JPS5898186A - Aeration in treatment of night soil - Google Patents

Aeration in treatment of night soil

Info

Publication number
JPS5898186A
JPS5898186A JP56195874A JP19587481A JPS5898186A JP S5898186 A JPS5898186 A JP S5898186A JP 56195874 A JP56195874 A JP 56195874A JP 19587481 A JP19587481 A JP 19587481A JP S5898186 A JPS5898186 A JP S5898186A
Authority
JP
Japan
Prior art keywords
aeration
liquid
temperature
human waste
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56195874A
Other languages
Japanese (ja)
Other versions
JPH0227311B2 (en
Inventor
Tomoyuki Shibata
知之 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP56195874A priority Critical patent/JPS5898186A/en
Publication of JPS5898186A publication Critical patent/JPS5898186A/en
Publication of JPH0227311B2 publication Critical patent/JPH0227311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To accelerate the conversion of night soil into compost, by continuously operating an aerator through a controller with a signal from a detector to raise the temperature of night soil, and switching the aerator into intermittent operation during detecting the initial condition of propagating bacteria. CONSTITUTION:When an aerating cell 1 is filled with the liquid 2 of night soil, a pump 6 is driven by applying an electric current to a motor 7 to spray the liquid 2 through a nozzle in an ejector 5. Air inhaled through an air-introducing pipe 8 by vacuum pressure formed around the column of the sprayed liquid is injected together with the sprayed liquid into the liquid 2 through the ejector 5 to perform aeration. The temperature of the liquid 2 is gradually raised by heat dispatched from the motor 7 and the agitation heat of the liquid 2 derived from the continuous operation of the aerating apparatus, so that the liquid reaches the initial condition of propagation where bacteria begin to increase. Hence, a detector 3 detects it and feeds an electric signal to a controller 4. The motor 7 is intermittently operated by the output of the controller 4 to propagate bacteria while restricting the aerating air.

Description

【発明の詳細な説明】 本発明は家畜のし尿の生物化学処理1こよる堆肥化処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composting method based on biochemical treatment of livestock human waste.

従来、農業は化学肥料を用いられて行われるのが通常で
あるが、化学肥料だけでは地方が低下し、有機質の欠乏
した土壌に変って行くため、近時化学肥料に代えて有機
質肥料を施肥すべきことが推奨されて来ている。処が有
機質肥料は家畜ノ)牛、豚等のふん尿を元とするもので
あり、そのま\生肥で散布すると窒素分が強く流下して
河川、湖に流入して公害の元になり、又牧草に直接施肥
すると枯れてしまう。又牛から見ると牧草に苦味が残る
ものであり、人間から見ても臭気は耐え難いものである
。殊に硝化窒素化合物が生成されると牛の病気の原因と
もなる。
Traditionally, agriculture was usually carried out using chemical fertilizers, but chemical fertilizers alone degrade rural areas and lead to soils lacking in organic matter, so in recent years, organic fertilizers have been used instead of chemical fertilizers. Recommendations are being made about what to do. However, organic fertilizer is derived from the excreta of livestock such as cows and pigs, and if it is applied as raw manure, the nitrogen content will flow down strongly and flow into rivers and lakes, causing pollution. Also, if you apply fertilizer directly to grass, it will die. Also, from the cow's point of view, the grass has a bitter taste, and from the human's point of view, the odor is intolerable. In particular, the production of nitrified nitrogen compounds can cause diseases in cattle.

そこで家畜のふん尿を醗酵処理して堆肥化することが行
われている。
Therefore, livestock manure is fermented and turned into compost.

