JP3258713B2 - Method for manufacturing non-sintered electrode plate for cylindrical battery - Google Patents

Method for manufacturing non-sintered electrode plate for cylindrical battery

Info

Publication number
JP3258713B2
JP3258713B2 JP23209092A JP23209092A JP3258713B2 JP 3258713 B2 JP3258713 B2 JP 3258713B2 JP 23209092 A JP23209092 A JP 23209092A JP 23209092 A JP23209092 A JP 23209092A JP 3258713 B2 JP3258713 B2 JP 3258713B2
Authority
JP
Japan
Prior art keywords
active material
density
peripheral surface
filled
sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23209092A
Other languages
Japanese (ja)
Other versions
JPH0676819A (en
Inventor
誠 神林
雅行 寺坂
正樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23209092A priority Critical patent/JP3258713B2/en
Publication of JPH0676819A publication Critical patent/JPH0676819A/en
Application granted granted Critical
Publication of JP3258713B2 publication Critical patent/JP3258713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、短冊状のスポンジ状金
属からなる活物質支持体に活物質を充填してなるととも
に、電池構成に際して巻回処理が施される円筒電池用非
焼結式極板の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a strip-shaped sponge-like metal.
The active material support consisting of the genus is filled with the active material.
In addition, for a cylindrical battery, a winding process is performed when the battery is configured.
The present invention relates to a method for manufacturing a sintered electrode plate.

【0002】[0002]

【従来の技術】円筒密閉型アルカリ蓄電池においては、
正負両電極板をセパレータを介して渦巻き状に巻き取っ
て電極群を構成するのが一般的である。そしてここで用
いられる電極板としては、近年スポンジ状金属多孔体を
活物質保持体、及び、導電体としての機能を有する基体
として使用する、所謂、非焼結式製法によるものが多く
なりつつある。
2. Description of the Related Art In a cylindrical sealed alkaline storage battery,
Generally, both the positive and negative electrode plates are spirally wound via a separator to form an electrode group. In recent years, as the electrode plate used here, a so-called non-sintering type manufacturing method using a sponge-like porous metal body as an active material holding body and a base having a function as a conductor has been increasing. .

【0003】この非焼結式製法による電極板の利点は従
来の焼結式に比べ高エネルギー密度化が可能であること
にあるが、高エネルギー密度化を達成するためには、上
記スポンジ状金属多孔体が軽量、高多孔度であることが
求められる。ところで、上記のようなスポンジ状金属多
孔体を活物質支持体とした電極板の巻取り工程におい
て、スポンジ状金属多孔体に亀裂が入ったり破断してし
まったりするという問題がある。
[0003] The advantage of the electrode plate by the non-sintering method is that the energy density can be increased as compared with the conventional sintering method. However, in order to achieve the high energy density, the sponge-like metal is required. It is required that the porous body be lightweight and have high porosity. By the way, there is a problem that the sponge-like porous metal body is cracked or broken in the winding step of the electrode plate using the sponge-like porous metal body as an active material support.

【0004】この問題を軽減する方法として、活物質充
填前のスポンジ状金属多孔体にアニール処理を施すなど
して強度と柔軟性を付与する方法があるが、あまり効果
的ではなく、特に、高エネルギー密度化を期すため活物
質密度を大きく、或いは極板を厚くなるように設定する
とその傾向は強まる。これを防止するには基体スポンジ
状金属多孔体の重量を増やして強度を高めること、或い
はアニール処理の条件を調節してさらに柔軟性を向上さ
せることなどの方法が考えられる。しかし、前者の方法
ではコストが高くなるほか、金属多孔体の専有体積が大
きくなるため、高エネルギー密度化という本来の趣旨に
反する。一方、後者の方法では強度低下を招来させず所
期の効果を発揮させることは実質的に困難である。
As a method of alleviating this problem, there is a method of imparting strength and flexibility by, for example, annealing the porous sponge-like metal body before filling the active material, but it is not very effective. If the active material density is increased or the electrode plate is set to be thicker in order to increase the energy density, the tendency becomes stronger. In order to prevent this, it is conceivable to increase the strength by increasing the weight of the base metal sponge-like porous body, or to further improve the flexibility by adjusting the annealing conditions. However, in the former method, the cost increases and the occupied volume of the porous metal body increases, which is contrary to the original purpose of increasing the energy density. On the other hand, in the latter method, it is practically difficult to exhibit the intended effect without causing a decrease in strength.

