JPH01292754A - Electrode for alkaline storage battery and manufacture thereof - Google Patents

Electrode for alkaline storage battery and manufacture thereof

Info

Publication number
JPH01292754A
JPH01292754A JP63121053A JP12105388A JPH01292754A JP H01292754 A JPH01292754 A JP H01292754A JP 63121053 A JP63121053 A JP 63121053A JP 12105388 A JP12105388 A JP 12105388A JP H01292754 A JPH01292754 A JP H01292754A
Authority
JP
Japan
Prior art keywords
electrode
substrate
active material
pore diameter
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121053A
Other languages
Japanese (ja)
Inventor
Makoto Kanbayashi
誠 神林
Kazuaki Ozaki
尾崎 和昭
Masahito Tomita
富田 正仁
Takeo Hamamatsu
浜松 太計男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63121053A priority Critical patent/JPH01292754A/en
Publication of JPH01292754A publication Critical patent/JPH01292754A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To increase the filling capability of an active material and mechanical strength by specifying mean pore size in the plane direction and that in the thickness direction of a substrate made of porous metal having three-dimensional net structure. CONSTITUTION:In an electrolyte for an alkaline storage battery obtained by filling active material powder in a substrate made of porous metal having three-dimensional net structure, the substrate is formed so that a mean pore size in the plane direction is 130-200mum and a mean pore size in the thickness direction is 1/2-4/5 that in the plane direction. This substrate is manufactured by rolling a metal substrate thicker than specified thickness. Active material filling capability is increased, energy density is heightened, high electrode conductivity is maintained, and mechanical strength is increased.

Description

【発明の詳細な説明】 仔】 産業上の利用分野 本発明に、発泡メタル等の三次元網状構造を(ロ)従来
の技術 アルカリ蓄電池用電極として、近年、スポンジ状金桐(
発泡メタル)や金属繊維のマット状焼結体を、活物質の
保持体として用いる非焼結弐裂法が提案さnている。こ
の製法の概ll@は、次の様なものである。活物質とし
ての水酸化ニッケル全土成分とし、こnに添加剤として
の水酸化コバルト、導電剤としての金属ニッケル等を加
えた活物質混合物を、糊料液とともに練合しベーヌト状
とする。このペーストを上記の金属多孔体(以下基体と
称する)に擦り具等の治具を用い充填し、乾燥後、加圧
により所定厚みまで圧縮して、完成電価とするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Fields of Industrial Application The present invention has recently been developed using a three-dimensional network structure made of foamed metal, etc. as an electrode for alkaline storage batteries.
A non-sintering method has been proposed in which a mat-like sintered body of foamed metal or metal fiber is used as a support for an active material. The outline of this manufacturing method is as follows. An active material mixture consisting of nickel hydroxide as an active material, to which cobalt hydroxide as an additive, metal nickel as a conductive agent, etc. is kneaded with a paste liquid to form a beinet-like material. This paste is filled into the metal porous body (hereinafter referred to as the base body) using a jig such as a rubbing tool, and after drying, the paste is compressed to a predetermined thickness by pressure to obtain a finished electrical value.

この裂@ぼ、従来の焼結式製法に比べ、展造工糧が簡単
で、工程数が少く、また設備スペースが小さい等、製造
面のメリットがある。更にはt@とじて比較し次場合、
焼結式電極に比べ高エネルギー密度化が計り易いなどの
利点も合せ持、ている。
Compared to the conventional sintering method, this method has manufacturing advantages such as easier rolling, fewer steps, and smaller equipment space. Furthermore, if we compare t@, in the following case,
Compared to sintered electrodes, it also has the advantage of being easier to measure high energy density.

しかし一方、上述し九よりに粉末状活物質t−直接基汗
へ充填するため、基体孔径は焼結式電極に比べ、10倍
以上大きくしなけnばならない。それ故、活物質問の導
電性が低く、電極の放電性能が良くないという問題点が
ある。更に、この電極には焼結式のLうな叉持体となる
芯体にッケルメッキを施した穿孔鉄板や、ラス仮〕が黙
いうえ、最終の加圧工程で伸び等の変形が発生する。そ
してこの電極は機械的強度が非常に小さく、wt極極脂
組立時の捲ロ工程で破断しやすいという傾向がある。
However, as mentioned above, in order to directly fill the powdered active material into the substrate, the pore diameter of the substrate must be made 10 times larger than that of a sintered electrode. Therefore, there is a problem that the conductivity of the living substance is low and the discharge performance of the electrode is poor. Furthermore, this electrode contains a perforated iron plate with a core plated with nickel plating, which serves as a sintered L-shaped support, and deformation such as elongation occurs during the final pressurization process. This electrode has very low mechanical strength and tends to break easily during the winding process during assembly of wt ultra-polymers.