この家畜勺、ん尿の堆肥化処理には各種の提案がなされ
ているが一般に堆肥化処理として好気性菌による醗酵処
理が行われている。堆肥化を促進するものとして家畜6
、ん尿を固形物と液分に分は液(以下単に液と称する場
合がある)を賠気槽に収容し、空気を該曝気槽中の汚水
中に吹込んで好気性菌による堆肥化を行うことが広く行
われている処である。この好気性菌に酸素を与える方法
とし、て曝気槽中に曝気装置を備え、曝気槽中の液体を
ポンプで汲みあげてエゼクタに送り込み、エゼクタの空
気取入口より人気を取り入れ、曝気槽液体中に噴出させ
る方法か家畜し尿の処理では一般的である。
Various proposals have been made for composting livestock waste and manure, but fermentation using aerobic bacteria is generally used as composting. Livestock6 as a promoter of composting
The waste is divided into solids and liquid, and the liquid (hereinafter sometimes simply referred to as liquid) is stored in an aeration tank, and air is blown into the wastewater in the aeration tank to make it into compost using aerobic bacteria. It is a place where things are widely practiced. As a method of providing oxygen to this aerobic bacteria, an aeration device is installed in the aeration tank, and the liquid in the aeration tank is pumped up and sent to the ejector. This is a common method for treating livestock human waste.

従来、このような曝気装置による堆肥化は曝気槽にてl
O日位か\るがその間人力により曝気槽中のし尿の堆肥
化の状態を監視し乍ら処理している。このため曝気槽中
の液体の温度とかPHを測定しているがいわゆる多分に
感に頼って処理しているものである。連続して測定して
いないため醗酵過程の液温の上昇しないときに曝気によ
り酸素供給が過剰となりバクテリアを死なせてしまった
り、或は曝気が適度に行われないためバクテリアの繁殖
が遅く堆肥化醗酵が遅れ、処理日数が多くかぎり過ぎる
という問題点がある。
Conventionally, composting using such an aeration device was carried out in an aeration tank.
During this time, human waste is being processed manually while monitoring the composting status of the human waste in the aeration tank. For this reason, the temperature and pH of the liquid in the aeration tank are measured, but the process relies mostly on sense. Because measurements are not taken continuously, when the liquid temperature does not rise during the fermentation process, aeration may cause excess oxygen supply and kill the bacteria, or the aeration may not be carried out properly, resulting in slow bacterial growth and composting. There are problems in that fermentation is delayed and the number of processing days is too long.

本発明は家畜し尿等を曝気による好気性菌の作用で醗酵
堆肥化さぜる過程を適確に把握し、適度の酸素供給を与
えて、堆肥化過程を促進し、且つこれらの過程を自動化
することを目的とするものである。
The present invention accurately grasps the process of fermenting and composting livestock human waste through the action of aerobic bacteria through aeration, provides an appropriate supply of oxygen, accelerates the composting process, and automates these processes. The purpose is to

以下、本発明を図に基いて説明する。第1図(3) は横軸に曝気槽中に入れられた家畜等し尿の液分の紅過
日数を示す。縦軸には気温、曝気槽中の液温及びPHを
示すもので第一図は本発明のフローチャートである。第
一図は曝気槽/は一槽であるが曝気槽が分割されたもの
であっても好気性処理を行う限り途中の過程で被処理液
を移し変えるだけであるから同じである。
Hereinafter, the present invention will be explained based on the drawings. In Figure 1 (3), the horizontal axis shows the number of days for redness of the liquid of livestock human waste placed in the aeration tank. The vertical axis shows the air temperature, the liquid temperature in the aeration tank, and the pH, and FIG. 1 is a flowchart of the present invention. In Figure 1, the aeration tank is one tank, but even if the aeration tank is divided, it is the same because as long as aerobic treatment is performed, the liquid to be treated is simply transferred during the process.

本発明では曝気槽/の液λ中には検知器3を備え、検知
器3の信号は電気信号として制御装置グに送られる。制
御装置ダは例えばマイコンと増幅回路及び出力回路を備
えるものでその出力により曝気槽ダに備えるモータ7に
よりポンプ6が駆動されエゼクタSに送液する如くなっ
ており、エゼクタSは空気導入管ざを介して大気中tと
開口している。
In the present invention, a detector 3 is provided in the liquid λ of the aeration tank, and a signal from the detector 3 is sent to a control device as an electric signal. The control device includes, for example, a microcomputer, an amplifier circuit, and an output circuit, and its output drives a pump 6 by a motor 7 provided in the aeration tank to send liquid to an ejector S, and the ejector S is connected to an air introduction pipe. It opens to the atmosphere t through.

