''/g and 0.40 Cm3/g. Note that none of the samples developed cracks or cracks during the drying process.
この乾燥ゲルを電気炉で100℃/hの昇温速度で昇温
させながら焼成したところ950℃(無孔化温度)で無
孔質の石英ガラスとなった。乾燥ゲルの焼成温度と、焼
成された石英ガラスの比表面積、および、細孔体積との
関係を測定して第3図に示す結果を得た。なお、焼成過
程で割れやヒビを生じた試料は皆無であった。When this dried gel was fired in an electric furnace while increasing the temperature at a rate of 100° C./h, it became non-porous quartz glass at 950° C. (non-porous temperature). The relationship between the firing temperature of the dried gel, the specific surface area of the fired silica glass, and the pore volume was measured, and the results shown in FIG. 3 were obtained. Note that none of the samples developed cracks or cracks during the firing process.
実施例2
テトラメトキシシラン300cm’ とメタノール15
0cm3の混合液に、0.01Nアンモニア水溶液60
0cm3を加え、0℃で20分間攪拌した。この第1段
階のゾルに於けるテトラメトキシシランの加水分解率は
77%であった。さらに、このゾルに0.5N塩酸水溶
液20C1llI3を加え、0℃で30分間攪拌して加
水分解を終了させて第2段階のゾルとし、0.15Nア
ンモニア水溶液46.5cm3を加えてpHを4.3に
調節した第3段階のゾルを作製した。Example 2 300 cm' of tetramethoxysilane and 15 methanol
Add 60% of 0.01N ammonia aqueous solution to 0cm3 of the mixed solution.
0 cm3 was added and stirred at 0°C for 20 minutes. The hydrolysis rate of tetramethoxysilane in this first stage sol was 77%. Furthermore, 20C1llI3 of 0.5N aqueous hydrochloric acid solution was added to this sol and stirred at 0°C for 30 minutes to complete the hydrolysis to obtain the second stage sol, and 46.5cm3 of 0.15N ammonia aqueous solution was added to adjust the pH to 4. A third stage sol was prepared in which the concentration was adjusted to 3.
このゾルを用いて、実施例1と全く同様に処理して乾燥
ゲルを作製した。得られた乾燥ゲルの細孔分布を測定し
くN2吸着法)、第1図の結果を得た。比表面積と細孔
体積は各々、710m2/gと0.54cm3/gであ
った。なお、乾燥工程で割れやヒビを生じた試料は皆無
であった。Using this sol, a dry gel was prepared in exactly the same manner as in Example 1. The pore distribution of the dried gel obtained was measured (N2 adsorption method) and the results shown in FIG. 1 were obtained. The specific surface area and pore volume were 710 m2/g and 0.54 cm3/g, respectively. Note that none of the samples developed cracks or cracks during the drying process.
得られた乾燥ゲルを実施例1と同様にして焼成したとこ
ろ、1030℃(無孔化温度)で無孔質の石英ガラスと
なった。乾燥ゲルの焼成温度と、焼成された石英ガラス
の比表面積、および、細孔体積の関係を測定して第3図
に示す結果を得た。焼成過程で割れやヒビを生じた試料
は皆無であった。When the obtained dried gel was fired in the same manner as in Example 1, it became non-porous quartz glass at 1030° C. (non-porous temperature). The relationship between the firing temperature of the dried gel, the specific surface area of the fired silica glass, and the pore volume was measured, and the results shown in FIG. 3 were obtained. None of the samples developed cracks or cracks during the firing process.
実施例3
実施例1に於いて、第1工程の反応(攪拌)時間を20
分とした以外は、全て実施例1と同様に処理して比表面
積700m2/g、細孔体積0.39cm’/gの乾燥
ゲルを得た。なお、第1段階に於ける加水分解率は23
%であった。Example 3 In Example 1, the reaction (stirring) time in the first step was 20
A dry gel having a specific surface area of 700 m2/g and a pore volume of 0.39 cm'/g was obtained by performing the same treatment as in Example 1, except that the gel was divided into 100% by weight. In addition, the hydrolysis rate in the first stage was 23
%Met.
