JP5355052B2 - Method for producing sintered nickel substrate - Google Patents

Method for producing sintered nickel substrate Download PDF

Info

Publication number
JP5355052B2
JP5355052B2 JP2008299725A JP2008299725A JP5355052B2 JP 5355052 B2 JP5355052 B2 JP 5355052B2 JP 2008299725 A JP2008299725 A JP 2008299725A JP 2008299725 A JP2008299725 A JP 2008299725A JP 5355052 B2 JP5355052 B2 JP 5355052B2
Authority
JP
Japan
Prior art keywords
substrate
slurry
thickness
nickel
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008299725A
Other languages
Japanese (ja)
Other versions
JP2010129213A (en
Inventor
敏宏 坂谷
育幸 原田
康洋 工藤
輝人 長江
英幸 藤川
裕樹 仁井
彰彦 葉坂
直樹 中田
正樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008299725A priority Critical patent/JP5355052B2/en
Publication of JP2010129213A publication Critical patent/JP2010129213A/en
Application granted granted Critical
Publication of JP5355052B2 publication Critical patent/JP5355052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a sintered substrate with filling volumes of active materials made equal at each column, even in the case of making the substrate on which a plurality of columns are formed at the same time. <P>SOLUTION: The manufacturing method of the nickel sintered substrate is provided with: a slurry coating process of coating nickel slurry 12 containing nickel powder, a hole-making agent and a thickener on a conductive core body 11 so as to have three or more columns of sintered substrates formed and with a coating thickness at an end column to be larger than that of a middle column to make up a slurry-coated substrate 11a; a drying process of drying the slurry-coated substrate 11a to make up a slurry dried substrate 11b; a thickness adjusting process of adjusting thickness of each column of the slurry dried substrate to make up a thickness adjusted substrate 11c; and a sintering process of sintering the thickness adjusted substrate 11c with a sintering furnace 112. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ニッケル−水素蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄電池に用いられるニッケル焼結基板に係り、特に、ニッケルスラリーを導電性芯体に塗布した後に焼結を行って3列以上の複数列の焼結基板を同時に形成するニッケル焼結基板の製造方法に関する。   The present invention relates to a nickel sintered substrate used in an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, and in particular, a nickel slurry is applied to a conductive core and then sintered to form a plurality of three or more rows. The present invention relates to a method for manufacturing a nickel-sintered substrate that simultaneously forms a row of sintered substrates.

近年、二次電池の用途は、例えば、携帯電話、パーソナルコンピュータ、電動工具、電動自転車、ハイブリッド自動車、電気自動車など多岐に亘るようになった。これら用途のうち、特に、ハイブリッド自動車や電気自動車などのような車輌関係の用途においては、アルカリ蓄電池が広く用いられている。そして、これらの用途に用いられるアルカリ蓄電池においては、高出力化、長寿命化の要望が高まっている。また、車輌関係の用途においては、組電池として多数の単電池が直列接続されて用いられるため、個々の電池の容量ばらつきを低減させる要望が、特に、強くなった。   In recent years, secondary batteries have been used in a wide variety of applications, such as mobile phones, personal computers, electric tools, electric bicycles, hybrid vehicles, and electric vehicles. Among these applications, alkaline storage batteries are widely used, particularly in vehicle-related applications such as hybrid vehicles and electric vehicles. And in the alkaline storage battery used for these uses, the request of high output and long life is increasing. Further, in vehicle-related applications, since a large number of single cells are connected in series as an assembled battery, the demand for reducing the capacity variation of individual batteries has become particularly strong.

ところで、アルカリ蓄電池の正極にはニッケル正極板が用いられるが、この種の高出力で長寿命が要求される用途に用いられるニッケル正極板の基板材料としてはニッケル焼結基板を用いるのが一般的である。これは、ニッケル焼結基板の骨格となるニッケル骨格が緻密で、長期間に亘って導電性が保持されるためである。このようなニッケル焼結基板を用いてニッケル正極板を作製する場合、含浸法により正極活物質(水酸化ニッケル)をニッケル焼結基板の細孔内に充填するようになされている。このため、個々の電池の容量ばらつき(活物質の充填量のばらつき)を低減させるためには、ニッケル焼結基板の厚みばらつきの低減が求められるようになった。   By the way, although a nickel positive electrode plate is used for the positive electrode of the alkaline storage battery, a nickel sintered substrate is generally used as a substrate material of the nickel positive electrode plate used for such applications that require a high output and a long life. It is. This is because the nickel skeleton that is the skeleton of the nickel sintered substrate is dense and retains conductivity over a long period of time. When producing a nickel positive electrode plate using such a nickel sintered substrate, the positive electrode active material (nickel hydroxide) is filled into the pores of the nickel sintered substrate by an impregnation method. For this reason, in order to reduce the capacity variation (variation in the amount of filling of the active material) of each battery, it has been required to reduce the thickness variation of the nickel sintered substrate.

そこで、焼結後のニッケル焼結基板を圧延して厚み調整が行われるようになったが、圧延後にニッケル骨格のスプリングバック現象に起因する反発が生じて、厚みばらつきが改善されない場合があった。この場合、厚みばらつきを改善するために強く圧延すると、焼結後のニッケル骨格が切断されることにより、強度低下や活物質間の導電性低下が発生するという新たな問題も生じるようになった。そこで、例えば、特許文献1(特開平5−174814号公報)にて、乾燥基板に0〜40μm程度の厚み調整工程を加えることで、ニッケル焼結基板の厚みの変動を抑制する手法が提案されるようになった。   Therefore, although the thickness of the nickel sintered substrate after sintering has been rolled, the rebound caused by the springback phenomenon of the nickel skeleton has occurred after rolling, and the thickness variation may not be improved. . In this case, when strongly rolled to improve the thickness variation, the nickel skeleton after sintering is cut, resulting in a new problem that the strength decreases and the conductivity decreases between the active materials. . Therefore, for example, Patent Document 1 (Japanese Patent Laid-Open No. 5-174814) proposes a technique for suppressing fluctuations in the thickness of the nickel sintered substrate by adding a thickness adjusting step of about 0 to 40 μm to the dry substrate. It became so.

