JPH0227311B2 - - Google Patents

Info

Publication number
JPH0227311B2
JPH0227311B2 JP56195874A JP19587481A JPH0227311B2 JP H0227311 B2 JPH0227311 B2 JP H0227311B2 JP 56195874 A JP56195874 A JP 56195874A JP 19587481 A JP19587481 A JP 19587481A JP H0227311 B2 JPH0227311 B2 JP H0227311B2
Authority
JP
Japan
Prior art keywords
aeration
temperature
human waste
liquid
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56195874A
Other languages
Japanese (ja)
Other versions
JPS5898186A (en
Inventor
Tomoyuki Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP56195874A priority Critical patent/JPS5898186A/en
Publication of JPS5898186A publication Critical patent/JPS5898186A/en
Publication of JPH0227311B2 publication Critical patent/JPH0227311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 本発明は家畜のし尿の生物化学処理による堆肥
処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating compost by biochemical treatment of human waste from livestock.

従来、農業は化学肥料を用いられて行われるの
が通常であるが、化学肥料だけでは地力が低下
し、有機質の欠乏した土壤に変つて行くため、近
時化学肥料に代えて有機質肥料を施肥すべきこと
が堆奨されて来ている。処が有機質肥料は家畜の
牛、豚等のふん尿を元とするものであり、その
まゝ生肥で散布すると窒素分が強く流下して河
川、湖に流入して公害の元になり、又牧草に直接
施肥すると枯れてしまう。又牛から見ると牧草に
苦味が残るものであり、人間から見ても臭気は耐
え難いものである。殊に硝化窒素化合物が生成さ
れると牛の病気の原因ともなる。
Traditionally, agriculture was usually carried out using chemical fertilizers, but chemical fertilizers alone reduce the fertility of the soil and lead to soils lacking in organic matter, so in recent years, organic fertilizers have been used instead of chemical fertilizers. Things that should be done are being encouraged. However, organic fertilizer is derived from the excrement of livestock such as cows and pigs, and if it is applied as raw manure, the nitrogen content will flow down strongly and flow into rivers and lakes, causing pollution. If you apply fertilizer directly to grass, it will die. Also, from the cow's point of view, the grass has a bitter taste, and from the human's point of view, the odor is intolerable. In particular, the production of nitrified nitrogen compounds can cause diseases in cattle.

そこで家畜のふん尿を醗酵処理して堆肥化する
ことが行われている。
Therefore, livestock manure is fermented and turned into compost.

この家畜ふん尿の堆肥化処理には各種の提案が
なされているが一般に堆肥化処理として好気性菌
による醗酵処理が行われている。堆肥化を促進す
るものとして家畜ふん尿を固形物と液分に分け液
(以下単に液と称する場合がある)を曝気槽に収
容し、空気を該曝気槽中の汚水中に吹込んで好気
性菌による堆肥化を行うことが広く行われている
処である。この好気性菌に酸素を与える方法とし
て曝気槽中に曝気装置を備え、曝気槽中の液体を
ポンプで汲みあげてエゼクタに送り込み、エゼク
タの空気取入口より大気を取り入れ、曝気槽液体
中に噴出させる方法が家畜し尿の処理では一般的
である。
Various proposals have been made for composting livestock manure, but fermentation using aerobic bacteria is generally used as composting. To promote composting, livestock manure is separated into solids and liquid (hereinafter sometimes simply referred to as liquid) and the liquid is stored in an aeration tank, and air is blown into the wastewater in the aeration tank to create aerobic bacteria. This is where composting is widely practiced. As a method of providing oxygen to these aerobic bacteria, an aeration device is installed in the aeration tank, the liquid in the aeration tank is pumped up and sent to the ejector, air is taken in from the air intake port of the ejector, and it is squirted into the aeration tank liquid. This method is common for treating livestock human waste.