検知器3はし尿の堆肥化過程の要求酸素量の変化に関連
するし尿の指標をとらえるものであって温度計或はPH
計であり、第1図に示すように温度とPHとは密接な関
係がある。
Detector 3 detects indicators of human waste related to changes in the amount of oxygen required during the composting process, and is equipped with a thermometer or pH sensor.
As shown in Figure 1, there is a close relationship between temperature and pH.

最初に検知器3が液λの温度を検知する計器(’/’) である場合について説明する。Instrument where detector 3 first detects the temperature of liquid λ ('/') A case will be explained below.

曝気槽/に入れられた液の温度は、27℃であり、これ
は気温とほぼ一致するかわずかに高い。
The temperature of the liquid placed in the aeration tank/was 27° C., which is approximately equal to or slightly higher than the air temperature.

従って気温の低いときは液λの温度も当初は低い訳であ
る。液2が曝気槽/に満たされるとモータ7に通電され
、ポンプ6は駆動され、エゼクタS中のノズルよりポン
プ6より流出した液は噴射され、噴射液柱周囲lこ生ず
る真空圧により空気導入管ざより吸込まれた空気は該噴
射液lこ吸込まれてエゼクタSより液λ中に噴出して曝
気が行われる。
Therefore, when the air temperature is low, the temperature of the liquid λ is also initially low. When the aeration tank is filled with the liquid 2, the motor 7 is energized, the pump 6 is driven, and the liquid flowing out from the pump 6 is injected from the nozzle in the ejector S, and air is introduced by the vacuum pressure generated around the injected liquid column. The air sucked through the tube is sucked into the injection liquid λ and is ejected from the ejector S into the liquid λ to perform aeration.

曝気槽/に入れられたときの液コはバクテリアが繁殖し
ていない状態であり又、バクテリアが液中の有機成分を
吸着して雰囲気に適応するための準備期であり、又、バ
クテリアが繁殖するには適温でない。そこで曝気装置は
連続運転をしてモータフは放熱し、液λがポンプ乙に吸
込まれて、エゼクタSを介して曝気槽/中に放出され攪
拌される攪拌熱により液ユは昇温する。
When the liquid is placed in the aeration tank, it is in a state where bacteria are not proliferating, and the bacteria are in the preparation stage to adsorb organic components in the liquid and adapt to the atmosphere. It's not the right temperature for that. Therefore, the aeration device is operated continuously, the motor radiates heat, and the liquid λ is sucked into the pump B, discharged into the aeration tank through the ejector S, and the temperature of the liquid λ is increased by stirring heat.

これらの熱はバクテリアによる醗酵熱は未だ微々たるも
のであるからモータ7への入力と殆んど等しい。この初
期段階がすぎるとバクテリア量は液温上昇につれて増加
する。そうして酸素消費量もそれにつれて増大する。曝
気槽/は密閉槽であり、液温も低いから放熱量は少く、
液λは3θ℃位まではそのま\直線的に上昇する。
These heats are almost equal to the input to the motor 7 since the fermentation heat caused by the bacteria is still insignificant. After this initial stage, the amount of bacteria increases as the liquid temperature increases. Oxygen consumption also increases accordingly. The aeration tank is a closed tank and the liquid temperature is low, so the amount of heat released is small.
The liquid λ continues to rise linearly until it reaches about 3θ°C.

し尿の状態が第一の指標である30℃位に液温か近ずく
につれて液コ中には好気性のバクテリアの増殖の適温と
なり、バクテリアの増加率は増える。又、バクテリアに
よる醗酵熱の発生も次第に多くなる。しかし、バクテリ
ア増殖に適温となったとしても酸素消費量は多くはない
As the temperature of the human waste approaches the first indicator of 30°C, the temperature in the liquid becomes suitable for the growth of aerobic bacteria, and the rate of increase in bacteria increases. In addition, the generation of fermentation heat due to bacteria gradually increases. However, even if the temperature is suitable for bacterial growth, the amount of oxygen consumed is not large.