【0005】上記問題に対処するために、帯状のスポン
ジ樹脂に連続的に電気メッキするメッキ法によりスポン
ジ状金属多孔体を製造するものにおいては、以下のよう
な方法が用いられていた。 特開昭62−140359号公報の方法 巻取りに際して内周面、外周面になる面を予め規定し、
内周面側のメッキを厚く、外周面側のメッキを薄くする
ことにより基体の厚さ方向の多孔度を変化させ充填活物
質量を調整しようとする提案。 特開昭58−117646号公報の方法 極板の上下端に極板巻取り方向に沿って、帯状の活物質
を充填しない補強部位を設けるという提案。
In order to cope with the above problem, the following method has been used in the production of a porous sponge-like metal body by a plating method of continuously electroplating a strip-like sponge resin. Japanese Patent Application Laid-Open No. Sho 62-140359 The surface of the inner peripheral surface and the outer peripheral surface during winding is defined in advance,
A proposal to change the porosity in the thickness direction of the substrate by adjusting the thickness of the inner peripheral surface side and the thickness of the outer peripheral surface side to adjust the amount of the filled active material. Japanese Patent Application Laid-Open No. 58-117646 A proposal to provide reinforcing portions at the upper and lower ends of an electrode plate along the electrode winding direction in which a strip-shaped active material is not filled.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
法では、以下のような問題が生じる。 特開昭62−
140359号公報に示す方法の問題この方法では、予
め基体に方向性を与える製造をしなければならない煩わ
しさがある上、外周面になる側の多孔体はメッキが薄
く、電極群作製時の巻取りの際に、亀裂が入り易くなっ
てしまうため全体的な基体の強度の向上にはならないと
いう問題がある。 特開昭58−117646号公報
に示す方法の問題この方法では、極板巻取り方向に帯状
の活物質を充填しない補強部位が設けられているため、
その分だけ活物質を充填する部分が減少する。従って活
物質の充填量が減少して、極板エネルギー密度の低下が
避けられないという問題がある。
However, the above method has the following problems. JP-A-62-2
Problem of the method disclosed in Japanese Patent Publication No. 140359 In this method, there is an inconvenience that the substrate must be manufactured so as to give directionality in advance. At the time of removal, there is a problem that a crack is easily formed, so that the strength of the whole substrate is not improved. Problems of the method disclosed in Japanese Patent Application Laid-Open No. 58-117646 In this method, since a reinforcing portion which is not filled with a belt-shaped active material in the winding direction of the electrode plate is provided,
The portion to be filled with the active material is reduced by that amount. Therefore, there is a problem that the filling amount of the active material is reduced and the energy density of the electrode plate is inevitably reduced.

【0007】本発明は上記問題を解決するために行われ
たものであり、作業工程が簡略化でき、しかもエネルギ
ー密度を低下させることがなく、巻回処理の際に極板の
損傷が発生しにくい円筒電池用非焼結式極板の製造方法
を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and can simplify the working process, without lowering the energy density, and reduce the time required for the electrode plate during the winding process.
Method of manufacturing non-sintered electrode plate for cylindrical battery that is unlikely to cause damage
The purpose is to provide .

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、短冊状のスポンジ状金属からなる活物質
支持体に活物質を充填してなるとともに、電池構成に際
して巻回処理が施される円筒電池用非焼結式極板の製造
方法において、前記スポンジ状金属からなる活物質支持
体に、密度が均一になるように活物質を充填して活物質
充填基板を作製する第一のステップと、前記活物質充填
基板において、前記巻回処理の際に外周側に相当する外
周面を外径の小さい圧延ローラで圧延するとともに、内
周側に相当する内周面を外径の大きい圧延ローラで圧延
する第二のステップとを備え、前記外周面の活物質の充
填密度を内周面の活物質の充填密度より小さくすること
を特徴とする。
In order to achieve the above object, the present invention provides an active material comprising a strip-shaped sponge-like metal.
The active material is filled into the support and the
Of non-sintered electrode plates for cylindrical batteries that are wound and wound
In a method, an active material support comprising the sponge-like metal is provided.
Fill the body with active material so that the density becomes uniform
A first step of preparing a filling substrate, and filling the active material
In the substrate, the outside corresponding to the outer peripheral side during the winding process
Roll the peripheral surface with a small outside diameter rolling roller and
Rolling the inner peripheral surface corresponding to the peripheral side with a rolling roller with a large outer diameter
And filling the outer peripheral surface with the active material.
Make the packing density smaller than the packing density of the active material on the inner peripheral surface
It is characterized by.

