JP2018006369A - Method for manufacturing electrode for power storage device, and method for manufacturing power storage device - Google Patents

Method for manufacturing electrode for power storage device, and method for manufacturing power storage device Download PDF

Info

Publication number
JP2018006369A
JP2018006369A JP2016126439A JP2016126439A JP2018006369A JP 2018006369 A JP2018006369 A JP 2018006369A JP 2016126439 A JP2016126439 A JP 2016126439A JP 2016126439 A JP2016126439 A JP 2016126439A JP 2018006369 A JP2018006369 A JP 2018006369A
Authority
JP
Japan
Prior art keywords
electrode
container
reel
storage device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016126439A
Other languages
Japanese (ja)
Inventor
眞治 藤井
Shinji Fujii
眞治 藤井
和也 山中
Kazuya Yamanaka
和也 山中
尚央 寺石
Naohisa Teraishi
尚央 寺石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2016126439A priority Critical patent/JP2018006369A/en
Publication of JP2018006369A publication Critical patent/JP2018006369A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a time required for pre-doping without decreasing the effective area of an electrode.SOLUTION: A method for manufacturing an electrode for a power storage device comprises: a take-up step for taking up, by winding around a reel 21, a belt-shaped structure arranged by putting lithium foil on each or one face of an electrode with an active material layer provided on each face of a current collector; a holding step for putting the reel 21 with the belt-shaped structure wound therearound in a container containing a driving electrolyte solution, and holding the container at a predetermined temperature; a drying step for drying the container after having been held at the predetermined temperature, in a predetermined atmosphere; and a take-out step for taking the reel from inside the container and taking the electrode from the reel.SELECTED DRAWING: Figure 3

Description

本発明は、正極に活性炭、負極にリチウムをプレドープした炭素材料を使用する蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法に関する。   The present invention relates to a method for producing an electrode for an electricity storage device and a method for producing an electricity storage device using a carbon material in which activated carbon is used for a positive electrode and lithium is pre-doped for a negative electrode.

電気二重層コンデンサは急速充放電が可能であり、長寿命であるが、蓄電容量が小さい。二次電池は蓄電容量が大きいが、急速充放電は難しい。そこで、電気二重層コンデンサおよび二次電池の欠点を補う蓄電デバイスとして、リチウムイオンキャパシタが知られている。リチウムイオンキャパシタは、正極に活性炭、負極にリチウムをプレドープした炭素材料を使用する非対称キャパシタである。   An electric double layer capacitor can be rapidly charged and discharged, has a long life, but has a small storage capacity. Secondary batteries have a large storage capacity, but rapid charge / discharge is difficult. Therefore, lithium ion capacitors are known as power storage devices that compensate for the shortcomings of electric double layer capacitors and secondary batteries. A lithium ion capacitor is an asymmetric capacitor using a carbon material pre-doped with activated carbon for a positive electrode and lithium for a negative electrode.

特許文献1には、負極とセパレータと正極とを重ね合わせた帯状物を、その長さ方向の一端から捲回して成る捲回蓄電ユニットを容器内に収容し、負極に対して2つのリチウム金属シートの配置位置をそれぞれ調整した電気化学デバイスが開示されている。このように、負極に対して2つのリチウム金属シートの配置位置をそれぞれ調整することで、負極の全体にリチウムイオンを効率良くドープすることが可能になる。   In Patent Document 1, a wound power storage unit formed by winding a strip in which a negative electrode, a separator, and a positive electrode are overlapped from one end in the length direction is accommodated in a container, and two lithium metals are provided for the negative electrode. An electrochemical device in which the arrangement position of the sheet is adjusted is disclosed. Thus, by adjusting the arrangement positions of the two lithium metal sheets with respect to the negative electrode, it is possible to efficiently dope lithium ions into the entire negative electrode.

特開2012−114161号公報JP 2012-114161 A

しかしながら、特許文献1に記載の電気化学デバイスは、負極の全体にリチウムイオンを行きわたらせるために、正極および負極に複数の貫通孔を設けている。そのため、貫通孔によって正極および負極の有効面積が減少するという欠点があり、さらに、貫通孔を形成する工程が必要であり、コストが高くなるという問題がある。   However, the electrochemical device described in Patent Document 1 is provided with a plurality of through holes in the positive electrode and the negative electrode in order to distribute lithium ions throughout the negative electrode. Therefore, there is a disadvantage that the effective area of the positive electrode and the negative electrode is reduced by the through hole, and further, there is a problem that a process of forming the through hole is necessary and the cost is increased.

また、特許文献1に記載の電気化学デバイスは、貫通孔を介してリチウムイオンを行きわたらせているが、プレドープを行うのに長時間を要しているのが実情である。   Moreover, although the electrochemical device described in Patent Document 1 distributes lithium ions through the through-holes, it actually takes a long time to perform pre-doping.

本発明の目的は、電極の有効面積を減少させることなく、且つプレドープを行うのに要する時間を短縮することが可能な蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法を提供することである。   An object of the present invention is to provide a method for producing an electrode for an electricity storage device and a method for producing an electricity storage device capable of reducing the time required for pre-doping without reducing the effective area of the electrode. .

本発明は、蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法であって、集電体の両面に活物質層を設けた電極の両面または片面にリチウム箔を重ね合わせた帯状構造体をリールに巻き取る巻取工程と、前記帯状構造体を巻き取った前記リールを駆動用電解液が入った容器内に保持し、前記容器を所定の温度に保持する保持工程と、前記所定の温度に保持された後の前記容器内を所定の雰囲気で乾燥させる乾燥工程と、前記容器内から前記リールを取り出し、前記リールから前記電極を取り出す取出工程と、を有することを特徴とする。   The present invention relates to a method for manufacturing an electrode for a power storage device and a method for manufacturing a power storage device, in which a strip-like structure in which a lithium foil is superimposed on both sides or one side of an electrode provided with an active material layer on both sides of a current collector is reeled. A winding step for winding the belt-shaped structure, holding the reel in a container containing a driving electrolyte solution, holding the container at a predetermined temperature, and holding the reel at the predetermined temperature. The method includes a drying step of drying the inside of the container after being held in a predetermined atmosphere, and a step of taking out the reel from the container and taking out the electrode from the reel.

本発明によれば、集電体の両面に活物質層を設けた電極の両面または片面にリチウム箔を重ね合わせた帯状構造体を、リールに巻き取って駆動用電解液が入った容器内に保持し、所定の温度に保持する。すると、集電体の両面に活物質層を設けた電極とリチウム箔との間には電位差があるために、リチウム箔から、集電体の両面に活物質層を設けた電極にリチウムイオンがドーピングされる。このとき、集電体の両面に活物質層を設けた電極とリチウム箔とを直接接触させてプレドープを行うため、集電体の両面に活物質層を設けた電極の全体にリチウムイオンを行きわたらせるための貫通孔を、集電体の両面に活物質層を設けた電極に設ける必要がないとともに、貫通孔を介してリチウムイオンを行きわたらせるのに比べて短時間でプレドープを行うことができる。これにより、電極の有効面積を減少させることなく、且つプレドープを行うのに要する時間を短縮することができる。   According to the present invention, a belt-like structure in which a lithium foil is superimposed on both sides or one side of an electrode provided with an active material layer on both sides of a current collector is wound around a reel and placed in a container containing a driving electrolyte. Hold and hold at a predetermined temperature. Then, since there is a potential difference between the electrode provided with the active material layer on both sides of the current collector and the lithium foil, lithium ions are transferred from the lithium foil to the electrode provided with the active material layer on both sides of the current collector. Doped. At this time, since the pre-doping is performed by directly contacting the lithium foil with the electrode provided with the active material layer on both sides of the current collector, lithium ions are applied to the entire electrode provided with the active material layer on both sides of the current collector. It is not necessary to provide through-holes for spreading in the electrode provided with active material layers on both sides of the current collector, and pre-doping is performed in a shorter time than when lithium ions are distributed through the through-holes. Can do. As a result, the time required for pre-doping can be shortened without reducing the effective area of the electrode.

蓄電デバイスの斜視図である。It is a perspective view of an electrical storage device. 蓄電デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an electrical storage device. リールの斜視図である。It is a perspective view of a reel.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(蓄電デバイスの構成)
本実施形態による蓄電デバイス1は、斜視図である図1に示すように、負極(集電体の両面に活物質層を設けた電極)2とセパレータ4と正極3とを巻回または積層(図示せず)し、駆動用電解液(電解液)5をセパレータ4に保持した状態で、外装ケース6内に収容したものである。負極2とセパレータ4と正極3とは、重ね合わされて帯状物にされる。この帯状物がその長さ方向の一端から巻回されることで、素子7が形成される。この素子7が、駆動用電解液5が入った外装ケース6内に収容される。
(Configuration of electricity storage device)
As shown in FIG. 1 which is a perspective view, the electricity storage device 1 according to the present embodiment is formed by winding or laminating a negative electrode (an electrode having active material layers on both sides of a current collector) 2, a separator 4, and a positive electrode 3 ( The driving electrolyte solution (electrolyte solution) 5 is accommodated in the outer case 6 while being held by the separator 4. The negative electrode 2, the separator 4, and the positive electrode 3 are overlapped to form a strip. The band 7 is wound from one end in the length direction, whereby the element 7 is formed. This element 7 is accommodated in an outer case 6 containing the driving electrolyte 5.

負極2は、銅箔からなる集電体2aの表裏面に活物質層2bがそれぞれ形成されたものである。なお、負極2の材料はこれに限定されない。   The negative electrode 2 has active material layers 2b formed on the front and back surfaces of a current collector 2a made of copper foil. In addition, the material of the negative electrode 2 is not limited to this.

負極2は、以下のようにして作製される。集電体2aとして、例えば厚さ15μmの銅箔を用い、この集電体2aの表裏面に、例えば厚さ50μmの活物質層2bをそれぞれ形成する。活物質層2bは、黒鉛とアセチレンブラックとバインダとの配合割合を、例えば、黒鉛:アセチレンブラック:バインダ=80:10:10としたものである。バインダは、ポリテトラフルオロエチレン(以下、PTFEと呼ぶ)とカルボキシメチルセルロース(以下、CMCと呼ぶ)との配合割合を、例えば5:5としたものである。   The negative electrode 2 is produced as follows. For example, a copper foil having a thickness of 15 μm is used as the current collector 2a, and an active material layer 2b having a thickness of 50 μm, for example, is formed on the front and back surfaces of the current collector 2a. In the active material layer 2b, the blending ratio of graphite, acetylene black, and binder is, for example, graphite: acetylene black: binder = 80: 10: 10. The binder has a blending ratio of polytetrafluoroethylene (hereinafter referred to as PTFE) and carboxymethyl cellulose (hereinafter referred to as CMC) of, for example, 5: 5.

活物質層2bの製造方法は、以下のとおりである。水にCMC、アセチレンブラック、黒鉛、PTFEをこの順に添加し、撹拌して混練することによりペースト状にする。これを集電体2aの上に厚さ50μmに塗工する。これを80℃の温度で乾燥させた後、75〜100kgf/cmの線圧でプレス加工する。以上により、厚さ(片面厚さ)30μm、電極密度が1.2〜1.5g/cm3の活物質層2bを作製した後、所定の寸法に切断して負極2とする。 The manufacturing method of the active material layer 2b is as follows. CMC, acetylene black, graphite, and PTFE are added to water in this order, and the mixture is stirred and kneaded to obtain a paste. This is coated on the current collector 2a to a thickness of 50 μm. After drying this at a temperature of 80 ° C., it is pressed at a linear pressure of 75 to 100 kgf / cm. As described above, the active material layer 2b having a thickness (single-sided thickness) of 30 μm and an electrode density of 1.2 to 1.5 g / cm 3 is manufactured, and then cut into a predetermined size to form the negative electrode 2.

正極3は、アルミニウム箔からなる集電体3aの表裏面に活性炭を主体とした分極性電極層3bがそれぞれ形成されたものである。なお、正極3の材料はこれに限定されない。   The positive electrode 3 is obtained by forming polarizable electrode layers 3b mainly composed of activated carbon on the front and back surfaces of a current collector 3a made of an aluminum foil. In addition, the material of the positive electrode 3 is not limited to this.

正極3は、以下のようにして作製される。集電体3aとして、例えば厚さ30μmのアルミニウム箔を用い、これを塩酸系のエッチング液中で電解エッチングして表面を粗面化する。続いて、平均粒径5μmのフェノール樹脂系活性炭粉末と、導電性付与剤である平均粒径0.05μmのCMCを溶解した水溶性バインダ溶液とを、10:1の重量比で混合して混練機で十分に混練する。その後、混練物にメタノールと水の分散溶媒を少しずつ加え、更に混練して所定の粘度のペーストを作製する。このペーストを集電体3aの表裏面にそれぞれ塗布し、100℃の大気中で1時間乾燥させる。以上により、分極性電極層3bを形成した後、所定の寸法に切断して正極3とする。   The positive electrode 3 is produced as follows. As the current collector 3a, for example, an aluminum foil having a thickness of 30 μm is used, and this is electrolytically etched in a hydrochloric acid-based etching solution to roughen the surface. Subsequently, a phenol resin-based activated carbon powder having an average particle diameter of 5 μm and a water-soluble binder solution in which CMC having an average particle diameter of 0.05 μm, which is a conductivity imparting agent, is mixed at a weight ratio of 10: 1 and kneaded. Mix thoroughly with a machine. Thereafter, a dispersion solvent of methanol and water is added little by little to the kneaded product, and further kneaded to prepare a paste having a predetermined viscosity. This paste is applied to the front and back surfaces of the current collector 3a, and dried in air at 100 ° C. for 1 hour. As described above, after forming the polarizable electrode layer 3b, it is cut into a predetermined dimension to form the positive electrode 3.

セパレータ4は、正極3と負極2とを絶縁でき、非水電解液が浸透し、イオンが透過できるものであればよく、多孔性フィルム、不織布、織物の構造を使用可能である。セパレータ4の材料としては、天然セルロース、セルロースの誘導体、ポリオレフィン等が使用可能である。   The separator 4 may be any material as long as it can insulate the positive electrode 3 and the negative electrode 2 from each other so that the non-aqueous electrolyte can permeate and ions can permeate, and a porous film, nonwoven fabric, or woven fabric structure can be used. As a material of the separator 4, natural cellulose, a cellulose derivative, polyolefin, or the like can be used.

外装ケース6は、アルミニウム製である。負極2および正極3には、リード線8がそれぞれ接続されている。リード線8は、外装ケース6の外部に引き出されている。外装ケース6の開口部6aには、封口体9が嵌め込まれており、外装ケース6の開口端が絞り加工およびカーリング加工されることで、外装ケース6の開口部6aが封口体9で封止されている。封口体9には、リード線8が貫通する孔が予め設けられている。   The outer case 6 is made of aluminum. Lead wires 8 are connected to the negative electrode 2 and the positive electrode 3, respectively. The lead wire 8 is drawn out of the outer case 6. A sealing body 9 is fitted into the opening 6 a of the outer case 6, and the opening 6 a of the outer case 6 is sealed with the sealing body 9 by drawing and curling the opening end of the outer case 6. Has been. A hole through which the lead wire 8 passes is provided in the sealing body 9 in advance.

駆動用電解液5は、リチウムイオンを移動させる溶媒の役割を担う液体であって、高電圧で電気分解をすることがなく、リチウムイオンを安定的に保持可能な液体である。   The driving electrolyte 5 is a liquid that plays a role of a solvent for moving lithium ions, and is a liquid that can stably hold lithium ions without being electrolyzed at a high voltage.

(蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法)
上記の構成の蓄電デバイス1は、本実施形態の製造方法により製造される。以下、図2のフローチャートを参照しながら蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法について説明する。
(Method for manufacturing electrode for power storage device and method for manufacturing power storage device)
The electricity storage device 1 having the above configuration is manufactured by the manufacturing method of the present embodiment. Hereinafter, a method for manufacturing an electrode for an electricity storage device and a method for manufacturing an electricity storage device will be described with reference to the flowchart of FIG.

まず、負極2を駆動用電解液中で保持する置換工程を行う(ステップS101)。具体的には、集電体2aの表裏面に活物質層2bがそれぞれ形成された帯状の負極2をリールに巻き取る。リールについては後述する。このリールを容器内に収容し、容器内に駆動用電解液(例えば、LBG−96533, 1mol/L LiPF6 エチレンカーボネート:ジエチルカーボネート(1:1)V/V%(キシダ化学株式会社))を注入して、室温で12時間、または、60℃で3時間保持する。駆動用電解液は、LiBF4、LiPF6等のリチウム塩をエチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート等の溶媒に溶かしたものである。 First, a replacement process for holding the negative electrode 2 in the driving electrolyte is performed (step S101). Specifically, the strip-shaped negative electrode 2 in which the active material layer 2b is formed on the front and back surfaces of the current collector 2a is wound around a reel. The reel will be described later. The reel is accommodated in a container, and a driving electrolyte (for example, LBG-96533, 1 mol / L LiPF6 ethylene carbonate: diethyl carbonate (1: 1) V / V% (Kishida Chemical Co., Ltd.)) is injected into the container. Then, hold at room temperature for 12 hours or at 60 ° C. for 3 hours. The driving electrolyte is obtained by dissolving a lithium salt such as LiBF 4 or LiPF 6 in a solvent such as ethylene carbonate, diethyl carbonate, or propylene carbonate.

負極2を巻き取るリール21は、斜視図である図3に示すように、対向配置された一対の円盤状の側板22を有している。側板22の内面には、螺旋状のガイド溝23が形成されている。このガイド溝23に、負極2の幅方向の端部が係合されながら、負極2がリール21に巻き取られる。ガイド溝23の長さは、負極2の全長よりも長くされている。   As shown in FIG. 3 which is a perspective view, the reel 21 for winding the negative electrode 2 has a pair of disk-shaped side plates 22 arranged to face each other. A spiral guide groove 23 is formed on the inner surface of the side plate 22. The negative electrode 2 is wound around the reel 21 while the end of the negative electrode 2 in the width direction is engaged with the guide groove 23. The length of the guide groove 23 is longer than the entire length of the negative electrode 2.

側板22の径方向(A方向)に隣接するガイド溝23同士の間隔は、所定間隔に設定されている。そのため、負極2がリール21に巻き取られると、A方向に隣接する負極2同士の間に所定間隔が形成される。この所定間隔は、A方向に隣接する負極2同士の間に駆動用電解液が十分に行きわたる間隔に設定されている。   The interval between the guide grooves 23 adjacent to each other in the radial direction (A direction) of the side plate 22 is set to a predetermined interval. Therefore, when the negative electrode 2 is wound around the reel 21, a predetermined interval is formed between the negative electrodes 2 adjacent to each other in the A direction. This predetermined interval is set to an interval at which the driving electrolyte sufficiently passes between the negative electrodes 2 adjacent in the A direction.

側板22の外周側におけるガイド溝23の端には、挿入口24が形成されている。挿入口24は、ガイド溝23の幅よりも大きく拡開するように形成されている。これにより、挿入口24から負極2を挿入しやすくされている。   An insertion port 24 is formed at the end of the guide groove 23 on the outer peripheral side of the side plate 22. The insertion port 24 is formed so as to expand larger than the width of the guide groove 23. This facilitates the insertion of the negative electrode 2 from the insertion port 24.

また、側板22には、側板22の外面とガイド溝23とを連通させる貫通孔25が形成されている。貫通孔25は、側板22の周方向(B方向)において、所定の間隔で複数形成されている。この貫通孔25を介して、側板22の外面側と内面側との間で駆動用電解液が自在に流入及び流出可能にされている。よって、側板22の外面側から側板22の内面側に向かって駆動用電解液を流入させることで、負極2全体をむらなく駆動用電解液に浸漬させることができる。   The side plate 22 is formed with a through hole 25 that allows the outer surface of the side plate 22 to communicate with the guide groove 23. A plurality of through holes 25 are formed at a predetermined interval in the circumferential direction (B direction) of the side plate 22. Via this through-hole 25, the driving electrolyte can freely flow in and out between the outer surface side and the inner surface side of the side plate 22. Therefore, by allowing the driving electrolyte to flow from the outer surface side of the side plate 22 toward the inner surface side of the side plate 22, the entire negative electrode 2 can be immersed in the driving electrolyte without unevenness.

負極2を駆動用電解液中で保持することで、負極2に吸着した水分と駆動用電解液とが置換される。これにより、負極2の特性や品質を安定化することができる。また、負極2を駆動用電解液中で保持することで、水分以外の汚染物や、負極2を所定の寸法に切断した時に生じた集電体2aの切断屑を取り除くことができる。   By holding the negative electrode 2 in the driving electrolyte, the water adsorbed on the negative electrode 2 and the driving electrolyte are replaced. Thereby, the characteristic and quality of the negative electrode 2 can be stabilized. Further, by holding the negative electrode 2 in the driving electrolyte, it is possible to remove contaminants other than moisture and cutting waste of the current collector 2a generated when the negative electrode 2 is cut to a predetermined size.

図2に戻って、置換工程を行った後、リール21を容器内から取り出す取出工程(ステップ102)を行う。具体的には、吸着した水分と駆動用電解液とを置換した帯状の負極2が巻かれたリール21を容器内から取り出す。そして、リール21に巻き取られていた負極2をリール21から取り出す。   Returning to FIG. 2, after the replacement process is performed, an extraction process (step 102) for taking out the reel 21 from the container is performed. Specifically, the reel 21 on which the strip-shaped negative electrode 2 in which the adsorbed moisture and the driving electrolyte are replaced is taken out from the container. Then, the negative electrode 2 wound around the reel 21 is taken out from the reel 21.

