JPS5897846A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5897846A
JPS5897846A JP19727381A JP19727381A JPS5897846A JP S5897846 A JPS5897846 A JP S5897846A JP 19727381 A JP19727381 A JP 19727381A JP 19727381 A JP19727381 A JP 19727381A JP S5897846 A JPS5897846 A JP S5897846A
Authority
JP
Japan
Prior art keywords
oxide film
region
buried
silicon
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19727381A
Other languages
Japanese (ja)
Other versions
JPS6222266B2 (en
Inventor
Fujiki Tokuyoshi
徳吉 藤樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19727381A priority Critical patent/JPS5897846A/en
Publication of JPS5897846A publication Critical patent/JPS5897846A/en
Publication of JPS6222266B2 publication Critical patent/JPS6222266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Abstract

PURPOSE:To allow the prevention of reduction of pattern forming region and generation of crystal strain, the improvement of the integration degree and the reduction of the deterioration of withstand voltage, by forming a polycrystalline Si layer only on the side surface of a groove after forming an etching groove, when a buried Si oxide film is formed. CONSTITUTION:B as a P type impurity is added by an ion implantation method. Thereafter, using a thermal oxidation method, a buried Si oxide film 8' is formed. When the thermal oxidation is performed at 900-1,000 deg.C by high pressure oxidation for example, an oxide film can be easily formed. The lower surface of the groove is oxidized when selective oxidation, but the Si substrate itself is not oxidized. Therefore, an Si oxide film is not formed under an Si nitride film 5. A bird head is not formed, the reduction of pattern forming region due to a selective oxidation and the generation of crystal strain can be prevented, high density formation and miniaturization can be performed, the unstability of characteristic due to strains is prevented, and, at the same time as the formation of the buried Si oxide film 8', a channel stopper 15 and the P type region 7'' a region to prevent the deterioration of withstand voltage can be formed.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法にかかシ、特に素子分離
用の埋設シリコン酸化層およびこれふ同上゛−域を形成
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a buried silicon oxide layer for device isolation and a region thereon.

集積回路等の半導体装置の製造方法において、集積度の
向上および製作工程の簡累化のため埋設酸化膜による誘
電体分離、さらには該埋設酸イヒ膜を用いた自己整合技
術による素子形成がさカムんに行なわれているOこの埋
設酸化膜を形成する方法としては、最も容易に使用でき
るシリコン晋イヒ膜を耐酸化膜とした熱酸化による選択
瞭イヒ法力!主に用いられている。
In the manufacturing method of semiconductor devices such as integrated circuits, in order to improve the degree of integration and simplify the manufacturing process, dielectric isolation using a buried oxide film, and furthermore, element formation using self-alignment technology using the buried oxide film has been developed. The most common method for forming this buried oxide film is thermal oxidation using silicone film as the oxidation-resistant film, which is the easiest method to use. Mainly used.

この選択酸化と同時にチャンネルストツノ(−領域並び
に耐圧劣化防止領域を形成すること力X実施されている
At the same time as this selective oxidation, formation of the channel edge region and the breakdown voltage deterioration prevention region is carried out.