従来、このような曝気装置による堆肥化は曝気
槽にて10日位かゝるがその間入力により曝気槽中
のし尿の堆肥化の状態を監視し乍ら処理してい
る。このため曝気槽中の液体の温度とかPHを測定
しているがいわゆる多分に感に頼つて処理してい
るものである。連続して測定していないため醗酵
過程の液温の上昇しないときに曝気により酸素供
給が過剰となりバクテリアを死なせてしまつた
り、或は曝気が適度に行われないためバクテリア
の繁殖が遅く堆肥化醗酵が遅れ、処理日数が多く
かゝり過ぎるという問題点がある。
Conventionally, composting using such an aeration device takes about 10 days in an aeration tank, during which time the state of composting of human waste in the aeration tank is monitored by input. For this reason, the temperature and pH of the liquid in the aeration tank are measured, but the process relies mostly on feeling. Because measurements are not taken continuously, when the liquid temperature does not rise during the fermentation process, aeration may cause excess oxygen supply and kill the bacteria, or the aeration may not be carried out properly, resulting in slow bacterial growth and spoilage. There are problems in that the fermentation is delayed and the processing time is too long.

本発明は家畜し尿等を曝気による好気性菌の作
用で醗酵堆肥化させる過程を適確に把握し、適度
の酸素供給を与えて、堆肥化過程を促進し、且つ
これらの過程を自動化することを目的とするもの
である。
The present invention aims to accurately understand the process of fermenting and composting livestock human waste through the action of aerobic bacteria through aeration, provide an appropriate supply of oxygen, promote the composting process, and automate these processes. The purpose is to

本発明は曝気槽内に液状のし尿を入れて水中曝
気装置により曝気を行う場合に、曝気槽内にし尿
の温度を検知する温度計を備え、温度計がし尿の
状態を検知して発生する信号により制御装置を介
して堆肥化過程の初期バクテリアが充分増殖し始
める近傍温度20゜〜30℃に達するまで水中曝気装
置を連続運転し、その後、この温度に達したこと
を示す温度計の信号により制御装置を介して水中
曝気装置をバクテリア増殖期に見合う断続運転を
して酸素供給量を減少させるし尿処理における曝
気方法である。
The present invention is provided with a thermometer that detects the temperature of the human waste in the aeration tank when liquid human waste is placed in the aeration tank and aeration is performed by an underwater aeration device, and the thermometer detects the state of the human waste and generates water. Based on the signal, the submersible aeration system is operated continuously through the control device until it reaches a temperature of 20 to 30 degrees Celsius, at which the initial bacteria in the composting process begin to sufficiently proliferate, and then a thermometer signal is sent to indicate that this temperature has been reached. This is an aeration method for human waste treatment in which the amount of oxygen supplied is reduced by intermittent operation of the underwater aeration system through a control device to match the bacterial growth period.

以下、本発明を図に基いて説明する。第1図は
横軸に曝気槽中に入れられた家畜等し尿の液分の
経過日数を示す。縦軸には気温、曝気槽中の液温
を示すもので第2図は本発明のフローシートであ
る。第2図は曝気槽1は一槽であるが曝気槽が分
割されたものであつても好気性処理を行う限り途
中の過程で被処理液を移し変えるだけであるから
同じである。
Hereinafter, the present invention will be explained based on the drawings. In FIG. 1, the horizontal axis shows the number of days that have passed for the liquid content of livestock human waste placed in the aeration tank. The vertical axis shows the air temperature and the liquid temperature in the aeration tank, and FIG. 2 is a flow sheet of the present invention. Although the aeration tank 1 in FIG. 2 is a single tank, the same is true even if the aeration tank is divided, as long as aerobic treatment is carried out, the liquid to be treated is simply transferred during the process.

本発明では曝気槽1の液2中には温度計3を備
え、温度計3の信号は電気信号として制御装置4
に送られる。制御装置4は例えばマイコンと増幅
回路及び出力回路を備えるものでその出力により
曝気槽1に備えるモータ7によりポンプ6が駆動
されエゼクタ5に送液する如くなつており、エゼ
クタ5は空気導入管8を介して大気中に開口して
いる。
In the present invention, a thermometer 3 is provided in the liquid 2 of the aeration tank 1, and the signal from the thermometer 3 is sent to the control device 4 as an electric signal.
sent to. The control device 4 includes, for example, a microcomputer, an amplification circuit, and an output circuit, and its output drives a pump 6 by a motor 7 provided in the aeration tank 1 to send liquid to an ejector 5, which is connected to an air introduction pipe 8. It opens to the atmosphere through.