【0009】また、短冊状のスポンジ状金属からなる活
物質支持体に活物質を充填してなるとともに、電池構成
に際して巻回処理が施される円筒電池用非焼結式極板の
製造方法において、前記スポンジ状金属からなる活物質
支持体に、密度が均一になるようにスラリー状の活物質
を充填して活物質充填基板を作製する第一のステップ
と、前記充填された活物質が未乾燥の状態で、前記活物
質充填基板の内周面にのみ粉末状の活物質を擦り込む第
二のステップとを備え、前記活物質充填基板において、
外周面の活物質の充填密度を内周面の活物質の充填密度
より小さくすることを特徴とする。
In addition, an active material comprising a strip-shaped sponge-like metal is used.
The material support is filled with active material and the battery
Of non-sintered electrode plates for cylindrical batteries
In the production method, an active material comprising the sponge-like metal
Slurry-like active material on the support so that the density is uniform
First step of preparing active material-filled substrate by filling
And wherein the filled active material is in an undried state,
Rubbing the powdered active material only on the inner peripheral surface of the porous substrate
And two steps, in the active material-filled substrate,
The packing density of the active material on the outer peripheral surface is changed to the packing density of the active material on the inner peripheral surface.
It is characterized by being smaller.

【0010】[0010]

【0011】[0011]

【作用】上記の製造方法による作用について以下で説明
する。
The operation of the above manufacturing method will be described below.
I do.

【0012】先ず、ある物体をローラによって圧延する
際に、外径の大きなローラを用いた場合と、外径の小さ
なローラを用いた場合とでは、外径の大きなものを用い
た方が外径の小さなものを用いた方よりも物体の伸び率
が小さいことが通常知られている。
First, an object is rolled by a roller.
When using a roller with a large outside diameter,
Use a roller with a large outer diameter
The elongation rate of the object is smaller than that using a small outer diameter
Is usually known to be small.

【0013】本発明の内、第二のステップにおいて、外
径の異なる圧延ローラを用いて圧延を行うことを特徴と
する製造方法では、圧延時の極板の伸び率を上下面で異
ならしめることができる。即ち、小径のローラに当接し
圧延された側の面方向の伸び率は大きく、大径のローラ
に当接し圧延された側の面方向の伸び率は小径のローラ
側に比べて小さくなった。このように圧延された活物質
充填基板の活物質密度は、小径のローラに当接し圧延さ
れた面方向の伸び率が大きい側ほど小さく、大径のロー
ラに当接し圧延された面方向の伸び率が小さい側程大き
くなった。従って、従来のスポンジ状金属からなる活物
質支持体を備える円筒電池用非焼結式極板の製造方法で
は、巻回処理の際に極板の内周側の面に比べて外周側の
面には大きな応力が加わり活物質支持体に亀裂が入り易
いのに対して、上記の方法によって製造された極板にあ
っては、巻回処理の際に極板における外周側の面の柔軟
性が高くなるので活物質支持体に亀裂が入り難く、極板
の損傷を抑制することが出来る。 また、内周側の面には
大きな張力が作用しないために活物質の充填密度が高水
準となるような設定をしても問題は少なく、活物質の平
均充填密度は外周側の面における活物質の充填密度の値
を下げても維持することが出来るので、極板全体として
エネルギー密度の低下を招くことはない。
In the second step of the present invention,
Rolling is performed using rolling rollers with different diameters.
Manufacturing method, the elongation of the electrode plate during rolling differs between the upper and lower surfaces.
You can do it. That is, the elongation rate in the surface direction on the side rolled by contact with the small-diameter roller was large, and the elongation rate in the surface direction on the side rolled by contact with the large-diameter roller was smaller than that on the small-diameter roller side. The active material density of the active material-filled substrate rolled in this way is smaller as the elongation percentage in the surface direction rolled by contact with the small-diameter roller increases, and the surface direction elongation rolled by contact with the large-diameter roller is reduced. The smaller the ratio, the larger. Therefore, the active material consisting of the conventional sponge-like metal
Manufacturing method of non-sintered electrode plate for cylindrical battery with porous support
At the outer peripheral side compared to the inner peripheral side of the electrode plate during the winding process
Large stress is applied to the surface and the active material support is easily cracked
In contrast, the electrode plate manufactured by the above method
This means that the outer surface of the electrode plate
The active material support is less prone to cracks,
Damage can be suppressed. Also, on the inner surface
High water filling density due to no high tension
There are few problems even if the settings are similar,
The average packing density is the value of the packing density of the active material on the outer peripheral surface.
Can be maintained even if the
The energy density does not decrease.