第1図(a)〜(C)$?よび第2図(aト(叫ti[
来の選択酸化法を示し、gllg(a)〜(e)はチャ
ンネルストッパーおよび耐圧劣化防止領域の不純物の導
入に拡散法を用いた例を示す。まず第1図(aJに示す
とおp、P型半導体素板1に埋込層2を形成しその上に
れ型シリコン層3を形成させた基板を準備し、該基板表
面にシリコン酸化膜4およびシリコン鼠次にフォトプロ
セス法による選択エツチングによシ素子分*領域上のシ
リコン窒化膜5、シリコン酸化11[4を除去し、篇出
したシリコン基板表面をエツチングして#lI6を形成
する。(1g1図(b)参照) しかるのち熱拡散法によるボロンを拡散し害の内面にp
11v領域7を形成する。(第1図(C)参照)次に熱
酸化法を用いて埋設シリコン酸化y48を形成し溝6を
埋める。この熱酸化によ)、さきに導入した不純物によ
シ埋設酸化膜8の下側にチャンネルストッパー9および
耐圧劣化防止領域τが形成されるD(第1図(dJ参照
) こうして素子分離領域が形成され、チャンネルストッパ
ー等の形成されたあとそれぞれ分離された島状領域に所
望の素子を形成することとなる。
Figure 1 (a)-(C) $? and FIG.
gllg(a) to (e) show examples in which a diffusion method is used to introduce impurities into a channel stopper and a breakdown voltage deterioration prevention region. First, as shown in FIG. Then, the silicon nitride film 5 and silicon oxide 11 [4] on the silicon element region are removed by selective etching using a photo process method, and the exposed silicon substrate surface is etched to form #lI6. (Refer to Figure 1g1 (b)) Then, the boron is diffused by thermal diffusion method and p
11v region 7 is formed. (See FIG. 1C) Next, a buried silicon oxide layer 48 is formed using a thermal oxidation method to fill the trench 6. Through this thermal oxidation), the previously introduced impurities form a channel stopper 9 and a breakdown voltage deterioration prevention region τ under the buried oxide film 8 (see Figure 1 (dJ)). After channel stoppers and the like are formed, desired elements are formed in isolated island regions.

第1図(e)は素子形成後の要部断面図で11はエミ 
1ツタ領域、10Fi耐圧劣化防止領域τに接続形成さ
れたペース領域、3 Fin型シリコン層でトランジス
タのコレクタ領域となる。
Figure 1(e) is a sectional view of the main part after the element is formed, and 11 is an emitter.
1 ivy region, a space region connected to the 10Fi breakdown voltage deterioration prevention region τ, and 3 Fin type silicon layer, which becomes the collector region of the transistor.

しかしながらこのような製造方法によシ埋設シリコン酸
化膜ならびにチャンネルストッパーおよび耐圧劣化防止
領域を形成する場合は、厚い酸化膜形成時は酸素が酸化
膜中をシリコン窒化膜の下にも拡散して行く為に横方向
酸化が生じ、シリコン窒化膜下のシリコン基板も少し酸
化され、いわゆるバーズ・ヘッド(blrd head
)が形成される。
However, when forming a buried silicon oxide film, a channel stopper, and a breakdown voltage deterioration prevention region using this manufacturing method, when a thick oxide film is formed, oxygen will diffuse through the oxide film and under the silicon nitride film. As a result, lateral oxidation occurs, and the silicon substrate under the silicon nitride film is also slightly oxidized, resulting in a so-called bird's head.
) is formed.

このためパターン幅の減少が生ずる。たとえば、リコン
エッチング解深さ約0.6μm、埋設シリコン酸化g!
膜厚約1.2μmとすると、パターン幅は約2#m減少
することとなシ、このような大きなパターン幅の減少は
集8を度を向上する上で大きな間聴となる。その上、輩
化膜下にシリコン酸化膜が部分的に形成されることによ
りシリコン基板内に大きな歪が加えられることとなり、
ザいて社結晶欠陥の発生となる等、素子形成を行なう上
での大きな欠点となっている。また厚い酸化膜形成前に
導入したp型不純物はチャンネルストッパーを形成する
が、チャンネルストッパーFi糊込層に接触して形成さ
れてhるのでCca 容量が大きくなってしまう欠点が
ある。また溝の側面に導入した不純物は耐圧劣化防止領
域を形成するが第1図(elの1に示すようにペース領
域10に接続されているのでCCB容葉が大きくなると
いう欠点もある。
This results in a decrease in pattern width. For example, the silicon etch depth is approximately 0.6 μm, and the buried silicon oxide g!
If the film thickness is about 1.2 .mu.m, the pattern width will be reduced by about 2 #m, and such a large reduction in pattern width will result in a large interstitial hearing in improving the sensitivity of the pattern. Furthermore, due to the partial formation of a silicon oxide film under the oxidizing film, a large strain is applied to the silicon substrate.
This is a major drawback in device formation, such as the occurrence of crystal defects. Further, the p-type impurity introduced before forming the thick oxide film forms a channel stopper, but since it is formed in contact with the channel stopper Fi paste layer, there is a drawback that the Cca capacitance increases. Further, although the impurity introduced into the side surface of the groove forms a region for preventing breakdown voltage deterioration, it also has the disadvantage that the CCB surface becomes large because it is connected to the pace region 10 as shown in FIG. 1 (el 1).