次に、負極2の表裏面にリチウム箔がそれぞれ重ね合わされた帯状構造体をリール21に巻き取る巻取工程を行う(ステップS103)。具体的には、吸着した水分と駆動用電解液とを置換した帯状の負極2の表裏面に帯状のリチウム箔(厚さ20μm)をそれぞれ重ね合わせて、帯状構造体とする。即ち、帯状構造体は、一方の面から他方の面に向かって、厚さ20μmのリチウム箔、厚さ30μmの活物質層2b、厚さ15μmの集電体2a、厚さ30μmの活物質層2b、厚さ20μmのリチウム箔が、この順で積層された構造である。この帯状構造体を、再度、図3に示したリール21に巻き取る。このとき、A方向(図3参照)に隣接する帯状構造体同士の間に所定間隔が形成される。なお、リチウム箔の厚みは適宜変更してよい。また、リチウム箔を負極2の片面のみに重ね合わせて帯状構造体としてもよい。   Next, a winding process is performed in which the belt-shaped structure in which the lithium foil is superimposed on the front and back surfaces of the negative electrode 2 is wound around the reel 21 (step S103). Specifically, a strip-shaped lithium foil (thickness 20 μm) is superposed on the front and back surfaces of the strip-shaped negative electrode 2 in which the adsorbed moisture and the driving electrolyte are replaced to form a strip-shaped structure. That is, the belt-like structure is formed from one surface to the other surface, a lithium foil having a thickness of 20 μm, an active material layer 2 b having a thickness of 30 μm, a current collector 2 a having a thickness of 15 μm, and an active material layer having a thickness of 30 μm. 2b and a 20 μm thick lithium foil are laminated in this order. The belt-like structure is again wound around the reel 21 shown in FIG. At this time, a predetermined interval is formed between the band-like structures adjacent in the A direction (see FIG. 3). In addition, you may change the thickness of lithium foil suitably. Alternatively, the lithium foil may be overlapped only on one side of the negative electrode 2 to form a belt-like structure.

次に、帯状構造体を巻き取ったリール21を駆動用電解液が入った容器内に保持し、容器を所定の温度に保持する保持工程を行う(ステップS104)。具体的には、帯状構造体を巻き取ったリール21を容器内に収容し、リール21を収容した容器内に駆動用電解液を注入する。そして、駆動用電解液が注入された容器を、室温で48時間、または、60℃で12時間保持する。なお、保持する時間および温度は適宜変更してよい。   Next, a holding step is performed in which the reel 21 around which the belt-like structure is wound is held in a container containing a driving electrolyte, and the container is held at a predetermined temperature (step S104). Specifically, the reel 21 around which the belt-like structure is wound is accommodated in a container, and the driving electrolyte is injected into the container in which the reel 21 is accommodated. The container filled with the driving electrolyte is held at room temperature for 48 hours or at 60 ° C. for 12 hours. In addition, you may change suitably the time and temperature to hold | maintain.

帯状構造体が駆動用電解液を保持すると、負極2とリチウム箔との間には電位差があるために、リチウム箔から負極2にリチウムイオンがドーピングされる。このとき、負極2とリチウム箔とを直接接触させてプレドープを行うため、負極2の全体にリチウムイオンを行きわたらせるための貫通孔を負極2に設ける必要がないとともに、貫通孔を介してリチウムイオンを行きわたらせるのに比べて短時間でプレドープを行うことができる。これにより、電極の有効面積を減少させることなく、且つプレドープを行うのに要する時間を短縮することができる。   When the belt-like structure holds the driving electrolyte, there is a potential difference between the negative electrode 2 and the lithium foil, so that lithium ions are doped from the lithium foil into the negative electrode 2. At this time, since the negative electrode 2 and the lithium foil are directly contacted and pre-doping is performed, it is not necessary to provide the negative electrode 2 with a through hole for spreading lithium ions throughout the negative electrode 2 and lithium via the through hole. Pre-doping can be performed in a short time compared to spreading ions. As a result, the time required for pre-doping can be shortened without reducing the effective area of the electrode.

なお、保持工程において、リチウム箔に正電位(例えば+4V)を印加し、負極2に負電位(例えば0V)を印加してもよい。負極2とリチウム箔との間に生じた電位差によって、リチウム箔から負極2にリチウムイオンをより好適にドーピングすることができる。このように、電気化学的にプレドープを行うことで、プレドープに要する時間をさらに短縮することができる。   In the holding step, a positive potential (for example, +4 V) may be applied to the lithium foil, and a negative potential (for example, 0 V) may be applied to the negative electrode 2. Lithium ions can be more preferably doped from the lithium foil into the negative electrode 2 due to the potential difference generated between the negative electrode 2 and the lithium foil. Thus, the time required for pre-doping can be further shortened by electrochemically pre-doping.

また、保持工程において、容器を30℃以上100℃以下に保持することで、プレドープに要する時間をさらに短縮することができる。   In the holding step, the time required for pre-doping can be further shortened by holding the container at 30 ° C. or higher and 100 ° C. or lower.

ここで、従来の製造方法においては、負極とセパレータと正極とをこの順番で重ね合わせた帯状物の外周側にリチウム箔を設け、これを電解液に浸漬し、リチウム箔に正電位、負極に負電位をそれぞれ印加することで、プレドープを行っている。即ち、リチウムイオンキャパシタの構造を完成させた後にプレドープを行っている。これに対して、本実施形態の製造方法では、蓄電デバイス1の構造を完成させる(負極2とセパレータ4と正極3とを重ね合わせる)前に、プレドープを行うので、生産上の手数を減らすことができる。   Here, in the conventional manufacturing method, a lithium foil is provided on the outer peripheral side of a strip in which a negative electrode, a separator, and a positive electrode are overlapped in this order, and this is immersed in an electrolytic solution. Pre-doping is performed by applying a negative potential. That is, the pre-doping is performed after the structure of the lithium ion capacitor is completed. On the other hand, in the manufacturing method of this embodiment, since the pre-doping is performed before the structure of the electricity storage device 1 is completed (the negative electrode 2, the separator 4, and the positive electrode 3 are overlapped), the number of production steps is reduced. Can do.

次に、所定の温度に保持された後の容器内を所定の雰囲気で乾燥させる乾燥工程を行う(ステップS105)。具体的には、容器内を露点温度が−40℃以下の気体、または、不活性ガスで乾燥させる。これにより、負極2から駆動用電解液を好適に除去することができるので、負極2の特性や品質を安定化することができる。   Next, a drying process for drying the inside of the container after being maintained at a predetermined temperature in a predetermined atmosphere is performed (step S105). Specifically, the inside of the container is dried with a gas having a dew point temperature of −40 ° C. or lower or an inert gas. Thereby, since the driving electrolyte can be suitably removed from the negative electrode 2, the characteristics and quality of the negative electrode 2 can be stabilized.

その後、容器内からリール21を取り出し、リール21から負極2を取り出す取出工程を行う(ステップS106)。具体的には、リチウムがプレドープされた負極2が巻かれたリール21を容器内から取り出す。そして、リール21から負極2を取り出す。以上により、蓄電デバイス用電極としての負極2が製造される。   Thereafter, the reel 21 is taken out from the container, and a take-out process for taking out the negative electrode 2 from the reel 21 is performed (step S106). Specifically, the reel 21 around which the negative electrode 2 pre-doped with lithium is wound is taken out from the container. Then, the negative electrode 2 is taken out from the reel 21. As described above, the negative electrode 2 as the electrode for the electricity storage device is manufactured.

その後、負極2と正極3とにリード線8をそれぞれ接続し、負極2とセパレータ4と正極3とをこの順番で重ね合わせて帯状物とする。この帯状物をその長さ方向の一端から巻回することで素子7を形成する。この素子7を、駆動用電解液5が入った外装ケース6内に収容する。封口体9の孔にリード線8を貫通させながら、封口体9を外装ケース6の開口部6aに嵌め込む。外装ケース6の開口端を絞り加工およびカーリング加工することで、外装ケース6の開口部6aを封口体9で封止する。以上により、蓄電デバイス1が製造される。なお、素子7の形成に際して、リール21を負極2の供給リールとして使用してもよい。   Thereafter, lead wires 8 are connected to the negative electrode 2 and the positive electrode 3, respectively, and the negative electrode 2, the separator 4, and the positive electrode 3 are overlapped in this order to form a strip. The element 7 is formed by winding the strip from one end in the length direction. The element 7 is accommodated in an outer case 6 containing the driving electrolyte 5. The sealing body 9 is fitted into the opening 6 a of the exterior case 6 while the lead wire 8 is passed through the hole of the sealing body 9. The opening 6a of the outer case 6 is sealed with the sealing body 9 by drawing and curling the opening end of the outer case 6. Thus, the electricity storage device 1 is manufactured. In forming the element 7, the reel 21 may be used as a supply reel for the negative electrode 2.

(プレドーピング時間の評価)
次に、本実施形態の蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法と、従来の製造方法(従来例)とで、負極2へのリチウムイオンのプレドープに要する時間(プレドーピング時間)を評価した。ここで、従来例では、多数の貫通孔を負極および正極にそれぞれ設け、負極とセパレータと正極とをこの順番で重ね合わせた帯状物の外周側にリチウム箔を設け、これを電解液に浸漬し、リチウム箔に正電位、負極に負電位をそれぞれ印加することで、プレドープを行っており、貫通孔を介して負極の全体にリチウムイオンを行きわたらせている。室温で保持した場合のプレドーピング時間と、60℃で保持した場合のプレドーピング時間とを、表1に示す。
(Evaluation of pre-doping time)
Next, the time required for the pre-doping of lithium ions into the negative electrode 2 (pre-doping time) in the method for manufacturing the electrode for the power storage device and the method for manufacturing the power storage device of the present embodiment and the conventional manufacturing method (conventional example) is as follows. evaluated. Here, in the conventional example, a large number of through-holes are provided in the negative electrode and the positive electrode, respectively, and a lithium foil is provided on the outer peripheral side of the belt-like material in which the negative electrode, the separator, and the positive electrode are overlapped in this order, and this is immersed in the electrolytic solution. In addition, pre-doping is performed by applying a positive potential to the lithium foil and a negative potential to the negative electrode, respectively, and lithium ions are distributed throughout the negative electrode through the through holes. Table 1 shows the pre-doping time when held at room temperature and the pre-doping time when held at 60 ° C.

Figure 2018006369
Figure 2018006369

表1から、本実施形態でのプレドーピング時間が、従来例の半分になり、短縮されていることがわかる。   From Table 1, it can be seen that the pre-doping time in the present embodiment is reduced to half that of the conventional example.

(効果)
以上に述べたように、本実施形態に係る蓄電デバイス用電極の製造方法および蓄電デバイスの製造方法によると、負極2の両面または片面にリチウム箔を重ね合わせた帯状構造体をリール21に巻き取って駆動用電解液が入った容器内に保持し、所定の温度に保持する。すると、負極2とリチウム箔との間には電位差があるために、リチウム箔から負極2にリチウムイオンがドーピングされる。このとき、負極2とリチウム箔とを直接接触させてプレドープを行うため、負極2の全体にリチウムイオンを行きわたらせるための貫通孔を負極2に設ける必要がないとともに、貫通孔を介してリチウムイオンを行きわたらせるのに比べて短時間でプレドープを行うことができる。これにより、電極の有効面積を減少させることなく、且つプレドープを行うのに要する時間を短縮することができる。
(effect)
As described above, according to the method for manufacturing an electrode for an electricity storage device and the method for producing an electricity storage device according to the present embodiment, a belt-like structure in which lithium foil is superimposed on both sides or one side of the negative electrode 2 is wound on a reel 21. And kept in a container containing the driving electrolyte, and kept at a predetermined temperature. Then, since there is a potential difference between the negative electrode 2 and the lithium foil, the negative electrode 2 is doped with lithium ions from the lithium foil. At this time, since the negative electrode 2 and the lithium foil are directly contacted and pre-doping is performed, it is not necessary to provide the negative electrode 2 with a through hole for spreading lithium ions throughout the negative electrode 2 and lithium via the through hole. Pre-doping can be performed in a short time compared to spreading ions. As a result, the time required for pre-doping can be shortened without reducing the effective area of the electrode.

また、プレドープを行う際に、リチウム箔に正の電位を印加し、負極2に負の電位を印加することで、負極2とリチウム箔との間に電位差をより好適に生じさせることができる。この電位差によって、リチウム箔から負極2にリチウムイオンを好適にドーピングすることができる。このように、電気化学的にプレドープを行うことで、プレドープに要する時間をさらに短縮することができる。   In addition, when pre-doping is performed, a positive potential is applied to the lithium foil, and a negative potential is applied to the negative electrode 2, whereby a potential difference can be more appropriately generated between the negative electrode 2 and the lithium foil. By this potential difference, lithium ions can be preferably doped from the lithium foil to the negative electrode 2. Thus, the time required for pre-doping can be further shortened by electrochemically pre-doping.

また、プレドープを行う際に、容器を30℃以上100℃以下に保持することで、プレドープに要する時間をさらに短縮することができる。   Moreover, when performing pre-doping, the time required for pre-doping can be further shortened by maintaining the container at 30 ° C. or higher and 100 ° C. or lower.

また、容器内を、露点温度が−40℃以下の気体、または、不活性ガスで乾燥させることで、負極2から駆動用電解液を好適に除去することができる。これにより、負極2の特性や品質を安定化することができる。   Moreover, the electrolyte solution for driving can be suitably removed from the negative electrode 2 by drying the inside of the container with a gas having a dew point temperature of −40 ° C. or lower or an inert gas. Thereby, the characteristic and quality of the negative electrode 2 can be stabilized.

以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。   The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.

例えば、本発明では、ガイド溝23によって負極2同士の間に所定間隔を確保しているが、ガイド溝23以外の方法であっても同様の効果が得られる。即ち、ステップS102において説明した帯状構造体(厚さ20μmのリチウム箔、厚さ30μmの活物質層2b、厚さ15μmの集電体2a、厚さ30μmの活物質層2b、厚さ20μmのリチウム箔)が、リール21内で密着することなく駆動用電解液が循環すればよいので、例えば、間隔1mm、開口径1mmの穴を備えた厚さ100μm程度のメッシュ状高分子シートをスペーサーとして帯状構造体とともに巻いても、同様の効果が得られることは言うまでもない。   For example, in the present invention, the predetermined interval is secured between the negative electrodes 2 by the guide groove 23, but the same effect can be obtained even by a method other than the guide groove 23. That is, the band-shaped structure described in step S102 (a lithium foil having a thickness of 20 μm, an active material layer 2b having a thickness of 30 μm, a current collector 2a having a thickness of 15 μm, an active material layer 2b having a thickness of 30 μm, a lithium having a thickness of 20 μm). Since the driving electrolyte solution may circulate without being closely adhered in the reel 21, for example, a mesh-like polymer sheet having a thickness of about 100 μm with holes having an interval of 1 mm and an opening diameter of 1 mm is used as a spacer. Needless to say, the same effect can be obtained by winding together with the structure.

また、本発明の置換工程、保持工程、蓄電デバイスで使用する駆動用電解液は、各々異なる組成でもよい。   Further, the driving electrolytes used in the substitution step, the holding step, and the electricity storage device of the present invention may have different compositions.

1 蓄電デバイス
2 負極(蓄電デバイス用電極)
2a 集電体
2b 活物質層
3 正極
3a 集電体
3b 分極性電極層
4 セパレータ
5 駆動用電解液(電解液)
6 外装ケース
7 素子
8 リード線
9 封口体
21 リール
22 側板
23 ガイド溝
24 挿入口
25 貫通孔
1 Power Storage Device 2 Negative Electrode (Electrode for Power Storage Device)
2a current collector 2b active material layer 3 positive electrode 3a current collector 3b polarizable electrode layer 4 separator 5 driving electrolyte (electrolyte)
6 Exterior Case 7 Element 8 Lead Wire 9 Sealing Body 21 Reel 22 Side Plate 23 Guide Groove 24 Insertion Port 25 Through-hole

Claims (6)

集電体の両面に活物質層を設けた電極の両面または片面にリチウム箔を重ね合わせた帯状構造体をリールに巻き取る巻取工程と、
前記帯状構造体を巻き取った前記リールを駆動用電解液が入った容器内に保持し、前記容器を所定の温度に保持する保持工程と、
前記所定の温度に保持された後の前記容器内を所定の雰囲気で乾燥させる乾燥工程と、
前記容器内から前記リールを取り出し、前記リールから前記電極を取り出す取出工程と、
を有することを特徴とする蓄電デバイス用電極の製造方法。
A winding step of winding a belt-like structure in which a lithium foil is superimposed on both sides or one side of an electrode provided with an active material layer on both sides of a current collector, on a reel;
Holding the reel around which the belt-like structure is wound in a container containing a driving electrolyte, and holding the container at a predetermined temperature; and
A drying step of drying the inside of the container after being held at the predetermined temperature in a predetermined atmosphere;
Taking out the reel from the container and taking out the electrode from the reel; and
The manufacturing method of the electrode for electrical storage devices characterized by having.
前記保持工程において、前記帯状構造体を巻き取った前記リールを前記容器内に収容する収容工程と、前記リールを収容した前記容器内に前記駆動用電解液を注入する注入工程と、を有することを特徴とする請求項1に記載の蓄電デバイス用電極の製造方法。   The holding step includes a storing step of storing the reel around which the belt-like structure is wound in the container, and an injection step of injecting the driving electrolyte into the container storing the reel. The manufacturing method of the electrode for electrical storage devices of Claim 1 characterized by these. 前記保持工程において、前記リチウム箔に正の電位を印加し、前記電極に負の電位を印加することを特徴とする請求項1又は2に記載の蓄電デバイス用電極の製造方法。   3. The method for manufacturing an electrode for an electricity storage device according to claim 1, wherein, in the holding step, a positive potential is applied to the lithium foil and a negative potential is applied to the electrode. 前記保持工程において、前記容器を30℃以上100℃以下に保持することを特徴とする請求項1乃至3のいずれか1項に記載の蓄電デバイス用電極の製造方法。   The method for manufacturing an electrode for an electricity storage device according to any one of claims 1 to 3, wherein in the holding step, the container is held at 30 ° C or higher and 100 ° C or lower. 前記乾燥工程において、前記容器内を、露点温度が−40℃以下の気体、または、不活性ガスで乾燥させることを特徴とする請求項1乃至4のいずれか1項に記載の蓄電デバイス用電極の製造方法。   5. The electrode for an electricity storage device according to claim 1, wherein in the drying step, the inside of the container is dried with a gas having a dew point temperature of −40 ° C. or less or an inert gas. Manufacturing method. 請求項1乃至5のいずれか1項に記載の蓄電デバイス用電極の製造方法により製造された前記電極を負極とし、活性炭を含む層を有する正極と、前記負極とを、セパレータを介して巻回したことを特徴とする蓄電デバイスの製造方法。   The electrode manufactured by the method for manufacturing an electrode for an electricity storage device according to any one of claims 1 to 5 is used as a negative electrode, and a positive electrode having a layer containing activated carbon and the negative electrode are wound through a separator. A method for manufacturing an electricity storage device, characterized by comprising:
JP2016126439A 2016-06-27 2016-06-27 Method for manufacturing electrode for power storage device, and method for manufacturing power storage device Pending JP2018006369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126439A JP2018006369A (en) 2016-06-27 2016-06-27 Method for manufacturing electrode for power storage device, and method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126439A JP2018006369A (en) 2016-06-27 2016-06-27 Method for manufacturing electrode for power storage device, and method for manufacturing power storage device

Publications (1)

Publication Number Publication Date
JP2018006369A true JP2018006369A (en) 2018-01-11

Family

ID=60949701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126439A Pending JP2018006369A (en) 2016-06-27 2016-06-27 Method for manufacturing electrode for power storage device, and method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP2018006369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022997A1 (en) * 2019-08-02 2021-02-11 宁德时代新能源科技股份有限公司 Lithium strip and lithium strip coil having same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308212A (en) * 1997-05-06 1998-11-17 Ricoh Co Ltd Electrode plate processing device for secondary battery
JP2012049500A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Manufacturing method of lithium ion capacitor
JP2012049543A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308212A (en) * 1997-05-06 1998-11-17 Ricoh Co Ltd Electrode plate processing device for secondary battery
JP2012049500A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Manufacturing method of lithium ion capacitor
JP2012049543A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Doping apparatus for manufacturing electrode of energy storage device, and electrode manufacturing method using the apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022997A1 (en) * 2019-08-02 2021-02-11 宁德时代新能源科技股份有限公司 Lithium strip and lithium strip coil having same

Similar Documents

Publication Publication Date Title
JP4640013B2 (en) Electrode element manufacturing method and electrochemical element manufacturing method
US20130003261A1 (en) Lithium plate, method for lithiation of electrode and energy storage device
JP5680868B2 (en) Lithium ion capacitor
US8988858B2 (en) Electrode for electrochemical capacitor and electrochemical capacitor using same
JP2007234806A (en) Electrode manufacturing device, electrode manufacturing method, electrode, and electrochemical element
JP2012004491A (en) Power storage device
CN111742385B (en) Power storage device, negative electrode for power storage device, and methods for producing same
CN102667986B (en) Electricity-storage device
JP2008243888A (en) Manufacturing method of electrochemical capacitor, and electrochemical capacitor obtained thereby
JP2010135361A (en) Negative electrode, lithium ion capacitor, and manufacturing method of them
JP2018006369A (en) Method for manufacturing electrode for power storage device, and method for manufacturing power storage device
JP2014204069A (en) Electrode for power storage device and lithium ion capacitor
KR101157500B1 (en) Lithium ion capacitor cell and manufacturing method of the same
JP2015023001A (en) Porous current collector for power storage device, electrode and power storage device
WO2017010129A1 (en) Electrochemical device
JP2018174077A (en) Battery separator and lithium ion secondary battery
KR101137723B1 (en) Lithium ion capacitor cell using current collector coated with carbon and manufacturing method of the same
JP2011138663A (en) Power storage device
JP2010278300A (en) Method of manufacturing lithium ion capacitor
CN104662627B (en) Capacitor electrode and use its capacitor
JP2016058181A (en) Method for manufacturing electrode plate for nonaqueous secondary battery
JPH0974052A (en) Method for manufacturing polarizable electrode
KR101771012B1 (en) Lithium ion doping method for ultra capacitor
JP5430329B2 (en) Accumulator
JP6209131B2 (en) Lithium air secondary battery and method for producing positive electrode for lithium air secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204