上述した特許文献1にて提案されたニッケル焼結基板の厚み調整の手法においては、焼結前であるため、ニッケル粉の間に樹脂材料(ゲル化した増粘剤や造孔剤)が保持されている。そのため、部分変形が起こりにくいとともに、後の工程で焼結されてニッケル骨格が形成されるため、ニッケル骨格の切断やスプリングバック現象が発生する恐れもなく、安定した厚みのニッケル焼結基板を作製することが可能となる。これにより、ニッケル焼結基板の厚みばらつきが低減されるため、活物質の充填量のばらつきが低減し、電池容量のばらつきを低減させることが可能となる。
特開平5−174814号公報
In the method of adjusting the thickness of the sintered nickel substrate proposed in Patent Document 1 described above, since it is before sintering, a resin material (gelled thickener or pore former) is held between the nickel powders. Has been. For this reason, partial deformation is unlikely to occur, and the nickel skeleton is formed by sintering in the subsequent process, so there is no risk of nickel skeleton cutting or springback phenomenon, producing a stable nickel sintered substrate. It becomes possible to do. Thereby, since the thickness variation of the nickel sintered substrate is reduced, the variation in the filling amount of the active material is reduced, and the variation in the battery capacity can be reduced.
JP-A-5-174814

ところで、この種のニッケル焼結基板を製造するに際しては、生産性や生産効率の観点から3列以上の複数列が同時に形成されるような製造方法が採用されている。このため、このようにして作製されたニッケル焼結基板の活物質の含浸工程において、中列(両端部以外の中央部の列)と端列(両端部の列)とで、環境影響の受け易さ(例えば、乾燥され易さや液処理のされ易さなど)が相違することとなる。これにより、中列と端列とで充填される活物質質量にばらつきが生じることとなり、特に、端列での活物質の充填量が中列よりも低下するという問題が生じることとなる。   By the way, when manufacturing this kind of nickel sintered substrate, a manufacturing method is adopted in which three or more rows are simultaneously formed from the viewpoint of productivity and production efficiency. For this reason, in the step of impregnating the active material of the nickel sintered substrate thus manufactured, the middle row (the central row other than both ends) and the end row (both ends) are affected by environmental influences. Easiness (for example, easiness of drying, easiness of liquid treatment, etc.) will be different. As a result, the active material mass filled in the middle row and the end row varies, and in particular, there is a problem that the active material filling amount in the end row is lower than that in the middle row.

この場合、特に、正・負両極の対向面積を拡大させて、反応面積を増大させることが必要となる高出力タイプのニッケル正極板においては、ニッケル正極板の厚みを薄くする必要があるため、ニッケル焼結基板の厚みを薄くする必要がある。ところが、ニッケル焼結基板は厚みが薄くなるに伴って、複数列の列間での活物質の充填量のばらつきが発生しやすくなるため、ニッケル焼結基板の厚み低減化の影響がより大きくなるという状況となった。そこで、例えば、ニッケル焼結基板の端列の厚みを中列よりは厚くなるようにして、活物質が多く充填され易くするといった対処方法が考えられた。   In this case, in particular, in the high-power type nickel positive electrode plate that needs to increase the reaction area by expanding the facing area of both positive and negative electrodes, it is necessary to reduce the thickness of the nickel positive electrode plate, It is necessary to reduce the thickness of the nickel sintered substrate. However, as the thickness of the nickel-sintered substrate becomes thinner, variation in the amount of active material filling among the plurality of rows tends to occur, so the effect of reducing the thickness of the nickel-sintered substrate becomes greater. It became the situation. In view of this, for example, a coping method has been considered in which the thickness of the end row of the nickel sintered substrate is made thicker than that of the middle row so that a large amount of active material is easily filled.

ところが、圧延によって端列の厚みだけを厚くすることは困難であるとともに、例え、端列の厚みだけを厚くすることができたとしても、複数列の列間に厚み差が生じるようになる。この場合、通常、作製された複数列からなる焼結基板はコイル状に巻き取られて、次工程に送られこととなる。ところが、複数列の列間に厚み差が生じると、得られた複数列からなる焼結基板に蛇行が生じたり、あるいは得られた複数列からなる焼結基板をコイル状に巻き取って巻き取りコイルとする際に、巻き取りコイルに巻ズレが発生したりして、容易に取り扱えなくなるといった新たな問題も生じるようになった。   However, it is difficult to increase only the thickness of the end rows by rolling, and even if only the thickness of the end rows can be increased, a difference in thickness occurs between a plurality of rows. In this case, normally, the produced sintered substrate composed of a plurality of rows is wound into a coil shape and sent to the next step. However, when a thickness difference occurs between the plurality of rows, meandering occurs in the obtained plurality of rows of sintered substrates, or the obtained plurality of rows of sintered substrates are wound into a coil shape and wound up. When a coil is used, a new problem has arisen in that a winding deviation occurs in the winding coil and the coil cannot be easily handled.

そこで、本発明者等は種々の検討を行い、端列は中列と較べると、乾燥され易く、かつ液処理もされ易いため、端列は活物質の充填量が少なくなる傾向にあるとともに、含浸により液が浸透するものの基板表面層の含浸液は垂れ落ち易いため、焼結基板の厚みが薄くなるほどその影響が顕著に現れるようになるという知見を得た。
本発明は上記知見に基づいてなされたものであって、複数列が同時に形成される焼結基板を作製しても、各列の活物質の充填量が等しくなる焼結基板の製造方法を提供することを目的としてなされたものである。
Therefore, the present inventors have made various studies, and the end row is easier to be dried and liquid-treated than the middle row, so that the end row tends to have a smaller amount of active material, Although the liquid permeated by impregnation, the impregnating liquid of the substrate surface layer tends to sag, and thus the knowledge that the influence becomes more noticeable as the thickness of the sintered substrate becomes thinner is obtained.
The present invention has been made based on the above knowledge, and provides a method for manufacturing a sintered substrate in which the amount of active material in each row is equal even when a plurality of rows are formed simultaneously. It was made for the purpose of doing.

