JPS5897268A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPS5897268A
JPS5897268A JP56192753A JP19275381A JPS5897268A JP S5897268 A JPS5897268 A JP S5897268A JP 56192753 A JP56192753 A JP 56192753A JP 19275381 A JP19275381 A JP 19275381A JP S5897268 A JPS5897268 A JP S5897268A
Authority
JP
Japan
Prior art keywords
roll
electrode
roll press
active material
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56192753A
Other languages
Japanese (ja)
Other versions
JPH0218549B2 (en
Inventor
Isao Matsumoto
功 松本
Mamoru Ishitobi
石飛 守
Hideo Kaiya
英男 海谷
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56192753A priority Critical patent/JPS5897268A/en
Publication of JPS5897268A publication Critical patent/JPS5897268A/en
Publication of JPH0218549B2 publication Critical patent/JPH0218549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the packed density of an electrode which is made by use of a three-dimensional net-like porous nickel base-plate, which contains almost spindle-shaped spherical spaces having a long diameter and a short diameter, by performing roll press several times in the direction perpendicular to said long diameter so as to gradually decrease the thickness of the electrode. CONSTITUTION:The figure represents a state in which an active material powder (nickel hydroxide in this case) (b) is packed into a base plate (a) having spindle- shaped spaces. The area represented by the symbol (c) principally consists of an aqueous solution, and is partially contaminated wh air. Roll press work was performed in up to 4 stages. Here, in carrying out roll press work in not less than two stages, the initial roll press was performed in such a manner that the thickness of the electrode became not less than 0.75mm.. As a result, it has been clarified that the packed density of the active material powder (b) becomes higher as roll press work is performed in more stages, and that such an effect becomes close to the maximum when roll press work is performed in 4 stages.

Description

【発明の詳細な説明】 本発明は、電池用電極の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a battery electrode.

電池用電極の製造方法は多種多様であるが、現在工業的
には、■主として活物質粉末と結着剤を加圧成形する方
法、・■主として活物質粉末と結着剤の混合物を穴あき
板・スクリーン・エキス・臂ンデ、トメタルなどの芯材
もしくは格子に塗着する(必要な場合はさらに加圧する
)方法、■微孔性の金属筒もしくは袋に、主として活物
質粉末を充填する方法、■焼結基板内に活物質を充填す
る方法などが採用されている。これらの方法においての
から■に至る方法はど高価格になるが、電極強度は向上
する。−次電池の場合はほとんどが■または■の方法が
用いられるが、二次電池の場合は、充放電の繰返しに耐
える必要から比較的堅牢な■、■、■の方法が用いられ
ている。
There are a wide variety of methods for manufacturing battery electrodes, but currently, industrially, there are two methods: ■Mainly press-molding active material powder and binder; ■Mainly molding a mixture of active material powder and binder with holes Method of applying to the core material or lattice of plates, screens, extracts, armholes, tometals, etc. (further pressurizing if necessary) ■ Filling a microporous metal tube or bag with active material powder Methods such as (1) filling an active material into a sintered substrate have been adopted. Among these methods, methods from (2) to (2) are more expensive, but the electrode strength is improved. - In the case of secondary batteries, method (1) or (2) is used in most cases, but in the case of secondary batteries, methods (2), (2), and (3), which are relatively robust, are used because they need to withstand repeated charging and discharging.

しかし最近になって三次元網状の発泡状金属多孔基板が
市販され、その高多孔性(約95%)および比較的硬れ
た電子型導度により高容量かつ優れた特性を有する電極
としての可能性を検討してきた。この基板は焼結基板の
ように三次元的な広がりを有しているが、焼結基板と比
較すると孔径がはるかに大きくまた0、 1 IIIか
ら5m程度まで任意に選択できるので活物質粉末を直接
充填できる。
However, recently, three-dimensional network-like foam metal porous substrates have become commercially available, and their high porosity (approximately 95%) and relatively hard electronic conductivity make them possible to use as electrodes with high capacity and excellent properties. I have been considering gender. This substrate has a three-dimensional spread like a sintered substrate, but the pore diameter is much larger than that of a sintered substrate, and the pore size can be arbitrarily selected from 0.1 m to about 5 m, making it easy to use active material powder. Can be filled directly.