従来、これらの問題点を解決する手段として、前者に対
しては特開昭60−1760号公報に記載されたよりに
導電材を添加し7tり、活物質充填後の[[Kメッキし
電導性を付与する方法、ま九後者には特開昭57−34
665号公報、同55−39181号公報、同55−2
8240号公報のように基体の乱形状に方向性を与えた
り、補強材を加え九りする試みがなされている。
Conventionally, as a means to solve these problems, for the former, 7 tons of conductive material was added as described in JP-A-60-1760, and after filling the active material, [[K plating was performed to make it conductive. The latter method is described in Japanese Unexamined Patent Publication No. 57-34
No. 665, No. 55-39181, No. 55-2
As in Japanese Patent No. 8240, attempts have been made to give directionality to the irregular shape of the base body or to add reinforcing materials.

しかしいずれの場合にも工程が複雑になったり、[極特
性を低下させるという新たな問題点があるため、本質的
な対策が求められてい次。
However, in either case, there are new problems such as complicating the process and deteriorating the polar properties, so essential countermeasures are required.

(、J  発明が解決しようとする課題本発明は前記問
題点に鑑みてなさn友ものであって、電極の電導度を高
いままに維持し、活物質の充填性に優れ、機械的強度の
大きなアルカリ蓄電池用[[及びその製造方法を提供し
ようとするものである。
(, J Problems to be Solved by the Invention The present invention has been developed in view of the above-mentioned problems. It is intended to provide a large alkaline storage battery [[and a manufacturing method thereof].

に)課題を解決するための手段 不発明は、三次元網状構造を有する金属多孔体を基体と
し、該基体に活物質粉末が充填さtL比アルカリ蓄電池
用電極であって、前記三次元網状構造を有する金属多孔
体からなる基体は、平面方向の平均孔径が130〜20
0μmであり、厚さ方向の平均孔径が前記平面方向の平
均孔径の1/2〜415であることを特徴とするもので
ある。
B) Means for Solving the Problems The present invention provides an electrode for an alkaline storage battery with a tL ratio, in which a metal porous body having a three-dimensional network structure is used as a base, and the base is filled with active material powder, the electrode having the three-dimensional network structure. The substrate made of a porous metal body has an average pore diameter in the plane direction of 130 to 20
0 μm, and the average pore diameter in the thickness direction is 1/2 to 415 of the average pore diameter in the planar direction.

ま7を前記三次元網状構造を有する金属多孔体からなる
基体に、あらかじめ所定厚さより厚く作つた前記金属基
体を圧延することKより製造できる。
7 can be manufactured by rolling the metal base made in advance to a thickness greater than a predetermined thickness on the base made of the metal porous body having the three-dimensional network structure.

一方、n紀基体がスポンジ状樹脂にメッキして製造さn
る時に、スポンジ状樹脂が平面方向に展延さnるかもし
くは厚さ方向に圧縮さnて孔が変形しtものを用いて前
記電極が製造さnる。
On the other hand, the n-age substrate is manufactured by plating a sponge-like resin.
When the sponge-like resin is expanded in the planar direction or compressed in the thickness direction, the holes are deformed and the electrode is manufactured using the sponge-like resin.

(ホ)作用 本発明者の検討に工れば、三次元網状構造をMする金属
多孔体からなる基体に、活物質粉末を充填する場合、前
記基体の平面方向の平均孔径が130〜200pmであ
り、厚さ方向の平均孔径が前記平面方向の平均孔径の1
/2〜415 とした場合、工程上においてa活物質粉
末の充填性に優れ、[[(7)4電度の維持が可能とな
り、機械的強度の大なる![を提供することが可能とな
る。
(E) Effect Based on the study conducted by the present inventor, when a base made of a metal porous body having a three-dimensional network structure is filled with active material powder, the average pore diameter in the plane direction of the base is 130 to 200 pm. Yes, the average pore diameter in the thickness direction is 1 of the average pore diameter in the plane direction.
/2 to 415, the filling property of the active material powder is excellent during the process, and [[(7) 4 electric power can be maintained, resulting in great mechanical strength! It becomes possible to provide [.