本発明は、ニッケルスラリーを導電性芯体に塗布した後に焼結を行って3列以上の複数列の焼結基板を同時に形成するニッケル焼結基板の製造方法であって、ニッケル粉末と造孔剤と増粘剤とを含有するニッケルスラリーを3列以上の複数列の焼結基板が形成されるとともに端列の塗布厚みが中列の塗布厚みより厚くなるように導電性芯体に塗布してスラリー塗布基板とするスラリー塗布工程と、スラリー塗布基板を乾燥させてスラリー乾燥基板とする乾燥工程と、スラリー乾燥基板の各列の厚みが等しくなるように厚み調整して厚み調整基板とする厚み調整工程と、厚み調整基板を焼結する焼結工程とを備えたことを特徴とする。   The present invention relates to a method of manufacturing a nickel sintered substrate in which a nickel slurry is applied to a conductive core and then sintered to simultaneously form a plurality of rows of sintered substrates of three or more rows. A nickel slurry containing an agent and a thickener is applied to the conductive core so that three or more rows of sintered substrates are formed and the thickness of the end row is greater than the thickness of the middle row. The thickness of the thickness adjustment substrate by adjusting the thickness so that the thickness of each row of the slurry drying substrate is equal, the slurry coating step of making the slurry coating substrate, the drying step of drying the slurry coating substrate to make the slurry drying substrate An adjustment step and a sintering step for sintering the thickness adjustment substrate are provided.

ここで、端列の塗布厚みが中列の塗布厚みより厚くなるようにニッケルスラリーを導電性芯体に塗布すると、端列でのニッケル量が多くなる。そして、端列でのニッケル量が多くなったスラリー塗布基板を乾燥した後、スラリー乾燥基板の各列の厚みが等しくなるように厚み調整を行うと、列間の厚みばらつきが抑制されるとともに、端列での活物質の保持性能を向上させることが可能になる。これにより、中列に対する端列の活物質質量低下を抑制するとともに、コイル巻取り時に蛇行や、巻ズレが発生しないコイル状のニッケル焼結基板が得られることとなる。   Here, when the nickel slurry is applied to the conductive core so that the coating thickness of the end row is larger than the coating thickness of the middle row, the amount of nickel in the end row increases. And after drying the slurry-coated substrate in which the amount of nickel in the end row is increased, and adjusting the thickness so that the thickness of each row of the slurry dry substrate is equal, variation in thickness between rows is suppressed, It becomes possible to improve the retention performance of the active material in the end row. As a result, it is possible to obtain a coiled nickel sintered substrate that suppresses a decrease in mass of the active material in the end row with respect to the middle row and does not generate meandering or winding deviation during coil winding.

この場合、端列の塗布厚みが中列の塗布厚みに対して5μm以上の増加量であると、中列に対する端列の活物質質量低下を抑制する効果が大きいことが明らかになった。一方、端列の塗布厚みが中列の塗布厚みに対して20μmを超えるような増加量であると、スラリー乾燥基板の端列の厚みが大きくなりすぎるため、各列が同一厚みになるように圧延しようとすると、スラリー乾燥基板の反発(スプリングバック)による列間の厚みばらつ
きや、圧延ムラ(強圧延部分が発生する部分的なスラリー乾燥基板の伸び)によるスラリー乾燥基板のしわが発生するようになる。このため、スラリー塗布工程においては、端列の塗布厚みが中列の塗布厚みより5μm以上で20μm以下だけ厚くなるようにニッケルスラリーを塗布するようにする。
In this case, it has been clarified that when the coating thickness of the end row is an increase of 5 μm or more with respect to the coating thickness of the middle row, the effect of suppressing the decrease in the active material mass of the end row with respect to the middle row is great. On the other hand, if the coating thickness of the end row is an increase amount exceeding 20 μm with respect to the coating thickness of the middle row, the thickness of the end row of the slurry dry substrate becomes too large, so that each row has the same thickness. When rolling is attempted, wrinkles of the slurry dry substrate due to thickness variation between rows due to repulsion of the slurry dry substrate (springback) and rolling unevenness (partial elongation of the slurry dry substrate where a strong rolled portion occurs) are generated. become. Therefore, in the slurry coating step, you nickel slurry so thick as 20μm or less 5μm or more than the coating thickness of the medium is the coating thickness of the end column column as applied.

なお、一対の回転ローラによる圧延で一定の厚みの調整を行うようにすると、スラリー乾燥基板に傷などのダメージが発生することが防止できるようになるとともに、スラリー乾燥基板に歪が生じにくい効果があり、さらに、回転ローラの損傷も少ないことからすると、厚み調整はスラリー乾燥基板が一対の回転ローラ間を通過させることにより行うようにするのが望ましい。また、スラリー乾燥基板は乾燥の仕方によりランダムに厚みが変化する可能性があるので、ローラの間隔やその傾きの調整が容易な回転ローラによるのが望ましい。   In addition, when the fixed thickness is adjusted by rolling with a pair of rotating rollers, it is possible to prevent damage such as scratches on the slurry dry substrate, and the slurry dry substrate is less likely to be distorted. In addition, since the damage to the rotating roller is small, it is desirable to adjust the thickness by allowing the slurry dry substrate to pass between the pair of rotating rollers. Further, since the thickness of the slurry drying substrate may change randomly depending on the drying method, it is desirable to use a rotating roller that can easily adjust the roller interval and its inclination.