【0014】さらに、本発明の内、第二のステップにお
いて、活物質の粉末を擦り込むことを特徴とする製造方
法では、極板の厚さ方向における活物質の充填密度に差
を生じさせることが出来る。 従って、上記の製造方法と
同様に、巻回処理の際に活物質支持体に亀裂が入り難
く、極板の損傷を抑制する事が出来る。尚、充填工程で
付与された厚さ方向の活物質密度差は圧延を行っても維
持される。
Further, in the second step of the present invention,
Manufacturing method characterized by rubbing powder of active material
Method, the difference in packing density of the active material in the thickness direction of the electrode plate
Can be caused. Therefore, the above manufacturing method and
Similarly, it is difficult for the active material support to crack during the winding process.
In addition, damage to the electrode plate can be suppressed. The difference in the active material density in the thickness direction provided in the filling step is maintained even after rolling.

【0015】[0015]

【実施例】以下に本発明の電極について説明を行う。 (実施例1)主成分である水酸化ニッケルに、添加剤と
して金属コバルトを加え、糊溶液でスラリー化(スラリ
ー密度1.8g/cm3 )し、スラリー状の活物質を作
製する。当該スラリー状の活物質を、重量600g/m
2 、厚さ1.6mmのスポンジ状ニッケル多孔体に充填
し、乾燥を行う。乾燥後の活物質が充填されたスポンジ
状ニッケル多孔体に、上下のローラのローラ径がそれぞ
れ300mm、200mmである圧延ローラを当接し、
加圧圧縮を行い電極を作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrodes of the present invention will be described below. (Example 1) Metal cobalt as an additive is added to nickel hydroxide as a main component, and the mixture is slurried with a paste solution (slurry density: 1.8 g / cm 3 ) to produce a slurry active material. The slurry active material was weighed at 600 g / m 2.
2. Fill into a 1.6 mm thick sponge-like nickel porous body and dry. Rolling rollers having a roller diameter of 300 mm and 200 mm, respectively, of the upper and lower rollers are brought into contact with the sponge-like nickel porous body filled with the dried active material,
An electrode was produced by applying pressure and compression.

【0016】上記のように作製した電極は、小径のロー
ラが当接し圧延された側の活物質密度が他方側より小さ
くなっており、活物質密度差は極板伸び率から、2.5
%と算出された。また、平均活物質密度は2.80g/
cm3 (有効空間体積当たり)である。このように作製
した電極を、以下電極A1 と称する。 (実施例2)上記実施例1で用いたのと同様なスポンジ
状ニッケル多孔体と、スラリー状活物質とを用いて、先
ず、スポンジ状ニッケル多孔体の内部に、スラリー状活
物質を塗着し、第一の活物質充填を行う。次いで、第一
の充填によって充填された活物質が未乾燥の状態で、糊
溶液と混合していない活物質粉末をスポンジ状ニッケル
多孔体の一方の表面に供給し擦り込む第二の活物質充填
を行い、この後乾燥を行う。乾燥後、外径300mmの
ローラーを有する圧延ローラー装置で加圧圧縮し電極を
作製した。
In the electrode manufactured as described above, the active material density on the rolled side where the small-diameter roller is in contact with the roller is smaller than that on the other side.
%. The average active material density is 2.80 g /
cm 3 (per effective space volume). The thus prepared electrode, hereinafter referred to as electrodes A 1. (Example 2) First, a slurry-like active material was applied to the inside of a sponge-like nickel porous material by using the same sponge-like nickel porous material and a slurry-like active material as used in Example 1 above. Then, a first active material filling is performed. Next, in a state where the active material filled by the first filling is in an undried state, an active material powder not mixed with the paste solution is supplied to one surface of the sponge-like nickel porous body and rubbed into the second active material. , Followed by drying. After drying, the electrode was produced by pressurizing and compressing with a rolling roller device having a roller having an outer diameter of 300 mm.