つまり前記の■と■の中間的な製造方法と言える。In other words, this can be said to be an intermediate manufacturing method between (1) and (2) above.

そしてこの基板を用いた電極は、三次元格子の内部に活
物質粉末を保持することから比較的堅牢であるが、前記
の■、■の方法より高価であることから、主として二次
電池用の電極として検討してきた。しかし最近、高性能
を有する電極を必要としたり、活物質量を基板の厚さで
制御できる長所を生かした一次電池用の電極にも検討さ
れている。
Electrodes using this substrate are relatively robust because they hold the active material powder inside a three-dimensional lattice, but they are more expensive than methods (1) and (2) above, so they are mainly used for secondary batteries. We have been considering it as an electrode. However, recently, they are being considered as electrodes for primary batteries, which require electrodes with high performance and take advantage of the advantage that the amount of active material can be controlled by the thickness of the substrate.

本発明は、この発泡状金属多孔基板を用いた電極の製造
法に関し、さらに詳しく説明するが、以下では活物質粉
末の一例にニッケル正極用の水酸化ニッケルを採り上げ
ることにする。
The present invention will be described in more detail regarding a method for manufacturing an electrode using this foamed metal porous substrate, and below, nickel hydroxide for a nickel positive electrode will be taken up as an example of active material powder.

この電極の製造工程は、種々検討の結果、基本的には、
水酸化ニッケル粉末を主とする水溶液波−ストの状態で
すり込むようにして基板内に充填し、ついで基板表面に
付着しているペーストを除去したのち平板間にはさんで
加圧したのち樹脂粉末で電極表面を補強し最後に切断す
るという方法が均一充填、簡易さの点で優れていた。そ
してこの工程に関しての提案も行なった。ところが、上
記工程中平板加圧の工程では、この二、ケル正極におい
ても、焼結式ニッケル正極以上の活物質充填密度を得る
には、約500に9/cprW)加圧力が必要であり、
他に水酸化ニッケルより粒子径の小さい酸化カドミウム
、酸化鉛などの粉末においても4001V/−以上の加
圧力が現行の電極を考慮すると必要であった。またこの
場合、充分含液量を有するペーストを充填した後、直ち
に平板間にはさんで加圧すると、基板が三次元的な格子
を有しているので二次元的なスクリーン、穴あき板を芯
材に用いた場合と異なり、ペースト中の粉末および液が
迅速に移動できない。このため発泡状金属の格子が粉末
を含んだ液圧により切断され電極特性が劣化する傾向が
あった。そこで平板間にはさんでプレスを行なう場合に
はゆっくり加圧したり、含液量を低下させて(空気は比
較的迅速に抜ける)加圧する必要があった。つまり平板
間での加圧では、加圧機自体が能力の大きい装置を必要
とするとともに加圧速度を低下させたり、含液量を制御
する必要があった。
As a result of various studies, the manufacturing process of this electrode is basically as follows:
An aqueous solution containing mainly nickel hydroxide powder is poured into the board by rubbing it into the substrate, and after removing the paste adhering to the surface of the board, it is placed between flat plates and pressurized, and then resin powder is applied. The method of reinforcing the electrode surface and cutting it last was superior in terms of uniform filling and simplicity. We also made suggestions regarding this process. However, in the flat plate pressurization process in the above process, even in the case of the two-kel positive electrode, a pressurizing force of approximately 500 to 9/cprW is required to obtain an active material packing density higher than that of the sintered nickel positive electrode.
In addition, powders such as cadmium oxide and lead oxide, which have a smaller particle size than nickel hydroxide, also require a pressing force of 4001 V/- or more, considering the current electrodes. In this case, after filling the paste with a sufficient liquid content, if the paste is immediately placed between the plates and pressurized, the substrate will have a three-dimensional lattice, so a two-dimensional screen or perforated plate will be created. Unlike when used as a core material, the powder and liquid in the paste cannot move quickly. For this reason, the lattice of the foamed metal tends to be cut by the pressure of the liquid containing the powder, and the electrode characteristics tend to deteriorate. Therefore, when pressing is performed by sandwiching the material between flat plates, it is necessary to apply pressure slowly or to reduce the liquid content (air escapes relatively quickly). In other words, when applying pressure between flat plates, the pressurizing machine itself requires a device with a large capacity, and it is also necessary to reduce the pressurizing speed and control the amount of liquid contained.