そこで検知器3が検知する信号により制御装置グが液温
か20〜30℃の何れかの温度になったことを判別し、
モータ7を間欠運転させ、曝気空気を制限する。この状
態ではバクテリアの増殖過程にある。そこでバクテリア
の必要とする酸素量以上を与えるとバクテリアが死滅し
てしまう。即ち、曝気装置は曝気期間の後半における酸
素消費に対して必要な能力としであるから曝気装置を連
続で運転すると過曝気となる。そこで制御装置グに予め
セットされているタイマーによりモータ7への通電を一
時間行い、次の7時間は断電し、再び起動して一時間運
転、7時間休止をする。この時間、間隔は例示のもので
過曝気によりバクテリアを死滅させない如く適度の酸素
供給が行われるように選ばれる。従ってこの断続運転は
モータ7への通電時間を一定とすると醗酵過程の経過に
より次第にモータ7への断・壇時間を短くするようにす
るのが好適である。
Then, based on the signal detected by the detector 3, the control device determines that the temperature has reached a temperature between 20 and 30°C, which is the temperature of the liquid.
The motor 7 is operated intermittently to limit aeration air. In this state, bacteria are in the process of multiplying. Therefore, if you give more oxygen than the bacteria need, the bacteria will die. That is, since the aeration device has the necessary capacity for oxygen consumption in the latter half of the aeration period, continuous operation of the aeration device will result in overaeration. Therefore, a timer preset in the control device energizes the motor 7 for one hour, then shuts off the power for the next seven hours, restarts it, runs for one hour, and rests for seven hours. These times and intervals are illustrative and are selected so that an appropriate amount of oxygen is supplied so as not to kill bacteria due to overaeration. Therefore, in this intermittent operation, it is preferable that if the time during which the motor 7 is energized is kept constant, the time during which the motor 7 is turned off and heated is gradually shortened as the fermentation process progresses.

約30℃位の液温からステップにて曝気を行うとバクテ
リアの増殖の速度は早くなり醗酵熱の発生も増大し液温
がlIo℃〜!rO℃に近ずくようになると次第に温度
上昇率も低下し、バクテリア増加率も低下する。必要に
よっては液温かし尿の状態を示す第二の指標のyo℃〜
SO℃になると検知器3の制御装置ケへ送られた信号に
より制御装置ダは連続してモータ7に通電され、曝気が
行われる。この段階では液コ中のバタテリ(ワ   ) アは増殖が著しく、バクテリア量は最大に達し自生呼吸
期に入るため要求酸素量も多いので曝気装置のioo%
の稼動を必要とするのである。
When aeration is performed in steps from a liquid temperature of about 30°C, the speed of bacterial growth increases, the generation of fermentation heat increases, and the liquid temperature reaches 10°C! As the temperature approaches rO°C, the rate of temperature increase gradually decreases, and the rate of increase in bacteria also decreases. If necessary, the second indicator indicating the state of liquid temperature and human urine is yo℃~
When the temperature reaches SO° C., a signal is sent to the control device of the detector 3, which causes the control device to continuously energize the motor 7 and perform aeration. At this stage, the bacteria in the liquid reactor is rapidly multiplying, the amount of bacteria has reached its maximum, and the period of spontaneous respiration has begun, so the amount of oxygen required is high, so the ioo% of the aeration equipment is increased.
This requires the operation of the

もしくはro℃以上になると有機物量も減少してくるの
で要求酸素量も少くして良いので断続運転しある温度で
一定に保持する。
Alternatively, since the amount of organic matter decreases when the temperature exceeds ro°C, the amount of oxygen required may also be reduced, so the temperature is maintained constant by intermittent operation.

次に検知器3が酸性度を検知する場合についてのべる。Next, the case where the detector 3 detects acidity will be described.

液コの酸性度と液温とは第1図に見るように密接な関係
にある。従ってPH計によっても曝気を制御できる訳で
ある。好気性醗酵によればし尿中の有機物にバクテリア
は酸化性に作用するから液コ中の酸性度を検知すること
により液コの堆肥化の過程を知ることができる。
As shown in Figure 1, there is a close relationship between the acidity of the liquid and the temperature of the liquid. Therefore, aeration can also be controlled using a PH meter. According to aerobic fermentation, bacteria act in an oxidative manner on the organic matter in human waste, so by detecting the acidity in liquid waste, it is possible to know the process of composting liquid waste.

そこで検知器3を酸性度を検知するPH針とする。Therefore, the detector 3 is a PH needle that detects acidity.