【0017】尚、第一の活物質充填では、内部の活物質
密度が均一になるように充填を行い、第二の活物質充填
では第一の活物質充填での充填量の3%相当量の活物質
粉末を擦り込んだ。上記のように作製した電極は、一方
側の活物質密度が他方側より小さくなっており、平均活
物質密度は、2.80g/cm3 である。
In the first active material filling, filling is performed so that the internal active material density becomes uniform, and in the second active material filling, 3% equivalent of the filling amount in the first active material filling. Of the active material was rubbed. In the electrode manufactured as described above, the active material density on one side is smaller than that on the other side, and the average active material density is 2.80 g / cm 3 .

【0018】このように作製した電極を、以下電極A2
と称する。 (比較例)実施例1と同様に、スポンジ状ニッケル多孔
体に活物質を充填、乾燥後、実施例2と同一径の圧延ロ
ーラーで加圧圧縮し電極を作製した。この電極の平均密
度は2.9g/cm3 である。
The electrode thus manufactured was referred to as an electrode A 2
Called. (Comparative Example) In the same manner as in Example 1, an active material was filled in a sponge-like nickel porous body, dried, and then pressure-compressed with a rolling roller having the same diameter as in Example 2 to produce an electrode. The average density of this electrode is 2.9 g / cm 3 .

【0019】このように作製した電極を、以下電極Xと
称する。 (実験1)本発明の電極A1 、A2 、及び、比較例の電
極Xを用いてそれぞれ電池を作製し、この電池を用い
て、落下試験後の内部抵抗値の変化によって、極板の強
度を評価したので、その結果を下記の表1に示す。
The electrode thus manufactured is hereinafter referred to as an electrode X. (Experiment 1) Batteries were manufactured using the electrodes A 1 and A 2 of the present invention and the electrode X of the comparative example, and the change in the internal resistance value after the drop test was performed using the batteries. The strength was evaluated, and the results are shown in Table 1 below.

【0020】実験に用いた電池としては、本発明の電極
1 、A2 、比較例の電極Xを所定の寸法に切断し、通
常のカドミウム極とセパレータとを介して組み合わせ円
筒状に巻き取り、電池外装缶に挿入し、電解液を注液
し、封口して作製したものを用いた。尚、電極A1 につ
いては、大径ローラーで圧延した面を、電極A2 につい
ては、第二段階でさらに粉末活物質を充填した面を、そ
れぞれ内周面となるようにセットした。
As the batteries used in the experiment, the electrodes A 1 and A 2 of the present invention and the electrode X of the comparative example were cut into predetermined dimensions and combined into a cylindrical shape via a normal cadmium electrode and a separator. The battery was inserted into a battery outer can, injected with an electrolyte, and sealed. Note that the electrodes A 1, the rolled surface by the large-diameter roller, for electrodes A 2, a surface which is further filled with powdered active material in the second stage was set so that inner circumferential surface, respectively.

【0021】このように電極A1 、A2 、Xを用いて作
製した電池を、以下順に電池a1 、a2 、xと称する。
尚、実験条件としては、それぞれの電池a1 、a2 、x
の充放電を行った後、1mの高さから堅木の上への自由
落下を100回行い、100回落下を行った後の内部抵
抗値を測定し、予め測定しておいた、落下前の内部抵抗
値と比較しその変化量を求めた。尚、それぞれの電池5
0個づつについて実験を行った。
The batteries manufactured using the electrodes A 1 , A 2 , and X are hereinafter referred to as batteries a 1 , a 2 , and x, respectively.
The experimental conditions were as follows: each battery a 1 , a 2 , x
After 100 times of free fall onto the hardwood from a height of 1 m, the internal resistance value after 100 times of fall was measured and measured beforehand. Was compared with the internal resistance value, and the amount of change was determined. In addition, each battery 5
The experiment was performed for each of the 0 pieces.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、本発明の電池a
1 、a2 と比べて、比較例の電池xは、内部抵抗が上昇
したものが多かった。またさらに詳しく調べるために、
上記実験をおこなった後、2mΩ以上変化が起こった電
池については全て解体し、陽極の破損状態を調査した。
As is clear from Table 1, the battery a of the present invention
Compared with 1, a 2, a battery x of the comparative example, were often the internal resistance increased. To investigate further,
After performing the above experiment, all the batteries having a change of 2 mΩ or more were dismantled, and the state of damage of the anode was examined.