そこでこの加圧工程に1段のロールプレスを導入して検
討を行なったところ、電極を薄くするにしたがって電極
がロールプレスを行なう方向に伸長し始め、さらに薄く
仕上げる場合には電極の一部が波状になったり亀裂が生
じた。しかしこの現象が現われるのに、発泡状金属多孔
体中の球状空間形状の変化に違いが見られることがわか
った。
Therefore, we introduced a single-stage roll press to this pressurizing process, and found that as the electrode becomes thinner, the electrode begins to elongate in the direction of the roll press, and when the electrode is made even thinner, part of the electrode begins to elongate. Wavy or cracked. However, it was found that although this phenomenon occurs, there are differences in the changes in the shape of the spherical spaces in the porous metal foam.

つまり球状空間形状の変形によりその現象がみられるま
での電極の薄さく活物質充填密度の増加)が異なるので
ある。活物質を主とする混合粉末に水酸化ニッケル80
 wt% 、ニッケル16wt%、コバルト4 wt%
を多孔度約95チ、厚さ約1.2 m11の発泡状ニッ
ケル基板に充填した場合の電極厚さを充填密度で換算し
て示すと、球状空間形状がほぼ球形に近い場合は充填密
度で420 、m Ah/c c程度であったものが、
球状空間形状が略紡錘形状(長径と短径を有する)にし
、その長径方向にロールプレスを行なうと、同様に亀裂
を生じる直前で充填密度が450 mAh/cc ”!
で向上した。逆に短径方向にロールプレスを行なうと3
90 mAh/ccが限度であった。長径が短径の10
5倍程度以上であると、この値が得られるが、それ以゛
下では、やや低下した。わずかな差があると亀裂等が生
じにくく充填密度が球形の場合より高かった。この理由
としては、ロールプレスの場合はロールプレス方向に主
として電極は伸長するが、空間が方向性のある略紡錘形
状であると長径方向は伸長しにくいので基板内部の4−
ストをロールプレスで逃がすことが少なくプレスできる
ためと考えられる。しかし、平板間でプレス(800に
9/ad)した場合は50tOraAh/eeまで可能
であるので、それには及ばなかった。ロールプレスのロ
ール径は300mで行なったが、種々のロール径で、し
かも長径方向にロールプレスを行なっても本質的には4
50 mAh/a6程度以上の充填密度では、電極の一
部が波状になったり亀裂が生じる傾向がみられた。
In other words, depending on the deformation of the spherical space shape, the thinness of the electrode and the increase in active material packing density before the phenomenon is observed differ. Nickel hydroxide 80% in mixed powder mainly consisting of active material
wt%, nickel 16wt%, cobalt 4wt%
When the electrode thickness is filled in a foamed nickel substrate with a porosity of about 95 cm and a thickness of about 1.2 m11, the electrode thickness is converted into a packing density.If the spherical space shape is almost spherical, the packing density 420, mAh/cc or so,
If the spherical space shape is approximately spindle-shaped (having a major axis and a minor axis) and roll pressing is performed in the major axis direction, the packing density will similarly be 450 mAh/cc just before cracking occurs!
improved. Conversely, if roll press is performed in the short diameter direction, 3
The limit was 90 mAh/cc. 10 where the major axis is the minor axis
This value is obtained when it is about 5 times or more, but it slightly decreases when it is less than that. If there was a slight difference, cracks were less likely to occur, and the packing density was higher than in the spherical case. The reason for this is that in the case of roll pressing, the electrodes mainly expand in the roll pressing direction, but if the space is directional and has a substantially spindle shape, it is difficult to expand in the long axis direction.
This is thought to be due to the fact that the roll press allows for less stress to escape. However, when pressing between flat plates (800 to 9/ad), it is possible to achieve up to 50 tOraAh/ee, so it was not as high as that. The roll diameter of the roll press was 300 m, but even if the roll press was performed with various roll diameters and in the major axis direction, essentially 4
At a packing density of about 50 mAh/a6 or more, there was a tendency for some of the electrodes to become wavy or cracked.