また、第1工程の反応(攪拌)時間と細孔分布との関係
を第2図に示す。Moreover, the relationship between the reaction (stirring) time in the first step and the pore distribution is shown in FIG.
実施例4
実施例1に於いて、第1工程の反応(攪拌)時間を40
分間とした以外は、全て実施例1と同様に処理して比表
面積700m”/g、細孔体積は0、39cm3/gの
乾燥ゲルを得た。なお、第1段階に於ける加水分解率は
32%であった。Example 4 In Example 1, the reaction (stirring) time of the first step was 40
A dried gel with a specific surface area of 700 m"/g and a pore volume of 0.39 cm3/g was obtained by performing the same treatment as in Example 1, except that the hydrolysis rate in the first stage was 32%.
また、第1工程の反応(攪拌)時間と細孔分布の関係を
第2図に示す。Moreover, the relationship between the reaction (stirring) time and pore distribution in the first step is shown in FIG.
実施例5
実施例1に於いて、第1工程の反応(攪拌)時間を80
分間とした以外は、全て実施例1と同様に処理して、比
表面積670m2/g、細孔体積0、41cm’/gの
乾燥ゲルを得た。なお、第1段階に於ける加水分解率は
40%であった。Example 5 In Example 1, the reaction (stirring) time of the first step was 80
All treatments were carried out in the same manner as in Example 1, except that the gel was heated for 1 minute, to obtain a dry gel having a specific surface area of 670 m2/g, a pore volume of 0, and 41 cm'/g. Note that the hydrolysis rate in the first stage was 40%.
また、第1工程の反応(攪拌)時間と細孔分布との関係
を第2図に示す。Moreover, the relationship between the reaction (stirring) time in the first step and the pore distribution is shown in FIG.
実施例6
実施例1に於いて、第1工程の反応(攪拌)時間を12
0分間とした以外は、全て実施例1と同様に処理して比
表面積650m2/g、細孔体積0゜39c+n3/g
の乾燥ゲルを得た。なお、第1段階に於ける加水分解率
は43%であった。乾燥ゲルの細孔分布を測定し第1図
に示す結果を得た。Example 6 In Example 1, the reaction (stirring) time in the first step was 12
All treatments were performed in the same manner as in Example 1, except that the time was 0 minutes. Specific surface area was 650 m2/g, and pore volume was 0°39c+n3/g.
A dry gel was obtained. Note that the hydrolysis rate in the first stage was 43%. The pore distribution of the dried gel was measured and the results shown in FIG. 1 were obtained.
また、第1工程の反応(攪拌)時間と細孔分布との関係
を第2図に示す。Moreover, the relationship between the reaction (stirring) time in the first step and the pore distribution is shown in FIG.
比較例1 (二段階ゾルゲル法)
テトラメトキシシラン300cm3 とメタノール15
0cm3の混合液に、0.02N塩酸水溶液270cm
3を加え、0℃で60分間攪拌して加水分解を終了させ
てゾルとした。このゾルに0.5Nアンモニア水溶液1
2.7cm”を加えてpHを4.5に調節して、ゾルを
作製した。Comparative Example 1 (Two-step sol-gel method) Tetramethoxysilane 300cm3 and methanol 15
Add 270 cm of 0.02N hydrochloric acid aqueous solution to 0 cm3 of the mixed solution.
3 was added thereto, and the mixture was stirred at 0° C. for 60 minutes to complete hydrolysis and form a sol. Add 1 part of 0.5N ammonia aqueous solution to this sol.
A sol was prepared by adding 2.7 cm'' and adjusting the pH to 4.5.
このゾルを、実施例1と全く同様に処理して乾燥ゲルを
作製した。得られた乾燥ゲルの細孔分布を測定し、第1
図の結果を得た。乾燥ゲルの細孔表面積と細孔体積は、
各々、650m2/gと0、34cm3/gであった。This sol was treated in exactly the same manner as in Example 1 to produce a dry gel. The pore distribution of the obtained dry gel was measured, and the first
We obtained the results shown in the figure. The pore surface area and pore volume of the dry gel are
They were 650 m2/g and 0.34 cm3/g, respectively.