曝気槽/に投入された液λは曝気装置1こより曝気され
、攪拌による流体摩擦による発生熱とモータフの発生熱
により熱せられる。液コの当初は温度が低くてバクテリ
アが増殖するには不適当でありバクテリアと有機物の結
合の準備時(g) 間も必要である。曝気は液コの温度上昇のために当初材
われ、温度上昇と時間の経過によりバクテリアが増殖す
るとPHが最初1.1位であったものが最初は急激にそ
してPHff位に飽和するようにしてPHは上昇する。
The liquid λ put into the aeration tank/ is aerated by the aeration device 1 and heated by the heat generated by fluid friction due to stirring and the heat generated by the motor. At the beginning of the liquid, the temperature is too low for bacteria to grow, and a period of time (g) is necessary to prepare for the combination of bacteria and organic matter. Aeration was initially used to raise the temperature of the liquid, and as the temperature rose and bacteria multiplied over time, the pH, which was initially around 1.1, suddenly became saturated to around PHff. PH rises.

そこで検知器3より制御装置グへ送られる信号がPH&
よりわずかに少い酸性度に照応する値になると制御装置
グはモータ7への連続通電を止め、断続の通電に変える
。この断続の割合は温度で検知した場合と同じく、例え
ば一時間運転、7時間停止の如くである。第1図で示す
ように温度を検知して行う場合とPHを検知して行う場
合の液コの経過時間が異るのは温度で検知するようにこ
の過程は液λを昇温させたいがPHはgで酸性度が飽和
の状態を示すため、PHがそれより若干低い数値で検知
されるほうが簡単だからである。従ってPHで液コを検
知する場合PHJ’よりわずかに低い数値のPHを検知
してから制御装置弘に備えるタイマーでモータフの連続
運転を液温約30℃に相当する経過時間まで行いりイマ
ーの時間終了と共にモータ7を断続運転を行ってもよい
Therefore, the signal sent from the detector 3 to the control device is PH&
When a value corresponding to slightly less acidity is reached, the control device stops the continuous energization of the motor 7 and changes it to intermittent energization. The rate of interruption is the same as in the case of temperature detection, for example, one hour of operation and seven hours of suspension. As shown in Figure 1, the elapsed time of the liquid λ differs between when temperature is detected and when PH is detected. This is because PH indicates a state of saturated acidity in grams, so it is easier to detect pH at a slightly lower value. Therefore, when detecting liquid by PH, after detecting a pH value slightly lower than PHJ', the timer in the control device is used to continuously operate the motor until the elapsed time corresponds to the liquid temperature of approximately 30°C. The motor 7 may be operated intermittently at the end of the time period.

かくして、モータ7が断続運転して断続して曝気され液
コ中のバクテリアには適度の酸素供給が行われ、バクテ
リアは液コ中の有機物に作用して一定の酸性度を示すよ
うになるが、バクテリアは増殖を続けるので満3日目位
からは有機物分解に依るバクテリア以上に増殖をし有機
成分は減少しPHは大きくなり、満7日位でPHはr、
pの値で次の飽和状態を示す。そこでPHがざ、lIよ
り少し小さい数値になったときの検知器3からの信号を
制御装置グが受けると制御装置ダはモータ7を連続運転
する。即ちこの時点ではバクテリア量は最大に達してお
り、要求酸素量も増大しており最大値近くにある。もし
くはこの状態では有機質成分も分解されて減少するので
断続運転をすることによりPHは一定に保たれる。
In this way, the motor 7 operates intermittently and aerates intermittently, supplying the bacteria in the liquid with an appropriate amount of oxygen, and the bacteria act on the organic matter in the liquid to show a certain degree of acidity. As the bacteria continue to proliferate, from about the 3rd day onwards, they proliferate more than the bacteria that decompose organic matter, the organic components decrease, and the PH increases, and at about the 7th day, the PH becomes r,
The value of p indicates the next saturation state. Then, when the control device receives a signal from the detector 3 when the PH becomes a value slightly smaller than lI, the control device operates the motor 7 continuously. That is, at this point, the amount of bacteria has reached its maximum, and the amount of oxygen required has also increased and is close to its maximum value. Alternatively, in this state, the organic components are also decomposed and reduced, so the pH can be kept constant by performing intermittent operation.