ところがロールプレス工程の回数を増加(多段ロールプ
レスと呼称する)シ、シかも後段のロールプレスに使用
するロール径を大きくすることによって1段で限界まで
ロールプレスを行うより活物質の充填密度がさらに向上
し、目的とする500mAhAcという値を得ることが
できた。また加圧工程後の電極は、正負電極群構成時に
発電要素としての放電容量密度向上のためには、平坦性
のある方が一般に電池としての放電容量密度が向上する
が、本発明の多段ロールプレスにおいては、少なくとも
初段のロールプレスに使用するロール表面にはわずかな
凹凸を有している方がペースト中の液の逸散に効果が多
きく、充填密度および充填活物質の逸脱が少ないことも
あわせて見出すことができた。
However, by increasing the number of roll pressing steps (referred to as multi-stage roll pressing) and by increasing the diameter of the rolls used in the subsequent roll pressing, the packing density of the active material can be increased compared to performing roll pressing to the limit in one stage. Further improvement was achieved, and the desired value of 500 mAhAc could be obtained. In addition, in order to improve the discharge capacity density of the electrode after the pressurizing process as a power generation element when configuring the positive and negative electrode groups, flatness generally improves the discharge capacity density of the battery, but the multi-stage roll of the present invention In presses, it is better to have slight irregularities on the surface of the rolls used in at least the first roll press, which is more effective in dissipating the liquid in the paste and less deviations in the filling density and the filled active material. I was also able to find out.

以上の効果をグラフで説明を行なう。第1図は使用した
略紡錘形状空間を有する基板aに活物質粉末(この場合
は水酸化ニッケル)bを充填した状態を示す。Cは主と
して水溶液であり、一部空気が混入している。第2図は
水酸化ニッケルを主とする活物質粉末のに一ストを充填
し、基板表面のペーストを除去したのち、直ちにその極
板(含水率:約30 wtチ/−!!−スト)をロール
プレス(直径3005m+のロール使用)シ、各々のプ
レスにおいて極板の変形が不均一になる直前の充填一度
と極板の厚さを調べたものである。ロールプレスは4段
まで行ない、2段ロールプレス以上は初段のロールプレ
スを電極厚さにして0.75■にとどめた。この結果ロ
ールプレスは多段になるほど充填密度が向上することが
わかった。そして3段ロールプレスでこの効果は最大に
近くなることがわかった。第3図は、この3段ロールプ
レスにおイ又、同径のロール(300m11)を用いて
プレスを行なった場合(条件A)1段目を150■、2
゜3段目を300鵬のロール径にした場合(条件B)お
よび1段目を150■、2段目を250鵬、3段目を3
00111の各ロール径を有するロール間でロールプレ
スを行なった場合の水酸化ニッケル粉末の充填密度(、
)およびブレス工程前の活物質量に対するプレス工程に
よる活物質の逸脱量C&’)を示す。また3段ロールプ
レスにおいて、初段のロール表面に凹凸(凹凸部の高低
差は約01■)を付けた場合のそれぞれの結果を(b)
および(b′)に示した。比較として1段(表面の平坦
なロール使用)ロールプレスを限界まで行った場合も同
図に示した。これらの結果から明らかなように後段に至
るほどロール径を大きくすると充填密度は向上し500
 mAh/ccまで可能となった。この際に、初段のロ
ールに凹凸を備えた場合はさらに充填密度が向上し活物
質粉末がロールプレス工程で逸脱する量も低下した。
The above effects will be explained using graphs. FIG. 1 shows a state in which a substrate a having a substantially spindle-shaped space is filled with active material powder (nickel hydroxide in this case) b. C is mainly an aqueous solution, with some air mixed in. Figure 2 shows the electrode plate (water content: about 30 wt/-!!-st) immediately after filling one layer of active material powder mainly composed of nickel hydroxide and removing the paste on the substrate surface. A roll press (using rolls with a diameter of 3005 m+) was carried out, and the thickness of the electrode plate was investigated at the time of filling just before the deformation of the electrode plate became uneven in each press. Roll pressing was performed up to four stages, and for two-stage roll pressing and above, the electrode thickness of the first stage of roll pressing was kept at 0.75 . As a result, it was found that the packing density of the roll press improved as the number of stages increased. It was also found that this effect is close to the maximum when using a three-stage roll press. Figure 3 shows the case where this three-stage roll press is used, and when pressing is performed using rolls of the same diameter (300 m11) (condition A), the first stage is 150 cm, 2
゜When the third stage has a roll diameter of 300 mm (condition B), the first stage has a roll diameter of 150 mm, the second stage has a roll diameter of 250 mm, and the third stage has a roll diameter of 3 mm.
Packing density of nickel hydroxide powder (,
) and the deviation amount C&') of the active material due to the pressing process relative to the amount of active material before the pressing process. In addition, in a three-stage roll press, the results are shown in (b) when unevenness is added to the surface of the first roll (the height difference between the uneven parts is approximately 01cm).
and (b'). For comparison, the same figure also shows the case where one-stage roll pressing (using rolls with flat surfaces) was carried out to its limit. As is clear from these results, as the roll diameter increases toward the later stages, the packing density improves.
Now possible up to mAh/cc. At this time, when the first stage roll was provided with irregularities, the packing density was further improved and the amount of active material powder deviated during the roll pressing process was reduced.