(へ)実施例 本発明者に、スポンジ状ニッケル(発泡ニッケル〕t−
基体として用い、非焼結式製法において前記基体の孔径
が、電池特注及び生産性に与える影響′t−調査し比。
(f) Example The present inventor has made sponge-like nickel (foamed nickel) t-
The effect of the pore size of the substrate used as a substrate on battery customization and productivity in a non-sintering manufacturing method was investigated.

その結果を、以下に詳述する1゜■ 活物質の充填性 平均粒径8μm1最大粒径405m、最小粒径3μmの
水酸化ニッケルを活物質粉末として用いた場合の、各種
孔径を有する基体への活物質の充填量t−調べた。この
結果を、第1表に示す。
The results are detailed below: 1゜■ Filling properties of active material Average particle size 8 μm 1 Maximum particle size 405 m, minimum particle size 3 μm When nickel hydroxide is used as active material powder, substrates with various pore sizes are evaluated. The filling amount of active material t- was investigated. The results are shown in Table 1.

水酸化ニッケルの粒径の決定は、反応性と充填性等を総
合し、前述の1[とし友。尚、光填に用いたペーストの
密度は1.6597♂であり、基体の厚さは1.Qmで
ある。
The particle size of nickel hydroxide is determined by taking into account reactivity and filling properties, etc. The density of the paste used for optical filling was 1.6597♂, and the thickness of the substrate was 1.6597♂. Qm.

以下余白 第1表 基体の孔径が100p−以下では、活物質充填時に目詰
まりが起き充填性に良くない。一方、孔径が大きくなる
程充填に容易になるが、抜は落ちも多くなる(例えは孔
径310am以上]ため、実質的には基体の孔径として
は130〜200#Lが虐する頭といえる。
If the pore diameter of the substrate is less than 100p, clogging occurs during filling with the active material, resulting in poor filling properties. On the other hand, the larger the pore diameter is, the easier it is to fill, but the more the pore size is removed (for example, the pore diameter is 310 am or more), so it can be said that 130 to 200 #L is practically the best pore diameter for the substrate.

■ 活物質の利用率 ■で用い几電極を加圧し、活物質の密度を2.2 y/
ess −vold  として、カドミ’;’ム’la
tiigトi合せニッケルーカドミウム成池を4成し、
!15Cの電流における活物質の利用率を測定し、IC
12Cの時と比較した。この結果を、第2表に示す。
■ The utilization rate of the active material ■ is used, and the electrode is pressurized to increase the density of the active material to 2.2 y/
As ess -vold, Kadmi';'mu'la
Four combined nickel-cadmium ponds are formed.
! The active material utilization rate at a current of 15C was measured and the IC
Comparison was made with the time of 12C. The results are shown in Table 2.

尚、1G、2Cでの値は、1/SCの時の値を100と
して算出し友相対値である。
Note that the values at 1G and 2C are relative values calculated with the value at 1/SC as 100.

第2表 基体の孔径が大きくなる程、利用率、高率放電特性とも
に低下することがわかる。■、■両特性を対照すると、
双方ともに満足する条V+Th違択しにくい事がわかる
It can be seen that as the pore diameter of the substrate in Table 2 increases, both the utilization rate and high rate discharge characteristics decrease. ■、■ Comparing both characteristics,
It can be seen that it is difficult to violate Article V + Th, which satisfies both parties.

そこで孔径を基体の厚さ方向にに小さく、平面方向には
大きくすることにより、両特性を高く床つことを試み次
。ここで基体のペースとして用い九のは、孔径170μ
りものであり、厚さ方向の孔径を変える手段として次の
方法を採つt0■厚さ大なる発泡ニッケルからなる基体
を、活物質の元項前にカレンダーロールを通し、所定の
厚さまで圧縮する、@発泡ニッケルの出発材料であるポ
リフレタン等の樹脂を、ニッケルメッキ工程で所定の厚
みまで圧縮し床待しつつメッキする。
Therefore, we attempted to improve both properties by making the pore diameter smaller in the thickness direction of the substrate and larger in the planar direction. Here, the hole diameter used as the base material was 170 μm.
The following method is used to change the pore size in the thickness direction: A substrate made of foamed nickel with a large thickness is passed through a calender roll before the active material is compressed to a predetermined thickness. In the nickel plating process, resin such as polyurethane, which is the starting material for nickel foam, is compressed to a predetermined thickness and plated while waiting on the floor.