また第2図(1)〜(elは従来法によるヅーヤンネル
ストッパーを備えた埋設酸化膜分離半導体装置の製造方
法を示す工程別断面図である。図に示す番号は第1図に
準する。第2図(al〜(e)においてはチャンネルス
トッパー用の不純物はイオン注入法により行りた場合で
ある。図において先ず第1図の場合と同様p型累板の表
面にn型不純物によシn型の埋込層を形成、その上にn
型の半導体層3を形成その表面にシリコン酸化膜4およ
びシリコン窒化膜5を形成する。(第2図(a)参照)
但し第1図(Jl)〜IC)図では)’!!!!半導体
素板および埋込層は都合により図面よシ削除した。
In addition, FIGS. 2(1) to (el are cross-sectional views showing each step of the manufacturing method of a buried oxide film-separated semiconductor device equipped with a tunnel stopper by a conventional method. The numbers shown in the figures correspond to those in FIG. 1. In Figure 2 (al to (e)), the impurity for the channel stopper is implanted by ion implantation.In the figure, first, as in the case of Figure 1, n-type impurity is added to the surface of the p-type stack. Form an n-type buried layer on top of the n-type buried layer.
A semiconductor layer 3 is formed, and a silicon oxide film 4 and a silicon nitride film 5 are formed on its surface. (See Figure 2 (a))
However, in Figure 1 (Jl) to IC))'! ! ! ! The semiconductor substrate and buried layer have been omitted from the drawing for convenience.

次にフォトプロセス法による選択エツチングによシ素子
分離領域上のシリコン窒化膜5、シリコン酸化膜4を除
去し、k出したシリコン基板表面をエツチングして溝6
を形成する。(騙2図(b)参照) しかるのちイオン注入法によシボロンを拡散す    
 :る。イオン注入によるときFi側面には不純物は拡
     :散されず底面のみにp型不純物層7が形成
される。    :(t/g2図(C)参照) 次に熱酸化法を用いて埋設シリコン酸化膜8を    
 □形成しtll16を埋める。この熱酸化によシさき
に#I     :の底部に導入した不純物は拡散して
埋設酸化a8     :の下にチャンネルストッパー
9を形成する。このときは溝側面には不純物が導入され
なかったので耐圧劣化防止領域は形成されていない。(
第2図(dl#fi)               
 ’その後分離された島状領域には所望の素子が形成さ
れる(第2図(el参照) このように形成された埋込酸化物分離領域を持つ半導体
装置においては前実施例と同様バーズ・ヘッドが形成さ
れパターン形成領域の−が大幅に減少する。七nと同時
にシリコン酸化膜の近傍のシリコン結晶には大きな歪が
発生しこれが素子の特性の欠陥の原因となっている。
Next, the silicon nitride film 5 and silicon oxide film 4 on the element isolation region are removed by selective etching using a photo process method, and the exposed silicon substrate surface is etched to form grooves 6.
form. (Refer to Figure 2 (b)) Then, the ciborons are diffused by ion implantation.
: Ru. When ion implantation is performed, impurities are not diffused on the side surfaces of the Fi, and a p-type impurity layer 7 is formed only on the bottom surface. : (See t/g2 diagram (C)) Next, the buried silicon oxide film 8 is removed using a thermal oxidation method.
□ Form and fill tll16. During this thermal oxidation, the impurity introduced into the bottom of #I: diffuses to form a channel stopper 9 under the buried oxidation a8:. At this time, since no impurities were introduced into the side surfaces of the trench, no breakdown voltage deterioration prevention region was formed. (
Figure 2 (dl#fi)
'After that, desired elements are formed in the isolated island-like regions (see FIG. 2 (el)) In the semiconductor device having the buried oxide isolation regions formed in this way, the bird's When a head is formed, the - of the pattern forming area is significantly reduced.At the same time, a large strain occurs in the silicon crystal near the silicon oxide film, which causes defects in the characteristics of the device.