【0024】その結果、5mΩ以上増大したものは全て
大きな亀裂が入り1〜3箇所で破断しかかっていた。一
方、増大量が2〜5mΩのものは亀裂はあるが破断にい
たる懸念のあるものはなかった。 (実験2)電極A 2 同様に作製した平均活物質密度が2.80g
/cm3 と2.95g/cm3 の電極について極板の活
物質密度比(外周面の活物質密度/内周面の活物質密
度)を0.99〜0.85の間で種々に変化させた場合
の各々亀裂抑制効果について調査したので、図1にその
結果を示す。
[0024] As a result, all of the samples having an increase of 5 mΩ or more had large cracks and were about to break at one to three places. On the other hand, when the increase amount was 2 to 5 mΩ, there was a crack but there was no fear of breaking. (Experiment 2) Average active material density prepared in the same manner as the electrode A 2 is 2.80g
/ Cm 3 and 2.95 g / cm 3 electrodes, the active material density ratio of the electrode plate (active material density on the outer peripheral surface / active material density on the inner peripheral surface) varied between 0.99 and 0.85 FIG. 1 shows the results of investigating the crack suppressing effect in each case.

【0025】実験条件としては、所定寸法に切断した上
記電極板と、上記実験1で作製した電池に用いたのと同
様のカドミウム負極と、セパレータとを一旦捲回し電極
群を作製し、しかる後この電極群を解体して亀裂、破断
等の電極不良が起こった固体数をカウントし、不良発生
率を算出した。尚、試料数はそれぞれ50個づつについ
て行った。
The experimental conditions were as follows. The electrode plate cut into a predetermined size, the same cadmium negative electrode as used in the battery prepared in the above-described experiment 1, and a separator were once wound to form an electrode group. The electrode group was disassembled and the number of solids in which electrode defects such as cracks and breaks occurred were counted, and the defect occurrence rate was calculated. The number of samples was 50 for each.

【0026】図1から明らかなように、平均活物質密度
2.80g/cm3 、2.95g/cm3 いずれの場合
も、活物質密度比が0.99以下になると明らかに不良
率は低下した。しかし更に0.85を切るところまで密
度比を大きくすると逆に不良率は上昇に転じることがわ
かった。これは内周面の活物質密度が過度に大きくなっ
て、巻取りに耐えられない程までに脆くなったことによ
ると考えられる。
[0026] As apparent from FIG. 1, the average active material density of 2.80 g / cm 3, in any case 2.95 g / cm 3, obviously defect rate decreases when the active material density ratio is 0.99 or less did. However, when the density ratio was further increased to a level below 0.85, it turned out that the defective rate started to increase. It is considered that this is because the active material density on the inner peripheral surface became excessively large and became brittle enough to withstand winding.

【0027】したがって、電極の活物質密度比として
は、0.99〜0.85が望ましく、特に0.98〜
0.87が望ましい。尚、上記実施例では、ニッケル極
についてのみ説明したが、本発明は、これに限ることな
く、同じような基体を用い、同じように極板を渦巻き状
に巻き取る構造を有する電池系の全ての非焼結式電極の
製造方法に適用可能である。
Accordingly, the active material density ratio of the electrode is desirably 0.99 to 0.85, particularly 0.98 to 0.85.
0.87 is desirable. In the above embodiment, only the nickel electrode was described. However, the present invention is not limited to this, and all battery systems having a structure in which a similar substrate is used and the electrode plate is similarly spirally wound are used. Of non-sintered electrodes
Applicable to manufacturing method .