温度計3はし尿の堆肥化過程の要求酸素量の変
化に関連するし尿の温度をとらえるものである。
The thermometer 3 measures the temperature of the human waste, which is related to changes in the amount of oxygen required during the composting process of the human waste.

曝気槽1に入れられた液の温度は21℃であり、
これは気温とほぼ一致するかわずかに高い。従つ
て気温の低いときは液2の温度も当初は低い訳で
ある。液2が曝気槽1に満たされるとモータ7に
通電され、ポンプ6は駆動され、エゼクタ5中の
ノズルよりポンプ6より流出した液は噴射され、
噴射液柱周囲に生ずる真空圧により空気導入管8
より吸込まれた空気は該噴射液に吸込まれてエゼ
クタ5より液2中に噴出して曝気が行われる。
The temperature of the liquid placed in aeration tank 1 is 21℃,
This is approximately equal to or slightly higher than the temperature. Therefore, when the air temperature is low, the temperature of the liquid 2 is also initially low. When the aeration tank 1 is filled with the liquid 2, the motor 7 is energized, the pump 6 is driven, and the liquid flowing out from the pump 6 is injected through a nozzle in the ejector 5.
Air inlet pipe 8 due to vacuum pressure generated around the injected liquid column
The air sucked into the liquid is sucked into the injection liquid and is ejected from the ejector 5 into the liquid 2 to perform aeration.

曝気槽1に入れられたときの液2は第1図の例
では温度約21℃でバクテリアが繁殖していない状
態であり又、バクテリアが液中の有機成分を吸着
して雰囲気に適応するための準備期であり、又、
バクテリアが繁殖するには適温でない。そこで曝
気装置は連続運転をしてモータ7は放熱し、液2
がポンプ6に吸込まれて、エゼクタ5を介して曝
気槽1中に放出され撹拌される撹拌熱により液2
は昇温する。これらの熱はバクテリアによる醗酵
熱は未だ微々たるものであるかなモータ7への入
力と殆んど等しい。この初期段階がすぎるとバク
テリア量は液温上昇につれて増加する。そうして
酸素消費量もそれにつれて増大する。曝気槽1は
密閉槽であり、液温も低いから放熱量は少く、液
2は第1図の例では30℃位まではそのまゝ直線的
に上昇する。
In the example shown in Figure 1, the liquid 2 placed in the aeration tank 1 is at a temperature of approximately 21°C, in which bacteria are not proliferating. It is a preparatory period for
The temperature is not suitable for bacteria to grow. Therefore, the aeration device operates continuously, the motor 7 radiates heat, and the liquid 2
The liquid 2 is sucked into the pump 6, discharged into the aeration tank 1 via the ejector 5, and stirred by the stirring heat.
increases in temperature. These heats are almost equal to the input to the motor 7, although the fermentation heat caused by the bacteria is still insignificant. After this initial stage, the amount of bacteria increases as the liquid temperature increases. Oxygen consumption also increases accordingly. Since the aeration tank 1 is a closed tank and the temperature of the liquid is low, the amount of heat released is small, and the liquid 2 rises linearly up to about 30°C in the example shown in Figure 1.

尚、寒冷地においては、曝気槽1に入れられる
液2の温度は例えば5℃程度となつていることも
あり、この場合は第一の指標は約30℃よりも低い
20℃〜30℃の間となる。又、液2がどのような種
類のし尿かによつても変化する。
In addition, in cold regions, the temperature of the liquid 2 placed in the aeration tank 1 may be around 5°C, for example, and in this case, the first index is lower than about 30°C.
It will be between 20℃ and 30℃. It also changes depending on what kind of human waste the liquid 2 is.