またチャンネルストッパーは埋込領域Ktたがりそのた
めCcs谷量が大きくなってしまう0また本寮施例はイ
オン注入法によシネ続物を導入したため耐圧劣化防止領
域は形成されていない従ってコレクタ・工電ツタ間はリ
ークし易い状態となっている。
In addition, the channel stopper tends to bury the buried region Kt, which results in a large Ccs valley.In addition, in this dormitory example, a cine composite was introduced by ion implantation, so no region for preventing voltage deterioration was formed. The area between the electric ivy is prone to leaks.

従って本発明は以上の問題点に対処してなされたもので
、埋込酸化膜による素子分離をした半導体装置において
、横方向酸化をおさえ素子形成有効面積を大きくすると
共に酸化膜シリコン界面の虫をすくなくシ特性の安定化
をはかると共に、埋込酸化膜の形成と同時CSキャパシ
タンスの小さいチャンネルストッパーとCH答jiを大
きくしないで、かつCEリークを発生させることのない
耐圧劣化防止領域を形成する半導体装置の製造方法を提
供するにある0 すなわち本発明の賛旨は、半導体基板表面に耐鈑化性膜
のパターンを形成する工程と、該ノ(ターン以外の基板
表面を食刻し溝を形成する工程と、眩溝の側面のみに多
結晶シリコン族を形成する工程と、イオン注入法により
基板表面領域と逆411[型の不純物を添加する工程と
、熱酸化法によシ埋設シリコン酸化膜を形成するととも
に埋設酸化膜に隣接して基板表面領域と逆導電型領域を
形成する工程とを含むことを特徴とする半導体装置の製
造方法にある。
Therefore, the present invention has been made to address the above-mentioned problems, and is intended to suppress lateral oxidation, increase the effective area for forming elements, and eliminate insects at the oxide film-silicon interface in a semiconductor device with element isolation using a buried oxide film. A semiconductor that aims to stabilize the C characteristics as much as possible, and at the same time forms a channel stopper with a small CS capacitance and a breakdown voltage deterioration prevention region that does not increase the CH response and does not cause CE leakage. In other words, the gist of the present invention is to provide a method for manufacturing a device. a step of forming a polycrystalline silicon group only on the side surfaces of the glare groove, a step of adding impurities of the type opposite to the substrate surface region by ion implantation, and a step of forming a buried silicon oxide film by a thermal oxidation method. A method of manufacturing a semiconductor device, comprising the steps of forming a substrate surface region and a conductivity type region opposite to the substrate surface region adjacent to the buried oxide film.

以下図面を参照し本発明の詳細な説明 第3図(al〜U》は本開明の一実施例による牛瑯体装
置の製造方法を示す工程別断面図である。以下工程順に
説明する。
The present invention will now be described in detail with reference to the drawings. Figures 3 (al to U) are cross-sectional views showing each step of a method for manufacturing a bovine gullet body device according to an embodiment of the present invention. The steps will be explained in order.

(1)p型半導体木板1にn型不純物を拡散し埋込〜2
t−形成しその上にn型シリコン領域3を気相成長法に
形成し半導体基板を準備する。(第3図(f)参照)だ
’NLM1図では省略、次にさきに形成したn型シリコ
ン領域30表面に熱酸化法によ9シリコン鈑化膜4を約
20OA形成し、その上にシリコン鼠化膜5をCVD法
によシ約100OA被看させるo  ( M 31fl
(aJ参照)(2)  次にホトレジスト法を用いて選
択的に埋股飲化膜形成領域上のシリコン鼠化腺5および
シリコン酸化1[41にエツチング除去し、シリコン基
板表面t−m出させ、しかるのち慧出表回t−CCl。
(1) Diffusing and embedding n-type impurities into p-type semiconductor wood board 1 ~ 2
A semiconductor substrate is prepared by forming an n-type silicon region 3 thereon by vapor phase growth. (See Figure 3(f)) NLM1 Although omitted in the figure, next, a silicon plated film 4 of about 20 OA is formed on the surface of the n-type silicon region 30 formed earlier by thermal oxidation, and the silicon The mouse film 5 is exposed to approximately 100 OA by CVD method (M 31fl
(Refer to aJ) (2) Next, using a photoresist method, the silicon inguinoid gland 5 and silicon oxide 1 [41] on the buried swallow film formation area are selectively etched away, and the silicon substrate surface t-m is exposed. , and then Keide table time t-CCl.