尚、前述した通り、電極は活物質充填後、圧縮するが、
この工程での圧縮量は4096とし友。この結果を、第
3表に示す。
As mentioned above, the electrode is compressed after being filled with active material, but
The compression amount in this process is 4096. The results are shown in Table 3.

以下余白 尚、第3表において基体vI4iの種類とは、基体の厚
さ方向の孔径調整方法であって、■框前記■に相当する
もの、■に前記@に相当するものを示す。又、放電特性
に利用率として示してあり(〕内のl[に115Cレー
ト放鑞容量に対する割合を表す。
Margins below In Table 3, the type of substrate vI4i refers to the method of adjusting the pore diameter in the thickness direction of the substrate. Further, the discharge characteristic is shown as a utilization rate, and l[ in brackets] represents the ratio to the 115C rate discharge capacity.

この結果りり、初期厚みを大きくとり、最終電極厚みと
の差が大きいもの程、利用率は高く、高率放電特性も優
nていることがわかる。筐之活物質充填11セ、初期厚
みが薄い程高くなる傾向にあるが、その差は僅かで、作
業性に影111[を及ぼ工程でにない。
As a result, it can be seen that the larger the initial thickness and the larger the difference from the final electrode thickness, the higher the utilization rate and the better the high rate discharge characteristics. The active material filling of the casing tends to be higher as the initial thickness is thinner, but the difference is slight and does not affect workability during the process.

この様に厚さ方向の孔径を調節することKより、平面方
向径と厚さ方向径との比率を変化させ、活物質の充填性
、電極の放電特性ともに良好な結果が得らnたのは、次
の理由に起因するものと考えられる。充填性の良否を決
める基体の孔径と活物質の粒子径との関係は、平面方向
孔径が支配する念め、厚さ方向の孔径が小さくな、ても
充填量は少なくならない。一方、活物質の利用率を決め
る基体の電導性は、初期孔径が小さい程、良好なのは当
然である。更に、基体の初期厚みを大きくしIEiI率
を十分大きくとれば、平面方向孔径が大きくても、厚さ
方向の基体格子と活物質との距離が短かぐなるので、電
極としては十分な電導性を1床でき、羅い利用率が得ら
れる。
By adjusting the pore diameter in the thickness direction in this way, we were able to change the ratio of the diameter in the plane direction and the diameter in the thickness direction, and obtain good results in both the filling property of the active material and the discharge characteristics of the electrode. This is thought to be due to the following reasons. The relationship between the pore diameter of the substrate and the particle diameter of the active material, which determines the quality of filling, is determined by the pore diameter in the planar direction, so even if the pore diameter in the thickness direction becomes smaller, the amount of filling does not decrease. On the other hand, it goes without saying that the smaller the initial pore diameter, the better the conductivity of the substrate, which determines the utilization rate of the active material. Furthermore, if the initial thickness of the substrate is increased and the IEiI ratio is sufficiently large, even if the pore diameter in the planar direction is large, the distance between the substrate lattice and the active material in the thickness direction will be short, so that sufficient conductivity can be achieved as an electrode. 1 bed, and a high utilization rate can be obtained.

また、#!4表にあるように、厚さ方向孔径の調整方法
により、電極の放電特性が異ることが判。
Also,#! As shown in Table 4, the discharge characteristics of the electrodes differ depending on the method of adjusting the hole diameter in the thickness direction.

た。この理由は定かでにないが、次のLうに考えられる
。完成した発泡ニッケルを圧縮すると、メッキ椹膜の薄
い部分の格子が大きく菱形し、子皮膜の厚い格子は変形
せずに保之れるため、孔の大きさが不揃いとなり均一な
導電マ←リクスができない。しかしながらメッキ時に予
め変形させると、基体全体の孔が均等な大きさになる几
め良好な放電特注が得られると考えられる。
Ta. The reason for this is not clear, but it is thought to be as follows. When the completed nickel foam is compressed, the lattice in the thin part of the plating film becomes large and diamond-shaped, and the thick lattice in the child film remains undeformed, resulting in uneven pore sizes and a uniform conductive matrix. Can not. However, if the substrate is deformed beforehand during plating, it is believed that a well-organized discharge customization can be obtained in which the pores of the entire substrate are of uniform size.