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る製造
方法によれば、巻回時において、外周側に相当する面側
の活物質の充填密度を、内周側に相当する面側の活物質
の充填密度より小さくすることにより、比較的簡単な方
法で、エネルギー密度低下を招くことなく、スポンジ状
金属を活物質支持体とする非焼結式極板の巻回時におけ
る活物質支持体の亀裂、破断という致命的な欠陥発生を
抑制する高性能な円筒電池用非焼結式極板の製造方法を
提供することができるという効果を奏した。
As described above, according to the manufacturing method of the present invention,
According to the method, at the time of winding, the surface side corresponding to the outer peripheral side
The packing density of the active material on the surface side corresponding to the inner peripheral side
Less than the packing density of the sponge-like material in a relatively simple manner without lowering the energy density.
For winding non-sintered electrode plates with metal as active material support
The present invention has an effect of being able to provide a high-performance method for producing a non-sintered electrode plate for a cylindrical battery, which suppresses the occurrence of fatal defects such as cracks and breaks in the active material support .

【図面の簡単な説明】[Brief description of the drawings]

【図1】活物質密度比を変化させた場合の電極不良発生
率の変化を示す図である。
FIG. 1 is a diagram showing a change in an electrode failure rate when an active material density ratio is changed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−12471(JP,A) 特公 昭48−6334(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/34 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-12471 (JP, A) JP-B-48-6334 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/00-4/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(1) 短冊状のスポンジ状金属からなる活物質Active material made of strip-shaped sponge-like metal
支持体に活物質を充填してなるとともに、電池構成に際The active material is filled into the support and the
して巻回処理が施される円筒電池用非焼結式極板の製造Of non-sintered electrode plates for cylindrical batteries that are wound and wound
方法において、In the method, 前記スポンジ状金属からなる活物質支持体に、密度が均The active material support made of the sponge-like metal has a uniform density.
一になるように活物質を充填して活物質充填基板を作製Fill active material to make one and make active material filled substrate
する第一のステップと、The first step to 前記活物質充填基板において、前記巻回処理の際に外周In the active material-filled substrate, the outer periphery is
側に相当する外周面を外径の小さい圧延ローラで圧延すRoll the outer peripheral surface corresponding to the
るとともに、内周側に相当する内周面を外径の大きい圧And the inner peripheral surface corresponding to the inner peripheral side
延ローラで圧延する第二のステップとを備え、Rolling with a rolling roller, and 前記外周面の活物質の充填密度を内周面の活物質の充填The filling density of the active material on the outer peripheral surface is determined by the filling of the active material on the inner peripheral surface.
密度より小さくするLess than density ことを特徴とする円筒電池用非焼結Characterized by non-sintering for cylindrical batteries
式極板の製造方法。Method of manufacturing an electrode plate.
【請求項2】(2) 短冊状のスポンジ状金属からなる活物質Active material made of strip-shaped sponge-like metal
支持体に活物質を充填してなるとともに、電池構成に際The active material is filled into the support and the
して巻回処理が施される円筒電池用非焼結式極板の製造Of non-sintered electrode plates for cylindrical batteries that are wound and wound
方法において、In the method, 前記スポンジ状金属からなる活物質支持体に、密度が均The active material support made of the sponge-like metal has a uniform density.
一になるようにスラリー状の活物質を充填して活物質充Fill the slurry with active material so that
填基板を作製する第一のステップと、A first step of making a filling substrate, 前記充填された活物質が未乾燥の状態で、前記活物質充In a state where the filled active material is not dried,
填基板の内周面にのみ粉末状の活物質を擦り込む第二のThe second step is to rub the powdered active material only on the inner peripheral surface of the
ステップとを備え、And steps, 前記活物質充填基板において、外周面の活物質の充填密In the active material-filled substrate, the density of the active material on the outer peripheral surface is high.
度を内周面の活物質の充填密度より小さくすることを特The density is smaller than the packing density of the active material on the inner peripheral surface.
徴とする円筒電池用非焼結式極板の製造方法。A method for producing a non-sintered electrode for a cylindrical battery.
JP23209092A 1992-08-31 1992-08-31 Method for manufacturing non-sintered electrode plate for cylindrical battery Expired - Fee Related JP3258713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23209092A JP3258713B2 (en) 1992-08-31 1992-08-31 Method for manufacturing non-sintered electrode plate for cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23209092A JP3258713B2 (en) 1992-08-31 1992-08-31 Method for manufacturing non-sintered electrode plate for cylindrical battery