ガス系を用いたプラズマエツチングで食刻し、溝6を0
6μmの深さに形成する。(第3図(b)参照) +s>  lJhるのち多結晶シリコンM!I4I 2
t−気相成長法によ,95000 〜6000A形成す
るn(a,s図<C)参照)多結晶シリコン膜の膜厚は
埋設シリコン酸化膜の所望の膜厚によシ変化し、埋設シ
リコン酸化膜の膜厚が約1.2μmでろれば付層させる
シリコン膜の膜I!I.は0.5μm程度が適当でろる
0(4)次に多結晶7リコン膜12のエツチングを行う
。このときエツチングはCCI,系ガスによる異方性プ
ラズマエツチング方法によシ実施し、基板表面全面をエ
ツチングガスにさらす。しかるときはエツチングは基板
表面に垂直な方向からしかエツチングされないためにエ
ツチング溝の側面の多結晶シリコンはエツチングされな
いで残ζる。(第3図(di参照)プラズマエツチング
のあとシリコン基板をケミカルエツチングして表面を整
えてもよい。
The groove 6 is etched by plasma etching using a gas system, and the groove 6 is etched to 0.
Formed to a depth of 6 μm. (See Figure 3(b)) +s> lJh Then polycrystalline silicon M! I4I 2
The thickness of the polycrystalline silicon film (see figure a, s<C), which is formed at a thickness of 95,000 to 6,000 A by the t-vapor phase growth method, varies depending on the desired thickness of the buried silicon oxide film. If the thickness of the oxide film is approximately 1.2 μm, the silicon film to be deposited is film I! I. A suitable thickness is about 0.5 μm.Next, the polycrystalline silicon film 12 is etched. At this time, the etching is carried out by an anisotropic plasma etching method using CCI gas, and the entire surface of the substrate is exposed to the etching gas. In such a case, since etching is performed only from a direction perpendicular to the substrate surface, the polycrystalline silicon on the sides of the etching groove remains unetched. (See FIG. 3 (di)) After the plasma etching, the silicon substrate may be chemically etched to prepare the surface.

(6)次にp型不純物としてボロンをイオン注入法によ
シ添加する。しかるときはボロンはポリシリコンの側壁
の上面と、ポリシリコンが除去された溝の底面に注入さ
れp型領域13および14が形成される。(第3図(e
l参照) (6)シかるのち熱酸化法を用いて埋設シリコン酸化M
l 8/を形成する。熱酸化は例えば高圧酸化により9
00〜1000″Cで行えば容易に酸化膜を形成するこ
とができる。この選択酸化時$6の下面は従来通力酸化
されるが、@面は多結晶シリコン膜12が酸化されシリ
コン基板自体は酸化されない。従ってシリコン室化牌5
0下にシリコン酸化膜が形成されることは無く、従って
/《一ズ・ヘッドは形成されず選択酸化によるパターン
形成領域の減少や結晶歪の発生を防止することができる
。従って高密度化.小形化ができると共に歪による特性
の不安定を防ぐことができる。また埋設シリコン酸化膜
8′の形成と同時にチャンネルストッパー15および耐
圧劣化防正領域のpmlml領域形成できる。チャンネ
ルストッパ−15Fi埋込層2から離れ小さく形成され
ているのでCcs容量を小さくすることができる。(第
3図げ)参照) (7)次に埋込酸化物層ぎによシ形成された島状領域に
所望の素子を形成すれは半導体装置が得られる(第3図
(、?+参照) 第3図U)において11はエミッタ領域、12はベース
領域、3はコレクタ領域、7“は耐圧劣化防止用のp型
領域である。耐圧劣化防止用のp型領域は第1図(eJ
に示したように大きくないのでCCB容′1kを小さく
することができる。またCEII−りの最も起シ易い部
分に1圧劣化防止用p型領域が形成されているのでこの
リークを減少させることができる。
(6) Next, boron is added as a p-type impurity by ion implantation. When appropriate, boron is implanted into the top surface of the sidewalls of the polysilicon and into the bottom surface of the trench from which the polysilicon has been removed to form p-type regions 13 and 14. (Figure 3(e)
(Refer to l) (6) Buried silicon oxidation M using thermal oxidation method
Form l 8/. Thermal oxidation, for example, by high pressure oxidation9
An oxide film can be easily formed if carried out at 00 to 1000"C. During this selective oxidation, the bottom surface of the $6 is conventionally oxidized, but on the @ surface, the polycrystalline silicon film 12 is oxidized and the silicon substrate itself is oxidized. Not oxidized.Therefore, silicon chamber conversion tile 5
A silicon oxide film is not formed under the 0, and therefore no 1's head is formed, making it possible to prevent a reduction in the pattern formation area and generation of crystal distortion due to selective oxidation. Therefore, higher density. It is possible to reduce the size and prevent instability of characteristics due to distortion. Moreover, the channel stopper 15 and the pmlml region of the breakdown voltage deterioration prevention region can be formed simultaneously with the formation of the buried silicon oxide film 8'. Since the channel stopper 15 is formed small and apart from the Fi buried layer 2, the Ccs capacitance can be reduced. (See Figure 3) (7) Next, a desired element is formed in the island-shaped region formed by the buried oxide layer, and a semiconductor device is obtained (See Figure 3 (, ?+)). ) In FIG. 3U), 11 is an emitter region, 12 is a base region, 3 is a collector region, and 7'' is a p-type region for preventing voltage deterioration.The p-type region for preventing voltage deterioration is shown in FIG.
As shown in FIG. 2, since it is not large, the CCB capacity '1k can be made small. Furthermore, since the p-type region for preventing one-pressure deterioration is formed in the part where CEII leakage is most likely to occur, this leakage can be reduced.