乾燥工程で割れやヒビを生じた試料は皆無であった。None of the samples developed cracks or cracks during the drying process.
得られた乾燥ゲルを実施例1と同様にして焼成したとこ
ろ880℃(無孔化温度)で無孔質の石英ガラスとなっ
た。焼成温度と焼成された石英ガラスの比表面積、およ
び、細孔体積との関係を測定して第3図に示す結果を得
た。なお、焼成工程、に於いて、試料の12%に割れが
生じた。When the obtained dried gel was fired in the same manner as in Example 1, it became non-porous quartz glass at 880° C. (non-porous temperature). The relationship between the firing temperature, the specific surface area of the fired silica glass, and the pore volume was measured, and the results shown in FIG. 3 were obtained. Note that cracks occurred in 12% of the samples during the firing process.
比較例2 (アルカリ触媒法)
テトラメトキシシラン300Cm3 とメタノール15
0Cm3の混合液に、0.01Nアンモニア水溶液15
0Cm3を加え、0℃で60分間攪拌してゾルとした。Comparative Example 2 (Alkali catalyst method) Tetramethoxysilane 300Cm3 and methanol 15
Add 15% of 0.01N ammonia aqueous solution to the 0cm3 mixture.
0 Cm3 was added and stirred at 0° C. for 60 minutes to form a sol.
このゾル(未加水分解のテトラメトキシシランを含む)
を、実施例1と全く同様に処理して乾燥ゲルを作製した
。乾燥途上に於いてゲルは小さな破片となり、一体ゲル
は得られなかった。This sol (contains unhydrolyzed tetramethoxysilane)
was treated in exactly the same manner as in Example 1 to prepare a dry gel. During the drying process, the gel broke into small pieces and no gel was obtained.
この乾燥ゲルの破片を用いて細孔分布を測定し、第1図
の結果を得た。比表面積と細孔体積は、各々、510m
2/g、 0.66cm3/gであった。The pore distribution was measured using pieces of this dried gel, and the results shown in FIG. 1 were obtained. The specific surface area and pore volume are each 510 m
2/g and 0.66 cm3/g.
乾燥ゲルの破片を実施例1と同様にして焼成したところ
1100℃(無孔化温度)で無孔質の石英ガラスとなっ
た。乾燥ゲルの焼成温度と焼成された石英ガラスの比表
面積、および、細孔体積との関係を測定して第3図に示
す結果を得た。When the pieces of the dried gel were fired in the same manner as in Example 1, they became non-porous quartz glass at 1100° C. (non-porous temperature). The relationship between the firing temperature of the dried gel, the specific surface area of the fired silica glass, and the pore volume was measured, and the results shown in FIG. 3 were obtained.
[発明の効果コ
三段階でゾルを製造することを特徴とする本発明を用い
れば、細孔がよく制御され、紫外および可視光領域で透
明な多孔質の石英ガラスおよび無孔質の石英ガラスを、
極めて簡便に短時間で、歩留りよく製造することが可能
である。[Effects of the Invention] By using the present invention, which is characterized by producing a sol in three steps, porous quartz glass and non-porous quartz glass with well-controlled pores and transparent in the ultraviolet and visible light regions can be produced. of,
It can be manufactured extremely easily, in a short period of time, and with a high yield.
得られる透明な多孔質石英ガラスは、例えば光の透過を
利用した機能性付与等に最適であり、オプトエレクトロ
ニクス分野等に於ける広範囲の応用が期待されるばかり
でなく、細孔の制御性を利用した各種触媒や酵素の担体
としても利用価値が高いものである。The resulting transparent porous silica glass is ideal for adding functionality using light transmission, for example, and is expected to have a wide range of applications in the optoelectronics field. It also has high utility value as a carrier for the various catalysts and enzymes used.