し尿の状態が第一の指標である第1図の例の30
℃位に液温が近ずくにつれて液2中には好気性の
バクテリアの増殖の適温となり、バクテリアの増
加率は増える。又、バクテリアによる醗酵熱の発
生も次第に多くなる。しかし、バクテリア増殖に
適温となつたとしても酸素消費量は多くはない。
そこで温度計3が検知する信号により制御装置4
が液温が液2の当初の条件に従つて設定された第
一の指標である20〜30℃の何れかの温度になつた
ことを判別し、モータ7を間欠運転させ、曝気空
気を制限する。この状態ではバクテリアの増殖過
程にある。そこでバクテリアの必要とする酸素量
以上を与えるとバクテリアが死滅してしまう。即
ち、曝気装置は曝気期間の後半における酸素消費
に対して必要な能力としてあるから曝気装置を連
続で運転すると過曝気となる。そこで制御装置4
に予めセツトされているタイマーによりモータ7
への通電を2時間行い、次の1時間は断電し、再
び起動して2時間運転、1時間休止をする。この
時間、間隔は例示のもので過曝気によりバクテリ
アを死滅させない如く適度の酸素供給が行われる
ように選ばれる。従つてこの断続電転はモータ7
への通電時間を一定とすると醗酵過程の経過によ
り次第にモータ7への断電時間を短くするように
するのが好適である。
Example 30 in Figure 1 where the state of human waste is the primary indicator
As the liquid temperature approaches around ℃, the temperature in liquid 2 becomes suitable for the growth of aerobic bacteria, and the rate of increase in bacteria increases. In addition, the generation of fermentation heat due to bacteria gradually increases. However, even if the temperature is suitable for bacterial growth, the amount of oxygen consumed is not large.
Then, the control device 4 receives a signal detected by the thermometer 3.
determines that the liquid temperature has reached a temperature between 20 and 30°C, which is the first index set according to the initial conditions of liquid 2, and operates the motor 7 intermittently to limit the aeration air. do. In this state, bacteria are in the process of multiplying. Therefore, if you give more oxygen than the bacteria need, the bacteria will die. That is, since the aeration device has the necessary capacity for oxygen consumption in the latter half of the aeration period, if the aeration device is operated continuously, overaeration will occur. Therefore, the control device 4
Motor 7 is activated by a timer preset in
The power is turned on for two hours, the power is cut off for the next hour, and the power is turned on again to operate for two hours and rest for one hour. These times and intervals are illustrative and are selected so that an appropriate amount of oxygen is supplied so as not to kill bacteria due to over-aeration. Therefore, this intermittent electric rotation is caused by motor 7.
It is preferable that if the energization time to the motor 7 is constant, the time for which the motor 7 is de-energized is gradually shortened as the fermentation process progresses.

第1図の例の第一の指標である約30℃位の液温
からステツプにて曝気を行うとバクテリアの増殖
の速度は早くなり醗酵熱の発生も増大し液温が第
二の指標の40℃〜50℃に近ずくようになると次第
に温度上昇率も低下し、バクテリア増加率も低下
する。必要によつては液温がし尿の状態を示す第
二の指標の40℃〜50℃になると温度計3の制御装
置4へ送られた信号により制御装置4は連続して
モータ7に通電され、曝気が行われる。この段階
では液2中のバクテリアは増殖が著しく、バクテ
リア量は最大に達し自生呼吸期に入るため要求酸
素量も多いので曝気装置の100%の稼動を必要と
するのである。もしくは50℃以上になると有機物
量も減少してくるので要求酸素量も少くして良い
ので断続運転しある温度で一定に保持する。
If aeration is performed in steps starting from the liquid temperature of about 30°C, which is the first indicator in the example in Figure 1, the rate of bacterial growth will increase and the generation of fermentation heat will increase, causing the liquid temperature to become the second indicator. As the temperature approaches 40°C to 50°C, the rate of temperature increase gradually decreases, and the rate of bacterial growth also decreases. If necessary, when the liquid temperature reaches 40°C to 50°C, which is the second indicator indicating the state of human waste, the controller 4 continuously energizes the motor 7 based on a signal sent to the controller 4 of the thermometer 3. , aeration is carried out. At this stage, the bacteria in liquid 2 proliferate rapidly, and the amount of bacteria reaches its maximum and enters the auto-respiration period, which requires a large amount of oxygen, so the aeration equipment must be operated at 100% capacity. Alternatively, since the amount of organic matter decreases when the temperature exceeds 50°C, the amount of oxygen required may be reduced, so the temperature is maintained constant by intermittent operation.