以上説明したとおシ本発明によれi″t′選択敢化法に
より埋設シリコン酸化膜を形成する時に、シリコンのエ
ツチング溝形hX、彼爬の側面のみに多結晶シリコン層
を形成することにより熱酸化時の横方向酸化を防止する
ことができ、そのためパターン形成領域の減少や結晶歪
の発生を防止することができる。従って集f*Uの向上
が出来ると共に歪の発生による耐圧劣化を減少させるこ
とができる。
As explained above, according to the present invention, when a buried silicon oxide film is formed by the i″t′ selection method, a polycrystalline silicon layer is formed only on the sides of the silicon etching groove hX and the groove is heated. It is possible to prevent lateral oxidation during oxidation, thereby preventing the reduction of the pattern formation area and the occurrence of crystal strain.Therefore, it is possible to improve the concentration f*U and reduce breakdown voltage deterioration due to the occurrence of strain. be able to.

また同時にチャンネルストッパーと耐圧劣化防止領域が
小さく形成できるのでCcs容量、CCB容菫を大きぐ
することなく機能を発揮することができる。従って、高
密度化、小形化9%性の安定化が出来ると共に歩留の向
上をはかることができる。
At the same time, since the channel stopper and the breakdown voltage deterioration prevention region can be formed small, they can function without increasing the CCS capacitance and CCB capacity. Therefore, it is possible to achieve high density, stable 9% reduction in size, and improve yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Jll〜telおよび第2図(a)〜(eJけ
従来の半導体装置の製造方法を示す工程別の要部断lt
I図、第3図(a)〜叡ノは本発明の一笑施例にょる手
専体装置の製造方法を示す工程別の狭部断面図である。 1・・・・・・半導体素板、2・・・用埋込層、3・・
・・・・半導体基板表面領域、4・・・・・・シリコン
酸化膜、5・・印・シリコン蟹化膜、6・・・・・・牌
、7・・・・・・tpI部に形成したp型領域、7/ 
、 7//叫,、耐圧劣化防止領域、8。 8′・・・・・・埋設シリコン醒化膜、9・・団・チャ
ンネルストッパー、10・・・・・・ベースM域、ll
・・団・エミッタ領域、12・・・・・・ポリシリコン
、13・・・・・・ポリシリコン不純物導入領域、14
・・・・・・害の底面不純物導入領域、15・・・・・
・チャンネルストッパー。 74 第3図 第3図
Figures 1 (Jll to tel) and Figures 2 (a) to (eJ) are cross-sections of main parts by process showing a conventional semiconductor device manufacturing method.
FIG. 1 and FIGS. 3(a) to 3(a) are cross-sectional views of the narrow portion of each step showing a method for manufacturing a hand-only device according to an embodiment of the present invention. 1... Semiconductor base plate, 2... Buried layer, 3...
... Semiconductor substrate surface region, 4 ... Silicon oxide film, 5 ... Mark silicon crab film, 6 ... Tile, 7 ... Formed in tpI part p-type region, 7/
, 7 // shout, , pressure deterioration prevention area, 8. 8'...Embedded silicon oxidation film, 9... Group channel stopper, 10...Base M area, ll
...Group/emitter region, 12...Polysilicon, 13...Polysilicon impurity introduction region, 14
...Harmful bottom impurity introduction region, 15...
・Channel stopper. 74 Figure 3 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面Kjt酸化性換パターンを形成する工程
と、蚊パターン以外の基&表面を食刻し溝を形成する工
程と、該擲の@面のみに多結晶シリコン膜を形成する工
程と、イオン注入法によシ基板表面領域と逆導電型の不
純物を添加する工程と、熱酸化法によシ埋設シリーン飯
化膜を形成するとともに埋設酸化膜に隣接して基板表面
領域と逆導電型領域を形成する工程とを含むことを特徴
とする半導体装置の製造方法。