Publications (2)

Publication Number Publication Date
JPH0676819A JPH0676819A (en) 1994-03-18
JP3258713B2 true JP3258713B2 (en) 2002-02-18

Family

ID=16933848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23209092A Expired - Fee Related JP3258713B2 (en) 1992-08-31 1992-08-31 Method for manufacturing non-sintered electrode plate for cylindrical battery

Country Status (1)

Country Link
JP (1) JP3258713B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226487B2 (en) 2003-07-07 2007-06-05 The Procter & Gamble Company 2-(amino or substituted amino)-5-(substituted oxymethyl)-phenol compounds, dyeing compositions containing them, and use thereof
US7229480B2 (en) 2004-02-13 2007-06-12 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof
US7331997B2 (en) 2004-04-06 2008-02-19 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof
US7351266B2 (en) 2004-03-04 2008-04-01 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110656B2 (en) * 1999-02-17 2008-07-02 ソニー株式会社 Battery pack, battery mounting device, power supply device, and electronic device
JP3728143B2 (en) * 1999-06-22 2005-12-21 三洋電機株式会社 Sealed alkaline storage battery
WO2008029719A1 (en) 2006-09-07 2008-03-13 Panasonic Corporation Nonaqueous electrolytic secondary cell
JP5258375B2 (en) * 2008-05-14 2013-08-07 三洋電機株式会社 Cylindrical alkaline secondary battery
JP5472759B2 (en) * 2009-12-17 2014-04-16 トヨタ自動車株式会社 Lithium secondary battery
JP6125766B2 (en) * 2012-06-21 2017-05-10 川崎重工業株式会社 Manufacturing method and manufacturing apparatus for battery and buffer member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226487B2 (en) 2003-07-07 2007-06-05 The Procter & Gamble Company 2-(amino or substituted amino)-5-(substituted oxymethyl)-phenol compounds, dyeing compositions containing them, and use thereof
US7229480B2 (en) 2004-02-13 2007-06-12 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof
US7351266B2 (en) 2004-03-04 2008-04-01 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof
US7468080B2 (en) 2004-03-04 2008-12-23 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof
US7331997B2 (en) 2004-04-06 2008-02-19 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof

Also Published As

Publication number Publication date
JPH0676819A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
DE69117068T2 (en) HYDROGEN STORAGE ELECTRODE, NICKEL ELECTRODE AND NICKEL HYDROGEN BATTERY
EP3059791B1 (en) Valve-regulated lead-acid battery
JP3258713B2 (en) Method for manufacturing non-sintered electrode plate for cylindrical battery
JP3653425B2 (en) Alkaline storage battery and method for manufacturing the same
JP4868759B2 (en) Positive electrode plate for lithium secondary battery and method for producing the same
US5681673A (en) Alkaline secondary battery
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
US6503659B1 (en) Layered metal hydride electrode providing reduced cell pressure
EP0803922B1 (en) Method of producing an alkaline battery using spongy metal substrate
JPH10284085A (en) Grid for lead-acid battery
JP2546638B2 (en) Manufacturing method of battery plate
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
WO2007132655A1 (en) Electrode for secondary battery and method for producing the same
EP2551944B1 (en) Lead-acid battery
JP4644336B2 (en) Method for producing positive electrode for alkaline storage battery
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JPH08148150A (en) Electrode using three-dimensional substrate and manufacture thereof
JP2000113880A (en) Hydrogen storage alloy negative electrode and its manufacture
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JP3432865B2 (en) Method for producing sintered substrate for alkaline storage battery
US6537699B1 (en) Positive electrode plate for nickel-hydrogen cell
JP3606089B2 (en) Method for producing alkaline storage battery
JP2538322B2 (en) Method for manufacturing electrode plate for alkaline storage battery
KR100216257B1 (en) Method producing nickel electrode for alkaline condenser
JP4306201B2 (en) Method for manufacturing three-dimensional foam substrate and electrode for alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees