JPS63307665A - Manufacture of electrode plate for alkali storage battery - Google Patents

Manufacture of electrode plate for alkali storage battery

Info

Publication number
JPS63307665A
JPS63307665A JP62142970A JP14297087A JPS63307665A JP S63307665 A JPS63307665 A JP S63307665A JP 62142970 A JP62142970 A JP 62142970A JP 14297087 A JP14297087 A JP 14297087A JP S63307665 A JPS63307665 A JP S63307665A
Authority
JP
Japan
Prior art keywords
nickel
sintered substrate
storage battery
electrode plate
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62142970A
Other languages
Japanese (ja)
Inventor
Kenji Yokota
横田 賢治
Hideki Matsui
秀樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62142970A priority Critical patent/JPS63307665A/en
Publication of JPS63307665A publication Critical patent/JPS63307665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To improve collection efficiency and charge-discharge characteristic by making such that a rolled portion of a sintered substrate is highly densified with nickel so as to be approximately equivalent to a nickel plate. CONSTITUTION:Nickel power slurry is applied on a metallic supporting body 1 of a 3-dimensional structure and dried. After rolling the metallic supporting body 1 by a specified width dimension, the supporting body 1 is sintered in reducing gas atmosphere to make a sintered substrate 1. While making a rolled portion 2 of the sintered substrate 1 to be a welding portion of a collector body, an active substance is filled to the sintered substrate 1 to make an active substance retaining portion 3 of a normal thickness. Since the rolled portion 2 of the sintered substrate 1 is densified with nickel so as to be approximately equivalent to a nickel plate, sufficient welding strength of the collector body is obtained and at the same time there is no possibility of current density at the welded portion of the collector body becoming nonuniform. This improves collection efficiency and charge-discharge characteristic.

Description

【発明の詳細な説明】 主呈上皇且■分! 本発明は、ニッケルーカドミニウム、ニッケルー鉄、ニ
ッケルー亜鉛等のアルカリ蓄電池用極板に好適した極板
の製造方法に関する。
[Detailed Description of the Invention] The title is the Retired Emperor and ■ minutes! The present invention relates to a method for producing electrode plates suitable for use in alkaline storage batteries such as nickel-cadmium, nickel-iron, and nickel-zinc.

l米坐肢歪 従来、アルカル蓄電池用極板の活物質保持体としては、
二次元構造のパンチングメタル、三次元構造のエキスパ
ンドメタル、金属メツシュ、発泡ニッケルあるいはニッ
ケルファイバーマット等が用いられている。
l Ischial Limb Strain Conventionally, as an active material holder for electrode plates for alkaline storage batteries,
Punched metal with a two-dimensional structure, expanded metal with a three-dimensional structure, metal mesh, foamed nickel or nickel fiber mat, etc. are used.

二次元構造のパンチングメタルの場合、その集電効率は
高く、又取り扱いも便利であるが、保持体の高多孔度化
を図ると金属支持体が二次元構造のため焼結基板の機械
的強度が極端に低下してしまうといった問題があった。
In the case of punched metal with a two-dimensional structure, its current collection efficiency is high and it is convenient to handle, but if the holder is made to have a high porosity, the mechanical strength of the sintered substrate will be reduced because the metal support has a two-dimensional structure. There was a problem in that the amount of water was extremely low.

また、三次元構造の発泡ニッケル等の場合、活物質保持
体の素材としては高多孔度である点及び重量効率等の点
において優れている。しかし壱のままの状態では集電体
を接続することができず、そのため、充填した活物質の
一部を取り去ることが一般に行われていた。あるいは発
泡ニッケルの保持体に集電端子となるような部分を直接
形成するために発泡ニッケル保持体の所定箇所に金属粉
体を充填し焼結するといった方法も考えられていた。
Further, in the case of foamed nickel or the like having a three-dimensional structure, it is excellent as a material for the active material holder in terms of high porosity and weight efficiency. However, it is not possible to connect the current collector when the battery is left in its original state, and therefore, a portion of the filled active material has generally been removed. Alternatively, a method has been considered in which metal powder is filled in predetermined locations of a foamed nickel holder and sintered in order to directly form a portion that will serve as a current collector terminal on the nickel foam holder.

(・ よ゛  るエ 占 ところが集電端子を溶接するために充填した活物質の一
部を取り去った場合、電流密度が不均一となり集電効率
の低下が生じ、極板利用率の低下が生じるといった問題
があった。しかも製造工程における取り扱いも不便であ
った。
However, if a part of the filled active material is removed in order to weld the current collector terminal, the current density becomes non-uniform and the current collection efficiency decreases, resulting in a decrease in the electrode plate utilization rate. Moreover, it was also inconvenient to handle during the manufacturing process.

また、保持体の所定箇所に金属粉体を充填するといった
方法では、金属粉体を内部まで十分に充填することは困
難であり、この部分における電導度の低下を招いていた
。電導度の低下は活物質の電気化学的反応が十分に行わ
れずに活物質の利用効率の低下を招く、あるいは充放電
特性が劣る等の性能上の重大な欠点の原因となっていた
Furthermore, in a method of filling a predetermined portion of the holding body with metal powder, it is difficult to sufficiently fill the inside with metal powder, resulting in a decrease in electrical conductivity in this portion. The decrease in electrical conductivity has caused serious performance defects such as insufficient electrochemical reaction of the active material, leading to a decrease in the utilization efficiency of the active material, or poor charge/discharge characteristics.

エ 占  ゛ るための 本発明は上記したような問題点に鑑み発明されたもので
、二次元構造の金属支持体を用いた場合のごとく集電体
溶接部における集電効率がよく、しかも取り扱いにも便
利でありながらさらに焼結基板及び極板において三次元
構造的強度をも維持させたアルカリ蓄電池用極板を製造
することを目的とし、三次元構造を有する金属支持体に
ニッケル粉末のスラリーを塗布して乾燥させ、該金属支
持体を所定幅寸法毎に圧延した後還元雰囲気中で焼結さ
せて焼結基板となし、該焼結基板の前記圧延部分を集電
体の溶接部分となすとともに前記焼結基板に活物質を充
填してなることを特徴とするものである。
The present invention was invented in view of the above-mentioned problems, and it has good current collection efficiency at the welded part of the current collector as when using a metal support with a two-dimensional structure, and is easy to handle. The aim is to manufacture electrode plates for alkaline storage batteries that are convenient for use in sintered substrates and electrode plates while also maintaining three-dimensional structural strength. The metal support is rolled into a predetermined width and then sintered in a reducing atmosphere to form a sintered substrate, and the rolled portion of the sintered substrate is the welded portion of the current collector. In addition, the sintered substrate is filled with an active material.

■−−一旦 上記した方法によれば・、焼結基板の圧延部分はニッケ
ルが高密度化された状態となり、ニッケル板と略同等と
みなせるようになる。従って、十分な集電体の溶接強度
が得られると共に集電体の溶接部分においても電流密度
が不均一となることはない、しかも極板としては三次元
構造の強度を維持していることが可能である。
(2) Once the method described above is applied, the rolled portion of the sintered substrate becomes highly densified with nickel, and can be regarded as approximately equivalent to a nickel plate. Therefore, sufficient welding strength of the current collector can be obtained, and the current density will not become uneven even in the welded part of the current collector, and the strength of the three-dimensional structure of the electrode plate can be maintained. It is possible.

爽−隻一斑 次に、本発明に係る実施例を図面に基づいて説明する。A refreshing boat Next, embodiments according to the present invention will be described based on the drawings.

本実施例では金属支持体としてエキスパンドメタル(そ
の空孔の対角線長さが各々2鶴、5鶴のもの)を採用し
ている。
In this embodiment, an expanded metal (of which the diagonal length of the hole is 2 cranes and 5 cranes, respectively) is used as the metal support.

まず水11に対し、造孔剤として作用する有機中空球体
100gを分散させる。これに有機糊料メチルセルロー
ス(Mc)20gを混合した後ニッケルパウダー1 k
gを混合してスラリーを作成する。
First, 100 g of organic hollow spheres acting as a pore-forming agent are dispersed in water 11. After mixing 20g of organic glue methyl cellulose (Mc) with this, 1k of nickel powder was added.
Mix g to create a slurry.

このスラリーをエキスパンドメタル1に厚さ1寵でコー
ティングし乾燥させる。
Coat this slurry on expanded metal 1 to a thickness of 1 inch and dry.

次に所定のセル寸法毎に3ton/−の圧力で幅1 +
uに圧延を行なう(圧延部分2を第1図及び第2図では
斜線で示す、)、ここで圧延のための圧力を3ton/
cdに設定したのは、2ton/−以下の圧力による場
合、圧延不足のため得ようとする集電体の溶接部分とし
て不満足であり、換言すれば圧延部分2がニッケル金属
板状とならず、空孔が生じ、この空孔に後の工程で活物
質が充填されてしまい効果的な集電体の溶接部分となり
得ないからである。他方、5ton/−以上の圧力によ
る場合、圧力の過大によりエキスパンドメタル1に歪み
や亀裂を生じてしまうからである。
Next, for each predetermined cell size, the width is 1 + with a pressure of 3 tons/-.
Rolling is carried out at u (the rolled part 2 is shown with diagonal lines in Figs. 1 and 2), where the pressure for rolling is 3 ton/
CD was set because if the pressure is less than 2 tons/-, the welding part of the current collector to be obtained is unsatisfactory due to insufficient rolling.In other words, the rolled part 2 will not be in the shape of a nickel metal plate, This is because pores are generated and these pores are filled with active material in a later step, making it impossible to effectively weld the current collector. On the other hand, if the pressure is 5 tons/- or more, the expanded metal 1 will be distorted or cracked due to excessive pressure.

次にこの圧延を施したエキスパンドメタル1を800℃
の還元雰囲気中で焼結させて後空気中で熱処理を行なう
、その後、硝酸ニッケル水溶液に浸漬し、乾燥させてか
らアルカリ処理を行なう所謂化学含浸法により陽極の場
合はニッケル活物質を充填する。他方、陰極とした場合
にはカドミウム塩を含浸させる。次いで圧延部分2と通
常の厚さの活物質保持部分3との境界に沿ってエキスパ
ンドメタル1を切断し、第3図に示す如き掻板4を得る
Next, the expanded metal 1 subjected to this rolling was heated to 800°C.
In the case of an anode, the anode is filled with nickel active material by sintering in a reducing atmosphere, followed by heat treatment in air, then immersed in an aqueous nickel nitrate solution, dried, and then treated with alkali. On the other hand, when used as a cathode, it is impregnated with cadmium salt. Next, the expanded metal 1 is cut along the boundary between the rolled portion 2 and the normal thickness active material holding portion 3 to obtain a scraper plate 4 as shown in FIG.

陽極板5と陰極板6とをセパレータ7を介して第4図に
示すごとくに渦巻状に巻き取り、陽極板5には第5図に
示す陽極集電体8を電気スポット溶接等で取り付け、陰
極板6には第6図に示す陰極集電体9を同様に取り付け
る。これら陽極板5や陰極板6を外装缶10に挿入、密
閉して完成された電池ができる。
An anode plate 5 and a cathode plate 6 are wound up in a spiral shape as shown in FIG. 4 with a separator 7 in between, and an anode current collector 8 shown in FIG. 5 is attached to the anode plate 5 by electric spot welding or the like. A cathode current collector 9 shown in FIG. 6 is attached to the cathode plate 6 in the same manner. The anode plate 5 and the cathode plate 6 are inserted into the outer case 10 and sealed to form a completed battery.

上述の如くして製造した本実施例に係るアルカリ蓄電池
と、エキスパンドメタルを活物質支持体としてニッケル
スラリーを1mmの厚みにコーティングし、乾燥を行な
って後、800℃還元雰囲気中で焼結して、空気中で熱
処理を行ない、上述の化学含浸法によりニッケル活物質
を充填し、集電体溶接部の活物質を取り覗き、集電端子
を溶接した後集電体を取り付けた従来のタブ集電方式の
アルカリ蓄電池lと、パンチングメタルを用い、該パン
チングメタルに集電体溶接部に相当する部分をニッケル
スラリーの未コーティング部とし、その他の部分にはニ
ッケルスラリーを1mmの厚みにコーティングして活物
質を保持させるところを形成し、以後は上記アルカリ蓄
電池lと同様の方法で極板を作成し集電体を取り付けた
アルカリ蓄電池2との80における放電特性を調べ、そ
の結果を第7図に示した0図において、破線は本発明に
より製造された極板を用いてなるアルカリ蓄電池、一点
鎖線はアルカリ蓄電池1、実線はアルカリ蓄電池2を各
々示す、 同図から、本発明により製造された極板を使
用してなるアルカリ蓄電池の放電電圧は、タブ集電方式
のエキスパンドメタルを使用したアルカリ蓄電池lより
も優れ、パンチングメタルを使用したアルカリ蓄電池2
と同程度であることがわかる。 また、本発明により製
造された極板を使用してなるアルカリ蓄電池と従来のア
ルカリ蓄電池1のlCにおける容量を100%とし、I
C〜IOCの各放電レートにおける電池容量〔%〕を測
定し、その結果を第8図に示した。
The alkaline storage battery according to this example produced as described above and the expanded metal as active material supports were coated with nickel slurry to a thickness of 1 mm, dried, and then sintered in a reducing atmosphere at 800°C. , a conventional tab collection in which the current collector is attached after heat treatment is performed in air, the active material is filled with nickel active material by the chemical impregnation method described above, the active material is inspected at the welded part of the current collector, and the current collector terminal is welded. Using an electric type alkaline storage battery l and punched metal, the part of the punched metal corresponding to the current collector welded part was left uncoated with nickel slurry, and the other parts were coated with nickel slurry to a thickness of 1 mm. The discharge characteristics at 80 with alkaline storage battery 2, in which the active material is held, the electrode plates are made in the same manner as the alkaline storage battery 1, and the current collector is attached, are investigated, and the results are shown in Figure 7. In Figure 0 shown in Fig. 0, the broken line indicates the alkaline storage battery using the electrode plate manufactured according to the present invention, the dashed line indicates the alkaline storage battery 1, and the solid line indicates the alkaline storage battery 2. The discharge voltage of an alkaline storage battery using electrode plates is superior to that of an alkaline storage battery using expanded metal with a tab current collection method, and is superior to that of an alkaline storage battery using a punched metal.
It can be seen that it is about the same. In addition, the capacity at 1C of the alkaline storage battery using the electrode plate manufactured according to the present invention and the conventional alkaline storage battery 1 is assumed to be 100%, and I
The battery capacity [%] at each discharge rate of C to IOC was measured, and the results are shown in FIG.

同図より、本実施例に係る蓄電池は従来のアルカリ蓄電
池lよりもハイレート放電特性が優れていることがわか
る。
From the figure, it can be seen that the storage battery according to this example has superior high rate discharge characteristics than the conventional alkaline storage battery 1.

尚、上記実施例においては、三次元構造を有する金属製
の活物質保持体としてエキスパンドメタルを使用したも
のについて説明したが、これは発泡ニッケル、ニッケル
ファイバーマット若しくは金属網よりなるものであって
も差支えない。
In the above example, expanded metal was used as a metal active material holder having a three-dimensional structure, but this may also be made of foamed nickel, nickel fiber mat, or metal net. No problem.

1里Ω蓋果 以上の説明により明らかのごとく、本発明に係るアルカ
リ蓄電池用種板の製造方法によれば、焼結基板の圧延部
分はニッケルが高密度化された状態となりニッケル板と
略同等とみなせるようになる。従って集電体の溶接強度
が十分に得られこの集電体の溶接部分においても電流密
度が不均一となることがなく、極板の利用率は低下しな
い。故に三次元構造としての強度を有しながら二次元構
造の金属支持体を用いた極板のごとく集電体溶接部にお
ける集電効率に優れ、放電電圧特性やハイレート放電特
性にも優れた極板を製造することができる。
As is clear from the above explanation, according to the method of manufacturing a seed plate for an alkaline storage battery according to the present invention, the rolled portion of the sintered substrate has a high density of nickel, which is approximately equivalent to a nickel plate. It can be regarded as Therefore, sufficient welding strength of the current collector is obtained, and the current density does not become non-uniform even in the welded portion of the current collector, so that the utilization rate of the electrode plate does not decrease. Therefore, while having the strength of a three-dimensional structure, the electrode plate has excellent current collection efficiency at the welded part of the current collector like an electrode plate using a two-dimensional metal support, and also has excellent discharge voltage characteristics and high-rate discharge characteristics. can be manufactured.

【図面の簡単な説明】 第1図は本発明に係る金属支持体に圧延部分を施した状
態を示す平面図、第2図は正面図、第3図は1枚の極板
として切断した状態を示す斜視図、第4図はアルカリ蓄
電池の全体を示す縦断面斜視図、第5図は陽極集電体の
斜視図、第6図は陰極集電体の斜視図、第7図は本発明
に係る製造方法により製造した極板を使用したアルカリ
蓄電池と従来のアルカリ蓄電池との放電電圧特性を示す
グラフ、第8図は放電レート特性を示すグラフである。 1・・・エキスパンドメタル(金属支持体、焼結基板)
、2・・・圧延部分、3・・・活物質保持部分。 特許出願人 : 三洋電機株式会社 代理人   : 弁理士  中島 司朗第1図 第3図 第4図 第5図 第6図 第7図 放電時図 〔恋
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 1 is a plan view showing a rolled portion of the metal support according to the present invention, Figure 2 is a front view, and Figure 3 is a state in which it is cut into a single electrode plate. FIG. 4 is a vertical cross-sectional perspective view showing the entire alkaline storage battery, FIG. 5 is a perspective view of an anode current collector, FIG. 6 is a perspective view of a cathode current collector, and FIG. 7 is a perspective view of the present invention. FIG. 8 is a graph showing discharge voltage characteristics of an alkaline storage battery using an electrode plate manufactured by the manufacturing method according to the above and a conventional alkaline storage battery, and FIG. 8 is a graph showing discharge rate characteristics. 1... Expanded metal (metal support, sintered substrate)
, 2...rolled part, 3...active material holding part. Patent applicant: Sanyo Electric Co., Ltd. Agent: Patent attorney Shiro Nakajima Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Discharge diagram [Koi]

Claims (3)

【特許請求の範囲】[Claims] (1)三次元構造を有する金属支持体にニッケル粉末の
スラリーを塗布して乾燥させ、該金属支持体を所定幅寸
法毎に圧延した後還元雰囲気中で焼結させて焼結基板と
なし、該焼結基板の前記圧延部分を集電体の溶接部分と
なすとともに前記焼結基板に活物質を充填してなるアル
カリ蓄電池用極板の製造方法。
(1) Applying a slurry of nickel powder to a metal support having a three-dimensional structure, drying it, rolling the metal support to a predetermined width, and then sintering it in a reducing atmosphere to form a sintered substrate; A method of manufacturing an electrode plate for an alkaline storage battery, wherein the rolled portion of the sintered substrate is used as a welded portion of a current collector, and the sintered substrate is filled with an active material.
(2)前記三次元構造を有する金属支持体がエキスパン
ドメタルである第1項記載のアルカリ蓄電池用極板の製
造方法。
(2) The method for producing an electrode plate for an alkaline storage battery according to item 1, wherein the metal support having a three-dimensional structure is an expanded metal.
(3)前記三次元構造を有する金属支持体が金属メッシ
ュである第1項記載のアルカリ蓄電池用極板の製造方法
(3) The method for producing an electrode plate for an alkaline storage battery according to item 1, wherein the metal support having a three-dimensional structure is a metal mesh.
JP62142970A 1987-06-08 1987-06-08 Manufacture of electrode plate for alkali storage battery Pending JPS63307665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142970A JPS63307665A (en) 1987-06-08 1987-06-08 Manufacture of electrode plate for alkali storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142970A JPS63307665A (en) 1987-06-08 1987-06-08 Manufacture of electrode plate for alkali storage battery

Publications (1)

Publication Number Publication Date
JPS63307665A true JPS63307665A (en) 1988-12-15

Family

ID=15327895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142970A Pending JPS63307665A (en) 1987-06-08 1987-06-08 Manufacture of electrode plate for alkali storage battery

Country Status (1)

Country Link
JP (1) JPS63307665A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657950A1 (en) * 1993-12-10 1995-06-14 Katayama Special Industries, Ltd. Lead-provided porous metal sheet and method for manufacturing the sheet
EP0710995A3 (en) * 1994-11-07 1996-05-15 Sumitomo Electric Industries, Ltd. Electrode plate for battery and process for producing the same
WO2000057503A1 (en) * 1999-03-23 2000-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing an electrode from metal foam
EP1128455A1 (en) * 2000-02-22 2001-08-29 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
JP2010129213A (en) * 2008-11-25 2010-06-10 Sanyo Electric Co Ltd Manufacturing method of nickel sintered substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657950A1 (en) * 1993-12-10 1995-06-14 Katayama Special Industries, Ltd. Lead-provided porous metal sheet and method for manufacturing the sheet
CN1090825C (en) * 1993-12-10 2002-09-11 片山特殊工业株式会社 lead-provided porous metal sheet and method for manufacturing the sheet
EP0710995A3 (en) * 1994-11-07 1996-05-15 Sumitomo Electric Industries, Ltd. Electrode plate for battery and process for producing the same
WO2000057503A1 (en) * 1999-03-23 2000-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing an electrode from metal foam
EP1128455A1 (en) * 2000-02-22 2001-08-29 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
US6666899B2 (en) 2000-02-22 2003-12-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
JP2010129213A (en) * 2008-11-25 2010-06-10 Sanyo Electric Co Ltd Manufacturing method of nickel sintered substrate

Similar Documents

Publication Publication Date Title
US20050019664A1 (en) Non-sintered type thin electrode for battery, battery using same and process for same
JP4292436B2 (en) Metal porous body, method for producing the same and battery current collector using the same
JPS63307665A (en) Manufacture of electrode plate for alkali storage battery
JP2000208144A (en) Battery electrode substrate and manufacture thereof
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
EP1215741B1 (en) Method for manufacturing a positive electrode plate
JPS62243245A (en) Plate for alkaline storage battery
CN101150193A (en) Battery electrode substrate, and electrode employing the same
JPS62139256A (en) Sealed nickel-cadmium storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP3408047B2 (en) Alkaline storage battery
EP0547998B1 (en) Process for obtaining electrodes for alkaline batteries
JP4588288B2 (en) Method for manufacturing substrate for electrode plate, method for manufacturing positive electrode plate, and alkaline storage battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP2981537B2 (en) Negative electrode for alkaline batteries
JPS62140359A (en) Electrode for cell
JPS63261673A (en) Electrode for alkaline storage battery and its manufacture
JPS5835351B2 (en) Electrodes for primary or secondary batteries
JP3182228B2 (en) Method for producing non-sintered positive electrode plate for alkaline storage battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JPS6254235B2 (en)
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3015455B2 (en) Electrode plate for battery