A step of forming a Kjt oxidation exchange pattern on the surface of the semiconductor substrate, a step of etching the base and surface other than the mosquito pattern to form a groove, a step of forming a polycrystalline silicon film only on the @ side of the substrate, and a step of etching the base and surface other than the mosquito pattern to form a groove. A step of adding an impurity of a conductivity type opposite to that of the substrate surface region by an implantation method, and a step of forming a buried silicon oxide film by a thermal oxidation method, and adding an impurity of a conductivity type opposite to the substrate surface region adjacent to the buried oxide film. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP19727381A 1981-12-08 1981-12-08 Manufacture of semiconductor device Granted JPS5897846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19727381A JPS5897846A (en) 1981-12-08 1981-12-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19727381A JPS5897846A (en) 1981-12-08 1981-12-08 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5897846A true JPS5897846A (en) 1983-06-10
JPS6222266B2 JPS6222266B2 (en) 1987-05-16

Family

ID=16371718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19727381A Granted JPS5897846A (en) 1981-12-08 1981-12-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5897846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289830A (en) * 1987-05-21 1988-11-28 Nec Corp Manufacture of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762944A (en) * 1993-08-31 1995-03-07 Ota Seisakusho:Kk Slide hinge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289830A (en) * 1987-05-21 1988-11-28 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS6222266B2 (en) 1987-05-16

Similar Documents

Publication Publication Date Title
CN1194400C (en) Channel isolating structure, semi conductor device possessing said structure and channel isolating method
JP2002076112A (en) Semiconductor element capable of reducing junction leakage current and narrow width effect and its manufacturing method
JPH0815182B2 (en) Element isolation method for semiconductor device
JPS5897846A (en) Manufacture of semiconductor device
JPH07245400A (en) Field-effect transistor and its manufacture
JPS59108325A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JP2621607B2 (en) Method for manufacturing semiconductor device
JP2980651B2 (en) Method for manufacturing semiconductor device
JPH0744183B2 (en) Method for manufacturing semiconductor device
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPH0425134A (en) Semiconductor device
JPH04340721A (en) Manufacture of semiconductor device
JP3446378B2 (en) Method for manufacturing insulated gate field effect transistor
JP3106487B2 (en) Method for manufacturing semiconductor device
JPS5966168A (en) Manufacture of semiconductor device
JPH03157972A (en) Manufacture of semiconductor device
JPS5910236A (en) Fabrication of semiconductor device
JPS6217860B2 (en)
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPH0513564A (en) Manufacture of semiconductor device
JPH05259177A (en) Bipolar transistor
JPH05259176A (en) Bipolar transistor
JPS6118867B2 (en)
JPS59229867A (en) Walled emitter type semiconductor device