第1図は、アルコキシシランの加水分解の方法(反応条
件)と、乾燥ゲルの細孔分布との関係を示したものであ
る。
第2図は、第1段階の加水分解反応の反応時間に対する
、乾燥ゲルの比表面積および細孔体積を示したものであ
る。
第3図は、乾燥ゲルの焼成工程に於ける焼成温度に対す
る、焼成石英ガラスの比表面積および細孔体積を示した
ものである。
50 100
第一段階の加水分解時間(−in)
第2I2I
第1図FIG. 1 shows the relationship between the hydrolysis method (reaction conditions) of alkoxysilane and the pore distribution of the dried gel. FIG. 2 shows the specific surface area and pore volume of the dry gel with respect to the reaction time of the first-stage hydrolysis reaction. FIG. 3 shows the specific surface area and pore volume of fired quartz glass versus firing temperature in the dry gel firing process. 50 100 First stage hydrolysis time (-in) 2I2I Figure 1
Claims (1)
解する第1工程と、該液に酸触媒を加えて該液中の未反
応のアルコキシシランを加水分解する第2工程と、該ゾ
ルに再度アルカリを加えて該ゾルのゲル化を促進する第
3工程とを経てゾルを製造した後、該ゾルをゲル化、乾
燥させて紫外および可視光領域で透明なゲルを製造し、
次いで、該ゲルを焼成する工程によって、多孔質または
無孔質の石英ガラスを得ることを特徴とする石英ガラス
の製造方法。A first step of partially hydrolyzing alkoxysilane with an alkali catalyst, a second step of adding an acid catalyst to the liquid to hydrolyze unreacted alkoxysilane in the liquid, and adding an alkali to the sol again. After producing a sol through a third step of promoting gelation of the sol, the sol is gelled and dried to produce a gel transparent in the ultraviolet and visible light regions,
A method for producing quartz glass, characterized in that porous or non-porous quartz glass is obtained by a step of then firing the gel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5514490A JPH03257029A (en) | 1990-03-08 | 1990-03-08 | Production of quartz glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5514490A JPH03257029A (en) | 1990-03-08 | 1990-03-08 | Production of quartz glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03257029A true JPH03257029A (en) | 1991-11-15 |
Family
ID=12990576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5514490A Pending JPH03257029A (en) | 1990-03-08 | 1990-03-08 | Production of quartz glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03257029A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102815856A (en) * | 2012-08-31 | 2012-12-12 | 哈尔滨工业大学 | Method for preparing multihole glass material by using glass powder |
-
1990
- 1990-03-08 JP JP5514490A patent/JPH03257029A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102815856A (en) * | 2012-08-31 | 2012-12-12 | 哈尔滨工业大学 | Method for preparing multihole glass material by using glass powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1984002519A1 (en) | Process for producing quartz glass | |
CN115093197A (en) | Method for rapidly preparing silicon dioxide aerogel and composite product thereof at low cost | |
JPH038729A (en) | Production of porous glass | |
JPH03257029A (en) | Production of quartz glass | |
JPS64331B2 (en) | ||
KR20180113818A (en) | Method for preparing transparent silica hydrogel | |
JPH11147727A (en) | Production of silica glass | |
JPS59102833A (en) | Preparation of quartz glass | |
JPH0114177B2 (en) | ||
JPH03285833A (en) | Manufacture of porous glass | |
JPS6296339A (en) | Production of optical fiber preform | |
JPS60226418A (en) | Preparation of quartz glass mass | |
JPS5930730A (en) | Manufacture of quartz glass | |
JPS643812B2 (en) | ||
JPS6428243A (en) | Cerium-doped quartz glass and production thereof | |
JPH02199033A (en) | Production of optical glass | |
JPH01148766A (en) | Production of porous silica gel body | |
JPS58185442A (en) | Preparation of quartz glass | |
CN116750771A (en) | Preparation method and application of monodisperse hollow silica microspheres | |
JPS58208144A (en) | Method for synthesizing lump silica glass at low temperature | |
JPS6330330A (en) | Production of glass | |
JPS61236618A (en) | Production of quartz glass | |
JPS62278139A (en) | Production of optical fiber preform | |
JPS632820A (en) | Production of glass | |
JPS6330335A (en) | Production of quartz glass |