かくして温度40℃〜50℃の状態で第1図に示す
ように三日間程度の一定期間経過すると液2の腐
熟は完了する。
Thus, the ripening of liquid 2 is completed after a certain period of about three days as shown in FIG. 1 at a temperature of 40°C to 50°C.

以上のとおり、本発明は曝気槽内に液状のし尿
を入れて水中曝気装置により曝気を行う場合に、
曝気槽内のし尿の温度を検知する温度計を備え、
温度計がし尿の状態を検知して発生する信号によ
り制御装置を介して堆肥化過程の初期バクテリア
が充分増殖し始める近傍温度20゜〜30℃に達する
まで水中曝装置を連続運転し、その後、この温度
に達したことを示す温度計の信号により制御装置
を介して水中曝気装置をバクテリア増殖期に見合
う断続運転をして酸素供給量を減少させるし尿処
理における曝気方法としたから、過曝気によるバ
クテリアの死滅乃至増殖の抑制が防止され、水中
曝気装置が途中で断続運転されるので電力費が安
くつく。又堆肥化の熟成が進んでバクテリアに酸
素が必要なときの前過程で水中曝気装置を連続運
転するような際に過曝気を避けるため曝気装置を
小さいものとして酸素不足を来すというようなこ
とがなく充分酸素を供給できることゝとなる。
As described above, the present invention is applicable to the case where liquid human waste is placed in an aeration tank and aeration is performed using an underwater aeration device.
Equipped with a thermometer to detect the temperature of human waste in the aeration tank,
The thermometer detects the state of the human waste and generates a signal, which is used by the control device to operate the submersible exposure device continuously until it reaches a temperature of 20 to 30 degrees Celsius, at which the initial bacteria in the composting process begin to grow sufficiently, and then, When the thermometer signal indicates that this temperature has been reached, the control device operates the submersible aeration system intermittently to reduce the amount of oxygen supplied, which corresponds to the bacterial growth period. The death of bacteria or suppression of proliferation is prevented, and the underwater aeration device is operated intermittently during the process, resulting in lower power costs. In addition, when composting matures and bacteria require oxygen, the submersible aeration system is operated continuously in order to avoid over-aeration and the aeration system is made small to avoid oxygen deficiency. This means that sufficient oxygen can be supplied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はし尿の堆肥化醗酵過程における曝気槽
内の液温の変化を示す線図、第2図は本発明の曝
気方法を示すフローシートである。 1…曝気槽、2…液、3…温度計、4…制御装
置、5…エゼクタ、6…ポンプ、7…モータ、8
…空気導入管。
FIG. 1 is a diagram showing changes in liquid temperature in the aeration tank during the composting and fermentation process of human waste, and FIG. 2 is a flow sheet showing the aeration method of the present invention. 1... Aeration tank, 2... Liquid, 3... Thermometer, 4... Control device, 5... Ejector, 6... Pump, 7... Motor, 8
...Air introduction pipe.

Claims (1)