次に電極強度について検討し比ところ、電池組立時特に
渦巻電極体構成時に起こる基体のM、断等のトラブルは
、主に基体強度の大小に欧ることが判っており、?[礪
裂造段階でいかに高gi度のものにするかということか
、改良の要点となる。そして発明者の検討の結果、tF
Ij18Eii1段階で、電極変形(伸び]を小さくか
つそのバラツキを抑えることが有効であることりが知得
さnた。そしてその之めには活物質充填工程での充填I
t(充填密度〕を極力光取11L極の活物質密度に近づ
け、加圧工程での圧縮量を小さく丁べきであることが判
、比。
Next, we examined the strength of the electrodes and found that troubles such as M and breakage of the base body that occur during battery assembly, especially when configuring the spiral electrode body, are mainly due to the strength of the base body. [The key point of improvement is how to make the material high in gi during the fissure construction stage. As a result of the inventor's study, tF
It was found that it is effective to minimize the electrode deformation (elongation) and suppress its variation at the Ij18Eii1 stage.For this purpose, the filling I in the active material filling process
It was found that the packing density should be as close as possible to the active material density of the Optical 11L electrode, and the amount of compression in the pressurization process should be kept small.

次に、本発明に係る電極と比較例のものとを具体的に裏
部して対比し、更に詳述する。
Next, the electrode according to the present invention and that of a comparative example will be specifically compared and explained in more detail.

〔実施例1〕 平均粒径8μmの水酸化ニッケル粉末を活物質粉末とし
て用い、糊料であるメチルセルロース(MC)水溶液を
加えスラリー状とした。基体としては平均孔径130μ
m1初期厚み1.6111で、圧延により1.0閣とし
た発泡ニッケルを用いた。
[Example 1] Nickel hydroxide powder with an average particle size of 8 μm was used as an active material powder, and a methylcellulose (MC) aqueous solution as a paste was added to form a slurry. The average pore diameter of the substrate is 130μ
Foamed nickel was used with an initial thickness of 1.6111 m1 and a thickness of 1.0 mm by rolling.

この基体の厚さ方向の平均孔径rtsoμmであった。The average pore diameter in the thickness direction of this substrate was rtso μm.

そしてこの基体に、前記スラリーを充填、乾燥し、次い
で厚さが0,6Iawlとなるよう加圧し完成IE極と
した。
This base was filled with the slurry, dried, and then pressurized to a thickness of 0.6 Iawl to obtain a completed IE electrode.

〔実施例2〕 初期厚みl、5m、平均孔径130μmのウレタンフオ
ームを1.0閣に圧縮した状態でニッケルメッキを施し
、同厚みの発泡ニッケルをf);りこれを用いた。この
基体の厚さ方向の平均孔径ば80μmであつ几。そして
これを基体として用か、実施例1と同じ要領で[極とし
九〇 〔実施例3〕 初期厚みl、5m、平均孔径170μmのウレタンフオ
ームを用いて基体を得た。この基体の平面方向の平均孔
径は170μm1厚さ方向の平均孔径に110μmであ
。うた。そして、この基体を用い実施例2と同じ要領で
電極とした。
[Example 2] Urethane foam with an initial thickness of 5 m and an average pore diameter of 130 μm was compressed to 1.0 μm and nickel plated, and foamed nickel of the same thickness was used. The average pore diameter in the thickness direction of this substrate is 80 μm. Then, using this as a substrate, a substrate was obtained in the same manner as in Example 1 [Example 3] using urethane foam having an initial thickness of 1, 5 m, and an average pore diameter of 170 μm. The average pore diameter in the plane direction of this substrate was 170 μm, and the average pore diameter in the thickness direction was 110 μm. Song. This substrate was then used to form an electrode in the same manner as in Example 2.