本発明のニッケル焼結基板においては、活物質の充填量が少なくなる傾向にあるとともに含浸により液が浸透するものの基板表面層の含浸液が垂れ落ち易い端列のニッケルスラリーの塗布量を多くしているので、活物質の充填量のばらつきが少なく、かつ電池容量のばらつきが少ない極板が得られるようになる。   In the nickel sintered substrate of the present invention, the amount of the active material filling tends to decrease and the amount of the nickel slurry applied to the end row where the impregnating liquid of the substrate surface layer is liable to drip is increased although the liquid penetrates by impregnation. Therefore, it is possible to obtain an electrode plate with less variation in the filling amount of the active material and less variation in battery capacity.

以下に、本発明をニッケル−水素蓄電池のニッケル極板に適用されるニッケル焼結基板の製造方法の一実施の形態を図1および図2に基づいて以下に説明する。なお、図1は本発明の焼結基板の製造方法の概略構成の一例を模式的に示す断面図である。また、図2は端列の塗布厚み増加量と端列の活物質の減少比率の関係を示すグラフである。   Below, one Embodiment of the manufacturing method of the nickel sintered substrate applied to the nickel electrode plate of a nickel-hydrogen storage battery is described based on FIG. 1 and FIG. FIG. 1 is a cross-sectional view schematically showing an example of a schematic configuration of the method for producing a sintered substrate of the present invention. FIG. 2 is a graph showing the relationship between the increase in coating thickness at the end row and the reduction ratio of the active material at the end row.

1.ニッケル焼結基板の作製
まず、図1に示すようなニッケル焼結基板の製造装置100を用意する。ここで、ニッケル焼結基板の製造装置100は、ニッケルメッキが施された穿孔鋼板からなる導電性芯材11をロール状に巻き取っている巻き出しロール101と、得られた焼結基板をロール状に巻き取る巻き取りロール102と、導電性芯材11を搬送する搬送ローラ103,104,105,106,107と、導電性芯材11にニッケルスラリー12を塗布するスラリー槽108と、塗布されたスラリーを所定の厚みに調整してスラリー塗布基板11aを形成する厚み調整スリット109と、スラリー塗布基板11aを乾燥させてスラリー乾燥基板とする乾燥機110と、スラリー乾燥基板11bの厚みを調整する厚み調整用回転ローラ111と、厚みが調整されたスラリー乾燥基板11bを還元性雰囲気で焼結する焼結炉112とから構成されている。ここで、厚み調整スリット109は複数列に分かれていて、これらの複数列のスリット109のスリット幅を個々に調整できるようになされている。
1. First, a nickel sintered substrate manufacturing apparatus 100 as shown in FIG. 1 is prepared. Here, the nickel sintered substrate manufacturing apparatus 100 includes an unwinding roll 101 that winds the conductive core material 11 made of a nickel-plated perforated steel sheet in a roll shape, and rolls the obtained sintered substrate. A winding roll 102 that winds the conductive core material 11, transport rollers 103, 104, 105, 106, and 107 that transport the conductive core material 11, and a slurry tank 108 that applies nickel slurry 12 to the conductive core material 11. The thickness adjustment slit 109 for adjusting the slurry to a predetermined thickness to form the slurry-coated substrate 11a, the dryer 110 that dries the slurry-coated substrate 11a to form the slurry-dried substrate, and the thickness of the slurry-dried substrate 11b are adjusted. A thickness adjusting rotary roller 111 and a sintering furnace 112 for sintering the adjusted slurry dry substrate 11b in a reducing atmosphere. It is configured. Here, the thickness adjusting slits 109 are divided into a plurality of rows, and the slit widths of the plurality of rows of slits 109 can be individually adjusted.

なお、導電性芯材11は、例えば、厚みが60μmの穿孔鋼板からなり、その表面に厚みが5μmのニッケルメッキが施されているとともに、複数列(例えば、5列乃至8列)のニッケル焼結基板が形成されるように所定の配列となるように穿孔がなされている。この場合、予め、ニッケルメッキが施された穿孔鋼板からなる導電性芯材11をロール状に巻き取られた巻き出しロール101を所定位置に配置した後、この巻き出しロール101に巻き取られた導電性芯材11の先端部を搬送ローラ103、スラリー槽108内の搬送ローラ104、厚み調整スリット109、乾燥機110、厚み調整ローラ111、搬送ローラ105,106、焼結炉112内および搬送ローラ107を通して巻き取りロール102に巻き付けられているものとする。   The conductive core material 11 is made of, for example, a perforated steel sheet having a thickness of 60 μm, and the surface thereof is plated with nickel having a thickness of 5 μm, and a plurality of rows (for example, 5 to 8 rows) of nickel baked steel. Perforations are made so as to form a predetermined arrangement so that a bonded substrate is formed. In this case, the conductive core material 11 made of a nickel-plated perforated steel sheet was placed in a predetermined position on the unwinding roll 101 wound in a roll shape, and then wound on the unwinding roll 101. The leading end of the conductive core material 11 is the transport roller 103, the transport roller 104 in the slurry tank 108, the thickness adjusting slit 109, the dryer 110, the thickness adjusting roller 111, the transport rollers 105 and 106, the inside of the sintering furnace 112, and the transport roller. It is assumed that it is wound around the winding roll 102 through 107.

ついで、嵩密度が0.57g/cm3で、フィッシャーサイズ(なお、このフィッシャーサイズはフィッシャー サブシーブ サイザー(Fisher Sub-Sieve Sizer)で測定した平均粒径のことを意味する)が2.5μmのニッケル粉末40質量部と、造孔剤としてのメチルメタクリレート−アクリロニトリル共重合体を主成分とする完全発泡有機中空体(平均粒径は60μm)0.1質量部と、増粘剤としての3質量%のメチルセルロース水溶液60質量部とを真空引きしながら混練して、ニッケルスラリー12を調製した。ついで、このように調製されたニッケルスラリー12をスラリー槽108内に収容した後、巻き取りロール102を所定の速度で巻き取ることにより、巻き出しロール101にロール状に巻き取られた導電性芯材11は巻き出しロール101から巻き出される。 Next, nickel with a bulk density of 0.57 g / cm 3 and a Fisher size (meaning that this Fisher size is the average particle size measured with a Fisher Sub-Sieve Sizer) is 2.5 μm. 40 parts by mass of powder, 0.1 part by mass of a completely foamed organic hollow body (average particle size is 60 μm) mainly composed of a methyl methacrylate-acrylonitrile copolymer as a pore-forming agent, and 3% by mass as a thickener A nickel slurry 12 was prepared by kneading 60 parts by mass of an aqueous methylcellulose solution under vacuum. Next, after the nickel slurry 12 thus prepared is accommodated in the slurry tank 108, the winding core 102 is wound up at a predetermined speed, whereby the conductive core wound around the winding roll 101 in a roll shape. The material 11 is unwound from the unwinding roll 101.