かくして温度tIo℃〜SO℃又はPHg、ダの状態で
第1図に示すように三日間程度の一定期間経過すると液
λの腐熟は完了する。
Thus, the ripening of the liquid λ is completed after a certain period of about three days as shown in FIG.

以上のとおり、本発明はし尿の曝気過程において好気性
菌の増殖と有機物分解に関連して現象するし尿の温度又
は酸性度を検知して制御装置を介して好気性菌の増殖に
適度の酸素を供給することとしたから、過曝気によるバ
クテリアの死滅乃至増殖の抑制が防止され、曝気装置が
途中で断続運転されるので電力費が安くつく。
As described above, the present invention detects the temperature or acidity of human waste, which occurs in connection with the growth of aerobic bacteria and the decomposition of organic matter during the aeration process of human waste, and provides appropriate oxygen for the growth of aerobic bacteria through a control device. This prevents bacteria from being killed or inhibited from multiplying due to over-aeration, and the aeration equipment is operated intermittently during the process, reducing electricity costs.

又堆肥化の熟成が進んでバクテリアに酸素が必要なとき
の前過程で曝気装置を連続運転するような際に過曝気を
避けるため曝気装置を小さいものとして酸素不足を来す
というようなことがなく充分酸素を供給できること\な
る。
In addition, when the aeration equipment is operated continuously during the pre-processing process when composting has matured and bacteria need oxygen, the aeration equipment is made small to avoid over-aeration, which can lead to oxygen deficiency. This means that sufficient oxygen can be supplied without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はし尿の堆肥化醗酵過程における曝気槽内の液温
とPHの変化を示す線図、第2図は本発明の曝気方法を
示すフローチャートである。 l・・曝気槽 ツ、・・液 3・・検知器 ダ・・制御
装置 S・・エゼクタ 6・・ポンプ7・・モータ ざ
・・空気導入管。
FIG. 1 is a diagram showing changes in liquid temperature and pH in the aeration tank during the composting and fermentation process of human waste, and FIG. 2 is a flowchart showing the aeration method of the present invention. L...Aeration tank TS...Liquid 3...Detector D...Control device S...Ejector 6...Pump 7...Motor Z...Air introduction pipe.

Claims (1)

【特許請求の範囲】 l 曝気槽内にし尿を入れて曝気装置により曝気を行う
場合に、曝気槽内にし尿の物理的又は化学的状態を検知
する検知器を備え、検知器がし尿の状態を検知して発生
する信号により制御装置を介して堆肥化過程の初期バク
テリアが充分増殖し始める近傍温度に達するまで曝気装
置を連続運転し、主としてし尿の攪拌によりし尿を昇温
させ、バクテリアが増殖し始める増殖期初期状態におけ
る附近のし尿の状態を示す第7の指標を検知器が検知し
て制御装置を介して曝気装置をバクテリア増殖期に見合
う断続運転をして酸素供給量を減少させるし尿処理にお
ける曝気方法。 ユ 前記し尿処理に続いてバクテリア量が最大となり要
求酸素量が最大値附近に近ずいたし尿の状態を示す第2
の指標を検知してその信号により制御装置を介して曝気
装置が連続運転されるし尿処理における曝気方法。 3 検知器が検知する指標がし尿の温度であって第1の
指標が温度約−0〜30℃、第λの指標が温度約IIo
〜50℃とした特許請求の範囲第1項記載のし尿処理に
おける曝気方法。 病 検知器が検知する指標がし尿の酸性度であって第1
の指標が最初の飽和酸性度PHffよりも少ないPHg
近傍であり、第コの指標が次の飽和酸性度PHざ、ダよ
りも少ないPHff近傍の数値の酸性度である特許請求
の範囲第1項記載のし尿処理における曝気方法。
[Claims] l When human waste is placed in an aeration tank and aeration is performed by an aeration device, a detector is provided to detect the physical or chemical state of the human waste in the aeration tank, and the detector detects the state of the human waste. The control device uses the signal generated by the detection to operate the aeration system continuously until the temperature reaches a temperature close to the point at which the initial bacteria in the composting process begin to sufficiently proliferate. The detector detects the seventh indicator indicating the condition of nearby human waste in the initial state of the bacterial growth phase, and the control device operates the aeration system intermittently in accordance with the bacterial growth phase to reduce the amount of oxygen supplied. Aeration methods in processing. Following the above-mentioned human waste treatment, the amount of bacteria reaches its maximum and the amount of oxygen required approaches the maximum value, indicating the condition of human urine.
An aeration method for human waste processing in which an aeration device is operated continuously via a control device based on the signal detected by the indicator. 3 The index detected by the detector is the temperature of human waste, the first index is the temperature of about -0 to 30 degrees Celsius, and the λth index is the temperature of about IIo
The aeration method for human waste treatment according to claim 1, wherein the temperature is 50°C. The acidity of human urine is the most important index detected by the disease detector.
The index of PHg is less than the initial saturated acidity PHff
2. The aeration method for human waste treatment according to claim 1, wherein the index is a numerical acidity value near PHff that is smaller than the next saturated acidity PH.
JP56195874A 1981-12-04 1981-12-04 Aeration in treatment of night soil Granted JPS5898186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195874A JPS5898186A (en) 1981-12-04 1981-12-04 Aeration in treatment of night soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195874A JPS5898186A (en) 1981-12-04 1981-12-04 Aeration in treatment of night soil