【特許請求の範囲】 1 曝気槽内に液状のし尿を入れて水中曝気装置
により曝気を行う場合に、曝気槽内にし尿の温度
を検知する温度計を備え、温度計がし尿の状態を
検知して発生する信号により制御装置を介して堆
肥過程の初期バクテリアが充分増殖し始める近傍
温度20゜〜30℃に達するまで水中曝気装置を連続
運転し、その後、この温度に達したことを示す温
度計の信号により制御装置を介して水中曝装置を
バクテリア増殖期に見合う断続運転をして酸素供
給量を減少させるし尿処理における曝気方法。 2 前記し尿処理に続いてバクテリア量が最大と
なり要求酸素量が最大値付近に近ずいたし尿の状
態を示す温度40゜〜50℃を検知してその信号によ
り制御装置を介して水中曝気装置を連続運転する
特許請求の範囲第1項記載のし尿処理における曝
気方法。
[Claims] 1. When liquid human waste is placed in an aeration tank and aeration is performed by an underwater aeration device, a thermometer is provided in the aeration tank to detect the temperature of the human waste, and the thermometer detects the state of the human waste. Based on the signal generated by the controller, the underwater aeration system is operated continuously until it reaches a temperature of 20 to 30 degrees Celsius, at which the initial bacteria in the composting process can sufficiently proliferate, and then the temperature is set to indicate that this temperature has been reached. An aeration method for human waste treatment in which the submersible aeration device is operated intermittently to match the bacterial growth period using a control device based on a signal from the meter to reduce the amount of oxygen supplied. 2 Following the above-mentioned human waste treatment, the amount of bacteria reaches its maximum and the amount of oxygen required approaches the maximum value, and a temperature of 40° to 50°C, which indicates the state of the urine, is detected and the underwater aeration system is activated via the control device based on the signal. An aeration method for human waste treatment according to claim 1, which operates continuously.
JP56195874A 1981-12-04 1981-12-04 Aeration in treatment of night soil Granted JPS5898186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195874A JPS5898186A (en) 1981-12-04 1981-12-04 Aeration in treatment of night soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195874A JPS5898186A (en) 1981-12-04 1981-12-04 Aeration in treatment of night soil

Publications (2)

Publication Number Publication Date
JPS5898186A JPS5898186A (en) 1983-06-10
JPH0227311B2 true JPH0227311B2 (en) 1990-06-15

Family

ID=16348418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195874A Granted JPS5898186A (en) 1981-12-04 1981-12-04 Aeration in treatment of night soil

Country Status (1)

Country Link
JP (1) JPS5898186A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038097A (en) * 1983-08-10 1985-02-27 Ebara Infilco Co Ltd Treatment of waste water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642945B2 (en) * 1977-03-31 1981-10-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642945U (en) * 1979-09-05 1981-04-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642945B2 (en) * 1977-03-31 1981-10-08

Also Published As

Publication number Publication date
JPS5898186A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
KR20200005890A (en) Method for manufacturing liquefied fertilizer using butchery blood
CN113336587B (en) Organic fertilizer fermentation device and application method thereof
CA1161577A (en) Process and apparatus for utilization of products of vital activity of animals
CN106365300A (en) Self-self-purification type breeding device and self-purification method thereof
CN209602350U (en) Slaughterhouse organic sludge fermentation machine
JPH0227311B2 (en)
CN218810684U (en) SBR sewage treatment equipment
Hunik et al. Growth-rate inhibition of acetoclastic methanogens by ammonia and pH in poultry manure digestion
CN213060796U (en) Processing device for preparing animal feed based on chicken manure fermentation
JPH06261741A (en) Method of multiplying microorganism
CA1221478A (en) Apparatus for the production of methane
KR20010054083A (en) A producing method of bio-gas and apparatus thereof
CN109136066B (en) Continuous cultivation bioreactor for nitrifying bacteria
CN207845653U (en) Biological organic slow-release fertilizer production microbial ferment device
CN110981555A (en) Fermentation process for promoting proteolysis
CN112759440A (en) Biological fermentation device and method for liquid dung
CN208732950U (en) A kind of horizontal Quick composting device
CN108410765A (en) A method of purifying aerobic bacteria using a variety of livestock products coprocultures
CN216236737U (en) Small-size aquatic products viscera fermenting installation
CN219930116U (en) Integrated nitrifying bacteria culture device
CN220951587U (en) Production system for harmless and high-value treatment of livestock manure
CN107902844A (en) The guanite control method and processing unit of anaerobic effluent in sewage treatment process
CN218860609U (en) Efficient excrement and urine fertilizer fermenting installation
CN217398851U (en) Fermentation tank for bacterial liquid in organic fertilizer material
CN216687942U (en) Bio-fertilizer fermentation compounding device