これにより、スラリー槽108内のニッケルスラリー12中を通過する過程で導電性芯材11の両面にニッケルスラリー12が塗布される。そして、導電性芯材11が厚み調整スリット109を通過することにより余分についたニッケルスラリー12が掻き落とされることにより、塗布厚みが調整されたスラリー塗布基板11aが形成されることとなる。この場合、厚み調整用のスリット109の複数列のスリット幅を個々に調整して、中列のスラリー塗布基板11aの厚みが670μmになるとともに、端列のスラリー塗布基板11aの厚みがそれぞれ670μm、(670+3)μm、(670+5)μmおよび(670+10)μmとなるようにした。   Thereby, the nickel slurry 12 is applied to both surfaces of the conductive core material 11 in the process of passing through the nickel slurry 12 in the slurry tank 108. Then, when the conductive core material 11 passes through the thickness adjusting slit 109, the excess nickel slurry 12 is scraped off, so that the slurry coating substrate 11a with the coating thickness adjusted is formed. In this case, by adjusting the slit widths of the plurality of rows of the slits 109 for adjusting the thickness individually, the thickness of the slurry coating substrate 11a in the middle row becomes 670 μm, and the thickness of the slurry coating substrate 11a in the end row is 670 μm, (670 + 3) μm, (670 + 5) μm, and (670 + 10) μm.

ここで、端列のスラリー塗布基板11aの厚みが、(670+3)μmとなるように塗布されたスラリー塗布基板11aをスラリー塗布基板a1とした。また、同様に、(670+5)μmとなるように塗布されたスラリー塗布基板11aをスラリー塗布基板b1とし、(670+10)μmとなるように塗布されたスラリー塗布基板11aをスラリー塗布基板c1とした。さらに、端列のスラリー塗布基板11aの厚みが中列のスラリー塗布基板11aの厚みと等しく670μmとなるように塗布されたスラリー塗布基板11aをスラリー塗布基板d1とした。   Here, the slurry-coated substrate 11a applied so that the thickness of the end-row slurry-coated substrate 11a is (670 + 3) μm was defined as the slurry-coated substrate a1. Similarly, the slurry-coated substrate 11a applied so as to be (670 + 5) μm was designated as a slurry-coated substrate b1, and the slurry-coated substrate 11a applied so as to be (670 + 10) μm was designated as a slurry-coated substrate c1. Further, the slurry-coated substrate 11a coated so that the thickness of the slurry-coated substrate 11a in the end row is equal to the thickness of the slurry-coated substrate 11a in the middle row is 670 μm was used as the slurry-coated substrate d1.

こうして形成されたスラリー塗布基板11a(a1,b1,c1,d1)は、温度が800℃に維持された乾燥機110に入り、スラリー塗布基板11aが乾燥されてスラリー乾燥基板11bが形成されることとなる。なお、このとき乾燥機110内に滞在する時間が30秒間となるように巻き取りロール102の回転速度が調整されている。ついで、得られたスラリー乾燥基板11bを一対の厚み調整用回転ローラ111の間を通過させることにより、スラリー乾燥基板11bの各列の厚みが等しくなる(スラリー乾燥基板11bの内の最も厚みが薄い列において厚みが少なくとも20μm低減する)ように調整されて厚み調整基板11c(a2,b2,c2,d2)が形成されることとなる。
なお、スラリー塗布基板d1を乾燥させてスラリー乾燥基板11bとした後、厚み調整用回転ローラ111の間を通過させなかったものを厚み無調整基板e2とした。この場合、スラリー塗布基板a1を用いたものを厚み調整基板a2とし、スラリー塗布基板b1を用いたものを厚み調整基板b2とし、スラリー塗布基板c1を用いたものを厚み調整基板c2とし、スラリー塗布基板d1を用いたものを厚み調整基板d2とした。
The slurry coated substrate 11a (a1, b1, c1, d1) thus formed enters the dryer 110 whose temperature is maintained at 800 ° C., and the slurry coated substrate 11a is dried to form the slurry dried substrate 11b. It becomes. At this time, the rotation speed of the take-up roll 102 is adjusted so that the time spent in the dryer 110 is 30 seconds. Next, the obtained slurry dry substrate 11b is passed between a pair of thickness adjusting rotating rollers 111, whereby the thickness of each row of the slurry dry substrate 11b becomes equal (the thinnest of the slurry dry substrates 11b is the thinnest). The thickness adjustment substrate 11c (a2, b2, c2, d2) is formed by adjusting so that the thickness is reduced by at least 20 μm in the row.
In addition, after drying the slurry application | coating board | substrate d1 to make the slurry dry board | substrate 11b, what was not allowed to pass between the rotation rollers 111 for thickness adjustment was made into thickness non-adjustment board | substrate e2. In this case, a substrate using the slurry application substrate a1 is a thickness adjustment substrate a2, a substrate using the slurry application substrate b1 is a thickness adjustment substrate b2, and a substrate using the slurry application substrate c1 is a thickness adjustment substrate c2. A substrate using the substrate d1 was designated as a thickness adjusting substrate d2.