Publications (2)

Publication Number Publication Date
JPS5898186A true JPS5898186A (en) 1983-06-10
JPH0227311B2 JPH0227311B2 (en) 1990-06-15

Family

ID=16348418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195874A Granted JPS5898186A (en) 1981-12-04 1981-12-04 Aeration in treatment of night soil

Country Status (1)

Country Link
JP (1) JPS5898186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038097A (en) * 1983-08-10 1985-02-27 Ebara Infilco Co Ltd Treatment of waste water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642945U (en) * 1979-09-05 1981-04-18

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122293A (en) * 1977-03-31 1978-10-25 Yoshida Seisakusho Kk Method and device for preventing infection during dental treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642945U (en) * 1979-09-05 1981-04-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038097A (en) * 1983-08-10 1985-02-27 Ebara Infilco Co Ltd Treatment of waste water

Also Published As

Publication number Publication date
JPH0227311B2 (en) 1990-06-15

Similar Documents

Publication Publication Date Title
SK87899A3 (en) Treating sewage or like sludge
US7947484B2 (en) Method, a device, and an additive for digesting organic matter
KR101830130B1 (en) An autothermal aerobic/anaerobic digestion system in swine farms
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
CN106365300A (en) Self-self-purification type breeding device and self-purification method thereof
KR20200068618A (en) Hydroponics drainage processing system and control method thereof
SE450769B (en) PROCEDURE AND PLANT FOR USE OF WASTE PRODUCTS FROM WASTE
JP2567382B2 (en) Biomass oxygen treatment device
JPS5898186A (en) Aeration in treatment of night soil
KR100499830B1 (en) Method for monitoring biological activity in fluids
Ghaly et al. Amelioration of methane yield in cheese whey fermentation by controlling the pH of the methanogenic stage
JP3058414B1 (en) Water treatment equipment
JP2003251318A (en) Fermentation treatment apparatus for organic waste
CN108821821A (en) A kind of aerobic composting device and method of magnetic field auxiliary
KR20200006300A (en) ATAD type Swine Wastewater Treatment System for minimizing odor
CN107827232A (en) One kind is with N2O is the cultural method of the denitrifying bacterium of end-product
CN207845653U (en) Biological organic slow-release fertilizer production microbial ferment device
JPS61164700A (en) Method for automatic control of fermentation apparatus
JP2001157895A (en) Water cleaning method, water cleaning system, cleaning method and cleaning system
JP7313070B2 (en) Compost intermediate manufacturing method and air supply system
JP2745449B2 (en) Water redox potential controller
KR100259469B1 (en) Method for measuring biochemical oxygen demand of biological waste water and apparatus thereof
CN202543217U (en) Kinetic parameter measurement device of autotrophic bacteria
CN208732950U (en) A kind of horizontal Quick composting device
Ghaly et al. Performance evaluation of an intermittent flow continuous mix anaerobic reactor operating on dairy manure