〔5j!施例4〕 初期厚みl、6m、平均孔径200μmのウレタンフオ
ームを用いて基体全得几。この基体の平面方向の平均孔
径[200μm1厚さ方向の平均孔径は13Qsmであ
っ几。そして、この基体を用い実施例2と同じ要領で電
極とした。
[5j! Example 4 The entire substrate was prepared using urethane foam with an initial thickness of 1, 6 m, and an average pore diameter of 200 μm. The average pore diameter in the plane direction of this substrate was 200 μm, and the average pore diameter in the thickness direction was 13 Qsm. This substrate was then used to form an electrode in the same manner as in Example 2.

〔比較例〕[Comparative example]

初期厚み1.6m、平均孔径130μmのクレタンフオ
ームを用い初期厚みが床たれる工うニッケルメッキを施
し、作らnh発泡ニッケルを基体として用いた。その他
の条件に実施例1と同じとし、電mを得た。ただし充填
量が同等になる工う、活物質のスラリー密度を調整し活
物質の充填を行、ている。
Cretan foam with an initial thickness of 1.6 m and an average pore diameter of 130 μm was used, and nickel plating was applied so that the initial thickness was reduced, and NH foamed nickel was used as the substrate. Other conditions were the same as in Example 1, and electric current m was obtained. However, in order to achieve the same filling amount, the slurry density of the active material is adjusted and the active material is filled.

これらの実施例及び比較例の電極について、圧延ロール
により加圧圧縮して完成を極とした後、カドミクム電極
と組み合わせてニッケルー力ドミクム電池を構成し、利
用率を測定した。′!九九加圧後XW変形(伸び〕、及
び引張り強&1−測定し次。この結果を、m4表に示す
The electrodes of these Examples and Comparative Examples were compressed under pressure using rolling rolls to form completed poles, and then combined with a cadmium electrode to form a nickel-power domicium battery, and the utilization rate was measured. ′! After applying pressure, the XW deformation (elongation) and tensile strength &1- were measured.The results are shown in Table m4.

第4表 実施例17’l至4はいずnも、扁いオリ用率及び高い
機械的強度を示した。実施例4においては厚さ方向径が
小さくな、たことにLり、充填活物質の抜は落ちが抑制
され充填量も増えた。
Examples 17'1 to 4 in Table 4 all exhibited a flat welding rate and high mechanical strength. In Example 4, the diameter in the thickness direction was small, especially L, so the removal of the filled active material was suppressed and the filling amount was increased.

また圧縮工程で生ずる伸びに、比較例に比べ、本実施例
1乃至4において大きく改善さnていることが確認でき
た。したがって不発明品に、性能、品質ともに安定し比
特性を与えるものである。
It was also confirmed that the elongation caused in the compression process was greatly improved in Examples 1 to 4 compared to the comparative example. Therefore, it provides uninvented products with stable performance and quality and specific characteristics.

(ト] 発明の効果 本発明のアルカリ#電池用電極及びその製造方法によれ
ば、活物質の充填性に優nるのでエネルギー密度を高め
ることができ、電極の電導度が高いままく維持できるの
で活物質の利用率の同上が計れ、機械的強度大となるの
で工程上M利である等、種々の効果を奏するものであり
、その工業的価値にきわめて大きい。
(G) Effects of the Invention According to the electrode for alkaline batteries and the manufacturing method thereof of the present invention, the filling property of the active material is excellent, so the energy density can be increased, and the electrical conductivity of the electrode can be maintained at a high level. Therefore, the utilization rate of the active material can be measured as well as the mechanical strength can be increased, so that it is advantageous in manufacturing processes, and has various effects, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)三次元網状構造を有する金属多孔体を基体とし、
該基体に活物質粉末が充填された電極であって、 前記三次元網状構造を有する金属多孔体からなる基体は
、平面方向の平均孔径が130〜200μmであり、厚
さ方向の平均孔径が前記平面方向の平均孔径の1/2〜
4/5であることを特徴とするアルカリ蓄電池用電極。
(1) A porous metal material having a three-dimensional network structure is used as a base,
The electrode is an electrode in which the base is filled with active material powder, and the base made of the metal porous body having the three-dimensional network structure has an average pore diameter of 130 to 200 μm in the planar direction and an average pore diameter of 130 to 200 μm in the thickness direction. 1/2~ of the average pore diameter in the plane direction
An electrode for an alkaline storage battery characterized by a ratio of 4/5.
(2)前記三次元網状構造を有する金属多孔体からなる
基体が、あらかじめ所定厚さより厚く作った前記金属基
体を圧延することにより製造されることを特徴とする請
求項1記載のアルカリ蓄電池用電極の製造方法。 2 前記三次元網状構造を有する金属多孔体からなる基
体が、スポンジ状樹脂にメッキすることにより製造され
るものであり、前記スポンジ状樹脂が平面方向に展延さ
れるかもしくは厚さ方向に圧縮されて孔が変形されたも
のを用いることを特徴とする請求項1記載のアルカリ蓄
電池用電極の製造方法。
(2) The electrode for an alkaline storage battery according to claim 1, wherein the base made of a metal porous body having a three-dimensional network structure is manufactured by rolling the metal base made in advance to a thickness greater than a predetermined thickness. manufacturing method. 2. The substrate made of a metal porous body having a three-dimensional network structure is manufactured by plating a sponge-like resin, and the sponge-like resin is spread in a planar direction or compressed in a thickness direction. 2. The method of manufacturing an electrode for an alkaline storage battery according to claim 1, wherein an electrode whose pores have been deformed is used.
JP63121053A 1988-05-18 1988-05-18 Electrode for alkaline storage battery and manufacture thereof Pending JPH01292754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121053A JPH01292754A (en) 1988-05-18 1988-05-18 Electrode for alkaline storage battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121053A JPH01292754A (en) 1988-05-18 1988-05-18 Electrode for alkaline storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01292754A true JPH01292754A (en) 1989-11-27

Family

ID=14801669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121053A Pending JPH01292754A (en) 1988-05-18 1988-05-18 Electrode for alkaline storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01292754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072070A (en) * 1996-06-21 1998-03-17 Fuji Seal Co Ltd Packaging body for microwave oven
EP1056144A2 (en) * 1999-05-26 2000-11-29 Sumitomo Electric Industries, Ltd. Metallic porous body and method of manufacturing the same and battery current collector having the same
CN102709569A (en) * 2012-06-15 2012-10-03 常德力元新材料有限责任公司 Porous metal composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPS62123661A (en) * 1985-11-25 1987-06-04 Furukawa Battery Co Ltd:The Manufacture of electrode plate for storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPS62123661A (en) * 1985-11-25 1987-06-04 Furukawa Battery Co Ltd:The Manufacture of electrode plate for storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072070A (en) * 1996-06-21 1998-03-17 Fuji Seal Co Ltd Packaging body for microwave oven
EP1056144A2 (en) * 1999-05-26 2000-11-29 Sumitomo Electric Industries, Ltd. Metallic porous body and method of manufacturing the same and battery current collector having the same
EP1056144A3 (en) * 1999-05-26 2006-09-20 Sumitomo Electric Industries, Ltd. Metallic porous body and method of manufacturing the same and battery current collector having the same
CN102709569A (en) * 2012-06-15 2012-10-03 常德力元新材料有限责任公司 Porous metal composite material

Similar Documents

Publication Publication Date Title
US5374491A (en) High density, high capacity battery electrode
JPH01292754A (en) Electrode for alkaline storage battery and manufacture thereof
JPH11144715A (en) Manufacture of electrode for secondary battery
JPS6329450A (en) Manufacture of electrode for cell
JPH08148150A (en) Electrode using three-dimensional substrate and manufacture thereof
JP3408047B2 (en) Alkaline storage battery
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH07335211A (en) Manufacture of paste electrode for alkaline battery
JPH09204919A (en) Electrode base for alkaline battery and its manufacture
JP3015455B2 (en) Electrode plate for battery
JPH05151964A (en) Manufacture of electrode
JPS5814465A (en) Manufacture of cadmium negative electrode
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JPS63124371A (en) Cathode for alkaline storage battery
JP3331506B2 (en) Method of manufacturing spiral alkaline storage battery
JP3146014B2 (en) Method for producing paste-type nickel electrode
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP3625663B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JPH06140037A (en) Paste type positive electrode plate for alkaline storage battery, active material powder for alkaline storage battery positive electrode, and manufacture thereof
JP2889605B2 (en) Manufacturing method of alkaline storage battery
JPH05325980A (en) Three-dimensional network-shaped base electrode
JPS60124353A (en) Manufacture of nickel electrode for alkaline battery
JPS59196565A (en) Manufacture of nonsintered electrode
JPH04351853A (en) Electrode for battery and manufacture thereof
JP2004111131A (en) Paste type nickel electrode and its manufacturing method