ついで、上述のように厚み調整された厚み調整基板(a2〜d2)および厚み無調整基板e2を焼結炉112内を通過させるようにした。この場合、焼結炉112内は水素を含む還元性雰囲気中で約900〜1000℃の温度に加熱されていて、これらの厚み調整基板(a2〜d2)および厚み無調整基板e2が焼結炉112内を通過することにより、コイル状のニッケル焼結基板10(a3〜e3)が形成されることとなる。このとき、ニッケル焼結基板10(a3〜e3)が所定の厚みt(この場合は、t=370μmとした)となり、多孔度が85%となるように焼結温度および焼結時間を調整した。   Next, the thickness-adjusted substrates (a2 to d2) and the non-thickness-adjusted substrates e2 that were adjusted as described above were allowed to pass through the sintering furnace 112. In this case, the inside of the sintering furnace 112 is heated to a temperature of about 900 to 1000 ° C. in a reducing atmosphere containing hydrogen, and the thickness adjusting substrates (a2 to d2) and the non-thickness adjusting substrate e2 are used as the sintering furnace. By passing through 112, the coiled nickel sintered substrate 10 (a3 to e3) is formed. At this time, the sintering temperature and the sintering time were adjusted so that the nickel sintered substrate 10 (a3 to e3) had a predetermined thickness t (in this case, t = 370 μm) and the porosity was 85%. .

なお、厚み調整基板a2を用いたものを焼結基板a3とした。同様に、厚み調整基板b2を用いたものを焼結基板b3とし、厚み調整基板c2を用いたものを焼結基板c3とし、厚み調整基板d2を用いたものを焼結基板d3とした。また、厚み無調整基板e2を用いたものを焼結基板e3とした。   In addition, what used the thickness adjustment board | substrate a2 was used as the sintering board | substrate a3. Similarly, a substrate using the thickness adjusting substrate b2 is a sintered substrate b3, a substrate using the thickness adjusting substrate c2 is a sintered substrate c3, and a substrate using the thickness adjusting substrate d2 is a sintered substrate d3. A substrate using the non-thickness adjusting substrate e2 was used as a sintered substrate e3.

2.活物質充填極板
ついで、上述のようにして作製した多孔度が約85%のコイル状のニッケル焼結基板(a3〜e3)を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板31の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板(a3〜e3)の細孔内に水酸化ニッケルを主成分とする活物質を充填した。
2. Active material-filled electrode plate Next, a coiled nickel sintered substrate (a3 to e3) having a porosity of about 85% produced as described above is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75. Thus, the nickel salt and the cobalt salt were held in the pores of the porous nickel sintered substrate 31. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively. Then, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled in the pores of the porous nickel sintered substrate (a3 to e3).

このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板(a3〜e3)の細孔内に所定量の水酸化ニッケルを主体とする活物質が充填されたニッケル正極板(A〜E)を作製した。なお、ニッケル焼結基板a3を用いたものをニッケル正極板Aとした。同様に、ニッケル焼結基板b3を用いたものをニッケル正極板Bとし、ニッケル焼結基板c3を用いたものをニッケル正極板Cとし、ニッケル焼結基板d3を用いたものをニッケル正極板Dとした。また、ニッケル焼結基板e3を用いたものをニッケル正極板Eとした。   Such an active material filling operation is repeated a predetermined number of times (for example, 6 times), and nickel in which an active material mainly composed of a predetermined amount of nickel hydroxide is filled in the pores of the porous sintered substrates (a3 to e3). Positive electrode plates (A to E) were produced. A nickel positive electrode plate A was prepared using the nickel sintered substrate a3. Similarly, the one using the nickel sintered substrate b3 is a nickel positive plate B, the one using the nickel sintered substrate c3 is the nickel positive plate C, and the one using the nickel sintered substrate d3 is the nickel positive plate D. did. Also, a nickel positive electrode plate E was used which used the nickel sintered substrate e3.

3.活物質充填量の測定
上述のように作製した各ニッケル正極板(A〜E)を所定の寸法に切断した後、切断後の各ニッケル正極板(A〜E)の質量を測定した。そして、予め測定しておいた同寸法に切断したときの各ニッケル焼結基板(a3〜e3)の質量との差から、切断後の各ニッケル正極板(A〜E)の活物質質量を算出した。この場合、算出した各ニッケル正極板(A〜E)の活物質質量に対して、複数列の各列での平均値を算出し、端列での活物質質量の平均値との差の比率(端列の活物質の減少比率)を算出すると下記の表1に示すような結果となった。
3. Measurement of active material filling amount Each of the nickel positive electrode plates (A to E) produced as described above was cut into a predetermined size, and then the mass of each of the nickel positive electrode plates (A to E) after cutting was measured. And from the difference with the mass of each nickel sintered substrate (a3-e3) when it cut | disconnects to the same dimension measured beforehand, the active material mass of each nickel positive electrode plate (AE) after a cutting | disconnection is calculated. did. In this case, with respect to the calculated active material mass of each of the nickel positive electrode plates (A to E), the average value in each row of the plurality of rows is calculated, and the ratio of the difference from the average value of the active material mass in the end row When the (decrease ratio of the active material in the end row) was calculated, the results shown in Table 1 below were obtained.

なお、端列での活物質質量の平均値との差については、それぞれの端列の活物質質量を比較し、差の大きい方との差とした。また、活物質質量に対して、予め設定した基準値(狙い値)から±5%より大きく外れたものは不良とする判定を行い、不良とする判定されたものの比率(不良率)を算出すると、下記の表1に示すような結果となった。そして、表1の結果から、端列の塗布厚みの増加量を横軸(X軸)とし、端列の活物質の減少比率を縦軸(Y軸)にしてグラフに表すと、図2に示すような結果となった。

Figure 0005355052
In addition, about the difference with the average value of the active material mass in an end row, the active material mass of each end row was compared, and it was set as the difference with the one with a larger difference. In addition, when the active material mass deviates from a preset reference value (target value) by more than ± 5%, it is determined to be defective, and the ratio (defective rate) of those determined to be defective is calculated. The results shown in Table 1 below were obtained. Then, from the results in Table 1, when the amount of increase in the coating thickness of the end row is plotted on the horizontal axis (X axis) and the decrease ratio of the active material in the end row is plotted on the vertical axis (Y axis), The result was as shown.
Figure 0005355052

上記表1および図2の結果から明らかなように、ニッケル正極板Dおよびニッケル正極板Eは端列の活物質の減少比率が大きく、かつ不良率が大きいのに対して、ニッケル正極板A、ニッケル正極板B、ニッケル正極板Cは端列の活物質の減少比率が小さく、かつ不良率が小さいことが分かる。これは、ニッケル正極板A,B,Cにおいては、中列に対して端列のニッケルスラリーの塗布厚みを厚くし、かつ一対の回転ローラにより厚み調整を行っているので、各列での厚みばらつきを低減できるようになったことから、端列の活物質の減少比率が低下したと考えられる。   As is clear from the results of Table 1 and FIG. 2, the nickel positive electrode plate D and the nickel positive electrode plate E have a large reduction ratio of the active material in the end row and a large defect rate, whereas the nickel positive electrode plate A, It can be seen that the nickel positive electrode plate B and the nickel positive electrode plate C have a small reduction rate of the active material in the end row and a small defect rate. This is because, in the nickel positive plates A, B, and C, the thickness of the nickel slurry in the end row is increased with respect to the middle row, and the thickness is adjusted by a pair of rotating rollers. Since the variation can be reduced, it is considered that the reduction ratio of the active material in the end row is lowered.

この場合、ニッケル正極板B,Cのように、中列に対して端列のニッケルスラリーの塗布厚みを5μm以上厚くし、かつ一対の回転ローラにより厚み調整すると、端列の活物質の減少比率を1.1%以下まで低下させることが可能であることが分かる。一方、データは示していないが、中列に対して端列のニッケルスラリーの塗布厚みを20μmを超えるように厚くすると、一定の厚みに調整する厚み調整工程(一対のローラによる圧延工程)において強圧延を行う必要があるため、強圧延に起因してスラリー乾燥基板の一部にしわが発生する事態が生じた。これらのことから、中列に対して端列の塗布厚みは5μm以上で、20μm以下となるように塗布厚みを厚くする。
In this case, as in the case of the nickel positive plates B and C, when the thickness of the nickel slurry in the end row is increased by 5 μm or more with respect to the middle row and the thickness is adjusted by a pair of rotating rollers, the reduction ratio of the active material in the end row It can be seen that it can be reduced to 1.1% or less. On the other hand, although data is not shown, if the thickness of the nickel slurry in the end row is increased to exceed 20 μm with respect to the middle row, it is strong in the thickness adjustment step (rolling step with a pair of rollers) for adjusting to a constant thickness. Since it is necessary to perform rolling, a situation occurs in which wrinkles are generated in a part of the slurry dry substrate due to strong rolling. For these reasons, the coating thickness of the end column relative the middle column 5μm or more, you increase the coating thickness so as to 20μm or less.

このような厚み調整については、本発明のように一対の回転ローラで厚み調整を行うようにすると、スラリー乾燥基板へのダメージの低減(傷など)や、歪が生じにくい効果があり、また、ローラの損傷も少ない。さらに、スラリー乾燥基板は乾燥の仕方によりランダムに厚みが変化する可能性があるので、ローラ間隔やその傾きを調整することが可能となる回転ローラにより行うのが望ましい。   For such thickness adjustment, if the thickness adjustment is performed with a pair of rotating rollers as in the present invention, there is an effect of reducing damage to the slurry dry substrate (such as scratches), and that distortion is less likely to occur, There is little damage to the rollers. Furthermore, since the thickness of the slurry drying substrate may change randomly depending on the drying method, it is desirable to use a rotating roller that can adjust the roller interval and its inclination.

なお、上述した実施の形態においては本発明のニッケル焼結基板をニッケル−水素蓄電池のニッケル正極板に適用する例について説明したが、本発明のニッケル焼結基板はニッケル−水素蓄電池に限ることなく、ニッケル−カドミウム蓄電池などの他のアルカリ蓄電池のニッケル焼結式正、負極板にも適用できることは明らかである。   In the embodiment described above, the example in which the nickel sintered substrate of the present invention is applied to the nickel positive electrode plate of the nickel-hydrogen storage battery has been described. However, the nickel sintered substrate of the present invention is not limited to the nickel-hydrogen storage battery. It is obvious that the present invention can also be applied to nickel-sintered positive and negative plates of other alkaline storage batteries such as nickel-cadmium storage batteries.

本発明の焼結基板の製造方法の概略構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of schematic structure of the manufacturing method of the sintered substrate of this invention. 端列の塗布厚み増加量と端列の活物質の減少比率の関係を示すグラフである。It is a graph which shows the relationship between the coating thickness increase amount of an edge row, and the reduction | decrease ratio of the active material of an edge row.

符号の説明Explanation of symbols

10…ニッケル焼結基板、11…導電性芯体、11a…スラリー塗布基板、11b…スラリー乾燥基板、11c…厚み調整基板、12…スラリー、100…焼結基板製造装置、101…巻き出しロール、102…巻き取りロール、103,104,105,106,107…搬送ローラ、108…スラリー槽、109…厚み調整スリット、110…乾燥機、111…厚み調整用回転ローラ、112…焼結炉 DESCRIPTION OF SYMBOLS 10 ... Nickel sintered substrate, 11 ... Conductive core, 11a ... Slurry coating substrate, 11b ... Slurry dry substrate, 11c ... Thickness adjustment substrate, 12 ... Slurry, 100 ... Sintered substrate manufacturing apparatus, 101 ... Unwinding roll, DESCRIPTION OF SYMBOLS 102 ... Winding roll, 103, 104, 105, 106, 107 ... Conveyance roller, 108 ... Slurry tank, 109 ... Thickness adjustment slit, 110 ... Dryer, 111 ... Thickness adjustment rotary roller, 112 ... Sintering furnace

Claims (2)