このような現象は平面的な芯材(穴あき板、スクリーン
、エキスバンプイツトメタル)に活物質ペーストを塗着
し本発明のロールプレスを行なった場合にはほとんどみ
られない。この理由を考察すると次のように推測できる
。つまり本発明の場合は、芯材に代るものとして、三次
元網状の発泡状ニッケル多孔体を使用し水酸化ニッケル
とを主とする活物質粉末のペーストを充填したものであ
るから、活物質ペーストが平面的な芯材に塗着しただけ
より移動しにくい。ところが充填密度を向上し約500
mAh/ccに高めるには比較的強い圧力が必要である
。このために一度に強度を高め、しかも広い面積で加圧
する程ペーストの圧力で基板内から活物質が一時に抜は
出したり、基板の格子を切断する。そこで含液率の多い
ぜ一ストを有する電極はど加圧面の小さい、つまりロー
ル径の小さいもので4−スト中の水分(水分がもっとも
逸散しやすい。これは電極の片面から吸引すると水分だ
けが取り除かれることから明らかである)を除去するの
が(−スト中の固体部を加圧成形するのに有効であるか
らと考えられる。このことは、とくに含水率の多い初段
のロールプレスにおいてロール表面に凹凸を備えて、さ
らに水分を移動しやすくすると、固体部の逸脱が減少す
ることからも推測できる。
Such a phenomenon is hardly observed when the active material paste is applied to a planar core material (perforated plate, screen, extracted metal) and the roll pressing of the present invention is performed. Considering the reason for this, it can be inferred as follows. In other words, in the case of the present invention, a three-dimensional network-like foamed nickel porous material is used as a substitute for the core material, and it is filled with a paste of active material powder mainly composed of nickel hydroxide. The paste is less likely to move than if it was simply applied to a flat core material. However, the packing density was improved to about 500
Relatively strong pressure is required to increase it to mAh/cc. For this purpose, the strength is increased at once, and the more pressure is applied over a larger area, the more the active material is pulled out from within the substrate at once by the pressure of the paste, and the lattice of the substrate is cut. Therefore, electrodes with a bulk with a high liquid content have a small pressurizing surface, that is, a roll diameter is small, and the moisture in the gas (moisture) is the easiest to dissipate. It is thought that this is because removing (as is clear from the fact that only the It can also be inferred from the fact that if the roll surface is provided with irregularities to facilitate the movement of moisture, deviation of the solid portion will be reduced.

実施例1.多孔度的95%、厚さ1.20m、セル数5
0個/インチ、略紡錘形状空間の長径/短径=120の
発泡状二、クル7−トに、水酸化二。
Example 1. Porosity 95%, thickness 1.20m, number of cells 5
0 pieces/inch, approximately spindle-shaped space with major axis/minor axis = 120, and 7-dihydroxide.

ケル粉末86 wt%、二、ケル粉末10 wt%、コ
バルト粉末4 wt%の混合粉末をQ、 3 wt%の
カルブキシメチルセルローズ水溶液でペースト状にした
(含水率的3 Q wt%)合剤を充填し、表面をブラ
シで研−したのち、ロール径150uのロール間で加圧
を行なう。この場合ロール表面には高低差で約01鵬の
凹凸を有するエンデス加工を施こしたものを用いる。そ
して厚さ1.10mから約075鱗に電極を加圧して薄
くする。ついでロール径2001111のロール間で加
圧を行ない厚さを約0.70鱗にする。引きつづいてロ
ール径30011Ilのロール間で加圧し、厚さ0.6
51Elにする。ついでこの電極板を切断し、フッ素樹
脂の懸濁液(濃度的1wt% )に浸漬して電極とする
A mixture of 86 wt% Kel powder, 10 wt% Kel powder, and 4 wt% cobalt powder made into a paste with Q, 3 wt% carboxymethyl cellulose aqueous solution (water content: 3 Q wt%) After the surface is polished with a brush, pressure is applied between rolls having a diameter of 150 u. In this case, the roll surface is subjected to an end-processing process having concavities and convexities with a height difference of approximately 01 mm. Then, the electrode is pressed to reduce the thickness from 1.10 m to about 0.75 scales. Then, pressure is applied between rolls having a roll diameter of 2001111 to make the thickness about 0.70 scale. Subsequently, pressure was applied between rolls with a roll diameter of 30011Il, and the thickness was 0.6
Make it 51El. Next, this electrode plate is cut and immersed in a fluororesin suspension (concentration: 1 wt%) to form an electrode.

実施例1では活物質粉末に水酸化ニッケル粉末を使用し
たが、鉄粉末、亜鉛粉末、酸化鉛粉末、酸化カドミウム
粉末、酸化銀粉末、二酸化マンガン粉末等も同様な効果
がある。とくに粒径の小さい酸化カドミウム粉末などに
おいては、本発明のプレス工程中最後段ロールプレスに
用いるロール径は250謡で充填密度向上に充分な効果
があった。
In Example 1, nickel hydroxide powder was used as the active material powder, but iron powder, zinc powder, lead oxide powder, cadmium oxide powder, silver oxide powder, manganese dioxide powder, etc. can also have similar effects. Particularly in the case of cadmium oxide powder having a small particle size, a roll diameter of 250 yen used in the final roll press during the pressing process of the present invention was sufficiently effective in improving the packing density.

以上、本発明によるロール加圧工程の概略を図示すると
第4図の如くなる。この図において、1はペーストを充
填した極板、2は初段ロールプレス工程、3.4はそれ
ぞれ2段、3段目のロールプレス工程を示す。5は各ロ
ールブレス工程間の速度を調整する補助ローラで上下に
移動可能なものである。1′は加圧終了後の極板である
。A−A’断面は2のロール表面の簡易断面図で、6は
凸部、7は凹部、8はロールの軸を示す。
The outline of the roll pressing process according to the present invention is shown in FIG. 4. In this figure, 1 indicates the electrode plate filled with paste, 2 indicates the first roll press process, and 3.4 indicates the second and third roll press processes, respectively. Reference numeral 5 denotes an auxiliary roller that can be moved up and down to adjust the speed between each roll pressing process. 1' is the electrode plate after completion of pressurization. The AA' cross section is a simplified sectional view of the surface of the roll 2, in which 6 shows a convex part, 7 shows a recessed part, and 8 shows the axis of the roll.

以上述べたように、本発明によるロールプレス工程は三
次元網状の発泡状二、ケル基板を使用した電極の充填密
度向上に有効であり、ロールプレス工程自体が連続加圧
に適していることから工業的に価値が大きい。
As described above, the roll pressing process according to the present invention is effective in improving the packing density of electrodes using a three-dimensional mesh foamed bilayer substrate, and the roll pressing process itself is suitable for continuous pressurization. It has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電極の概略断面図、第2図はロー
ルプレス回数と水酸化工、ケル充填密度および不均一な
変形を生じる直前の電極厚さの関係を示す図、第3図は
3段ロールプレス(ロール径および初段のロール表面を
エンボス加工した場合)と水酸化工、ケル充填密度およ
びロールプレス工程中の活物質逸脱量の関係を示す図、
第4図は本発明のロールプレス工程の概略図と初段のロ
ールプレスに用いたロニル表面状態の概略断面図である
。 a・・基板、b・・活物質粉末、C・・・水溶液もしく
は空気、(a) 、 (b)・・・3段ロールプレスに
よる水酸化ニッケルの充填密度、(a’)、(bつ・・
・3段ロールプレスによる活物質粉末の逸脱率(wt%
)、1,1′・・・極板、2.3.4・・・おのおの初
段、2段目、3段目のロールプレス工程、5・・・補助
ローラ、6・・・ロール表面の凸部、7・・・凹部。 第1図 、&イLカ勺 第2図 IJL   どPL   3久   4暖第3図
Figure 1 is a schematic cross-sectional view of the electrode according to the present invention, Figure 2 is a diagram showing the relationship between the number of roll presses, hydration process, Kel packing density, and electrode thickness just before non-uniform deformation occurs. A diagram showing the relationship between three-stage roll press (when the roll diameter and the first stage roll surface are embossed), hydroxide processing, Kel packing density, and active material deviation amount during the roll press process,
FIG. 4 is a schematic diagram of the roll pressing process of the present invention and a schematic sectional view of the surface condition of Ronil used in the first stage roll pressing. a... Substrate, b... Active material powder, C... Aqueous solution or air, (a), (b)... Packing density of nickel hydroxide by three-roll press, (a'), (b)・・・
・Deviation rate (wt%) of active material powder by three-stage roll press
), 1, 1'... Electrode plate, 2.3.4... First stage, second stage, third stage roll press process, 5... Auxiliary roller, 6... Convexity on the roll surface. Part, 7... recessed part. Figure 1, &I L / Figure 2 IJL DoPL 3ku 4warm Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  三次元網状構造を有する発泡状金属多孔基板
に、活物質粉末を主とするペースト状混合物を充填しロ
ールプレスで加圧成形を行なう工程において、発泡状金
属多孔基板はその内部の連続して重なった球状空間は長
径と短径を有する略紡錘形状で、その大半の長径は一方
向に平行であり、その長径と直角方向にロールプレスを
複数回行なって順次電極を薄くすることを特徴とする電
池用電極の製造法。
(1) In the process of filling a foamed metal porous substrate with a three-dimensional network structure with a paste-like mixture mainly composed of active material powder and press-molding it with a roll press, the foamed metal porous substrate has a continuous internal structure. The overlapping spherical space is approximately spindle-shaped with a major axis and a minor axis, most of which are parallel to one direction, and roll pressing is performed multiple times in a direction perpendicular to the major axis to sequentially thin the electrode. Characteristic manufacturing method for battery electrodes.
(2)複数回のロールプレスに使用するロールの径は、
少なくとも前工程の方が小さいことを特徴1.とする特
許請求の範―第(1)項に記載の電池用電極の製造法。
(2) The diameter of the roll used for multiple roll presses is
Features 1. At least the previous process is smaller. Claims: - A method for manufacturing a battery electrode according to paragraph (1).
(3)  複数回のロールプレス工程において、少なく
とも最前段に用いるロールの表面は凹凸を有することを
特徴とする特許請求の範囲第(1)項に記載の電池用電
極の製造法。
(3) The method for manufacturing an electrode for a battery according to claim (1), wherein the surface of the roll used at least in the first stage in the plurality of roll pressing steps has an uneven surface.
JP56192753A 1981-12-02 1981-12-02 Manufacture of electrode for battery Granted JPS5897268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192753A JPS5897268A (en) 1981-12-02 1981-12-02 Manufacture of electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192753A JPS5897268A (en) 1981-12-02 1981-12-02 Manufacture of electrode for battery

Publications (2)

Publication Number Publication Date
JPS5897268A true JPS5897268A (en) 1983-06-09
JPH0218549B2 JPH0218549B2 (en) 1990-04-25

Family

ID=16296471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192753A Granted JPS5897268A (en) 1981-12-02 1981-12-02 Manufacture of electrode for battery

Country Status (1)

Country Link
JP (1) JPS5897268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318672A (en) * 2005-05-10 2006-11-24 Sony Corp Manufacturing methods of electrode and battery, and manufacturing device of electrode
WO2019039412A1 (en) * 2017-08-23 2019-02-28 株式会社村田製作所 Stacked structure, method for manufacturing same, and roll-press device
US10903479B2 (en) 2018-08-24 2021-01-26 Lg Chem, Ltd. Apparatus for manufacturing electrode or solid electrolyte for all-solid-state battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469728A (en) * 1977-11-14 1979-06-05 Matsushita Electric Ind Co Ltd Device of manufacturing plate for lead accumulator
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469728A (en) * 1977-11-14 1979-06-05 Matsushita Electric Ind Co Ltd Device of manufacturing plate for lead accumulator
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318672A (en) * 2005-05-10 2006-11-24 Sony Corp Manufacturing methods of electrode and battery, and manufacturing device of electrode
WO2019039412A1 (en) * 2017-08-23 2019-02-28 株式会社村田製作所 Stacked structure, method for manufacturing same, and roll-press device
US11757083B2 (en) 2017-08-23 2023-09-12 Murata Manufacturing Co., Ltd. Laminate structure, production method thereof, and roll press device
US10903479B2 (en) 2018-08-24 2021-01-26 Lg Chem, Ltd. Apparatus for manufacturing electrode or solid electrolyte for all-solid-state battery

Also Published As

Publication number Publication date
JPH0218549B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
JPS5897268A (en) Manufacture of electrode for battery
JP3258713B2 (en) Method for manufacturing non-sintered electrode plate for cylindrical battery
JP3196679B2 (en) Method for manufacturing solid electrolytic capacitor element
JPH056762A (en) Manufacture of spongy metal porous body for electrode plate
JPS6238825B2 (en)
US3276975A (en) Silver oxide electrodes
JPH07335211A (en) Manufacture of paste electrode for alkaline battery
JP2902751B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
US3067505A (en) Rolling process to make sintered electrode material flexible
JPH0487154A (en) Hydrogen storage electrode and manufacture thereof
JP2000113880A (en) Hydrogen storage alloy negative electrode and its manufacture
JPS6043629B2 (en) Molding method for battery electrodes
JP5355052B2 (en) Method for producing sintered nickel substrate
US3009978A (en) Process of increasing electrode capacity
JPS58201253A (en) Manufacture of plate for alkaline storage battery
JPH0239064B2 (en)
JPH1119950A (en) Preparation of highly powder-packed board
JPH05151964A (en) Manufacture of electrode
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPS5544501A (en) Activating method of porous plate comprising working and sintering metal foil
JPS5846576A (en) Manufacture of positive electrode plate for lead battery
JPH01292754A (en) Electrode for alkaline storage battery and manufacture thereof
JPH02253555A (en) Manufacture of original body for cell electrode plate
JPH09330704A (en) Manufacture of battery electrode plate
JPH0218548B2 (en)