ニッケルスラリーを導電性芯体に塗布した後に焼結を行って3列以上の複数列の焼結基板を同時に形成するニッケル焼結基板の製造方法であって、
ニッケル粉末と造孔剤と増粘剤とを含有するニッケルスラリーを3列以上の複数列の焼結基板が形成されるとともに端列の塗布厚みが中列の塗布厚みより厚くなるように導電性芯体に塗布してスラリー塗布基板とするスラリー塗布工程と、
前記スラリー塗布基板を乾燥させてスラリー乾燥基板とする乾燥工程と、
前記スラリー乾燥基板の各列の厚みが等しくなるように厚み調整して厚み調整基板とする厚み調整工程と、
前記厚み調整基板を焼結する焼結工程とを備え
前記スラリー塗布工程において、端列の塗布厚みが中列の塗布厚みより5μm以上で20μm以下だけ厚くなるように前記ニッケルスラリーを前記導電性芯体に塗布するようにしたことを特徴とするニッケル焼結基板の製造方法。
A method for producing a nickel sintered substrate, in which a nickel slurry is applied to a conductive core and then sintered to simultaneously form a plurality of rows of sintered substrates of three or more rows,
A nickel slurry containing nickel powder, a pore former and a thickener is formed so that three or more rows of sintered substrates are formed and the coating thickness of the end rows is larger than the coating thickness of the middle row. A slurry application step that is applied to the core body to form a slurry application substrate;
A drying step of drying the slurry-coated substrate to form a slurry-dried substrate;
Thickness adjustment step to adjust the thickness so that the thickness of each row of the slurry dry substrate is equal to the thickness adjustment substrate,
A sintering step of sintering the thickness adjusting substrate ,
In the slurry application step, the nickel slurry is applied to the conductive core so that the coating thickness of the end row is 5 μm or more and 20 μm or less thicker than the application thickness of the middle row. A manufacturing method of a bonded substrate.
前記厚み調整工程において前記スラリー乾燥基板を一対の回転ローラ間を通過させることにより前記スラリー乾燥基板の各列の厚みが等しくなるようにしたことを特徴とする請求項1に記載のニッケル焼結基板の製造方法。2. The nickel sintered substrate according to claim 1, wherein the thickness of each row of the slurry dry substrates is made equal by passing the slurry dry substrate between a pair of rotating rollers in the thickness adjusting step. Manufacturing method.
JP2008299725A 2008-11-25 2008-11-25 Method for producing sintered nickel substrate Active JP5355052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299725A JP5355052B2 (en) 2008-11-25 2008-11-25 Method for producing sintered nickel substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299725A JP5355052B2 (en) 2008-11-25 2008-11-25 Method for producing sintered nickel substrate

Publications (2)

Publication Number Publication Date
JP2010129213A JP2010129213A (en) 2010-06-10
JP5355052B2 true JP5355052B2 (en) 2013-11-27

Family

ID=42329481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299725A Active JP5355052B2 (en) 2008-11-25 2008-11-25 Method for producing sintered nickel substrate

Country Status (1)

Country Link
JP (1) JP5355052B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708478B2 (en) * 2011-12-27 2015-04-30 株式会社豊田自動織機 Electrode manufacturing apparatus, power storage device, vehicle, and electrode manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066741A (en) * 1973-10-17 1975-06-05
JPS53103538A (en) * 1977-02-22 1978-09-08 Shin Kobe Electric Machinery Method of manufacturing sintered base plate for battery
JPS5598476A (en) * 1979-01-20 1980-07-26 Yuasa Battery Co Ltd Manufacturing method of sintered substrate for alkaline storage battery
JPS6065464A (en) * 1983-09-20 1985-04-15 Sanyo Electric Co Ltd Manufacture of sintered substrate for battery
JPS60115162A (en) * 1983-11-25 1985-06-21 Shin Kobe Electric Mach Co Ltd Slit device used to apply slurry in making alkaline storage battery plate
JPS63307665A (en) * 1987-06-08 1988-12-15 Sanyo Electric Co Ltd Manufacture of electrode plate for alkali storage battery

Also Published As

Publication number Publication date
JP2010129213A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CN105854633B (en) Porous membrane and preparation method thereof
JP5499537B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
JP6628057B2 (en) Porous metal body, fuel cell, and method for manufacturing porous metal body
JP5169591B2 (en) Metal porous electrode substrate and manufacturing method thereof
US9368788B2 (en) Layered iron electrode
WO2006114939A1 (en) Electrode mixture paste coating method and coater
JP2006302812A (en) Rolling method of electrode hoop
JP5355052B2 (en) Method for producing sintered nickel substrate
JP5294809B2 (en) Method for producing sintered nickel substrate
JP3258713B2 (en) Method for manufacturing non-sintered electrode plate for cylindrical battery
JP2002260646A (en) Manufacturing method of electrode for alkaline storage battery
JP2015165036A (en) Method of producing metal porous body, and metal porous body
JP2009245772A (en) Cadmium electrode plate for alkaline storage battery, and method of manufacturing the same
CN110600673B (en) Manufacturing method and manufacturing equipment of double-sided coating integrated three-dimensional base material
CN217432123U (en) Coating die head, coating machine and pole piece
JP3408047B2 (en) Alkaline storage battery
JP2018018680A (en) Method for manufacturing electrode
JP3955752B2 (en) Battery electrode manufacturing method
JPH10270296A (en) Manufacture of electric double layer capacitor
JP3781660B2 (en) Method for producing electrode for storage battery
JP2018006369A (en) Method for manufacturing electrode for power storage device, and method for manufacturing power storage device
KR20210052914A (en) Manufacturing Method and Manufacturing Apparatus of Electrode for Secondary Battery
JP2538322B2 (en) Method for manufacturing electrode plate for alkaline storage battery
JP2012199180A (en) Electrode plate and manufacturing method therefor
JPH08138680A (en) Electrode base plate for battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R151 Written notification of patent or utility model registration

Ref document number: 5355052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151