JPH11144715A - Manufacture of electrode for secondary battery - Google Patents

Manufacture of electrode for secondary battery

Info

Publication number
JPH11144715A
JPH11144715A JP9307034A JP30703497A JPH11144715A JP H11144715 A JPH11144715 A JP H11144715A JP 9307034 A JP9307034 A JP 9307034A JP 30703497 A JP30703497 A JP 30703497A JP H11144715 A JPH11144715 A JP H11144715A
Authority
JP
Japan
Prior art keywords
electrode
active material
pressure
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9307034A
Other languages
Japanese (ja)
Inventor
Hidehiko Obara
秀彦 小原
Tetsuo Sakai
哲男 境
Nobuhiro Kuriyama
信宏 栗山
Hitoshi Uehara
斎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Chemical Corp filed Critical Agency of Industrial Science and Technology
Priority to JP9307034A priority Critical patent/JPH11144715A/en
Publication of JPH11144715A publication Critical patent/JPH11144715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having no problem in gas generation while charging, has a high utilization efficiency of an active material, and has superior charging and discharging characteristics by manufacturing an electrode having a high and even binding property between the active material and a current collector and having a sppcified filling quantity of the active material. SOLUTION: An active material mixture is provided by mixing an electrode active material and an additive of an binding agent to form a preparatory molding body 3 by integrating this active material mixture and a current collector. After compressing the preparatory molding body 3 until its porosity is 30% or less, an electrode molding body is formed by applying an isotropic pressure to the preparatory molding body 3 in an electrode molding process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池に用いられ
る電極を製造する方法に関し、特に活物質を主材料とし
て形成される電極を製造する二次電池の電極製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode used for a secondary battery, and more particularly to a method for manufacturing an electrode for a secondary battery for manufacturing an electrode formed using an active material as a main material.

【0002】[0002]

【従来の技術】一般に、充放電できるアルカリ型の二次
電池には、正極を水酸化ニッケル電極とし負極を水素吸
蔵合金電極とするニッケル水素電池や、正極を水酸化ニ
ッケル電極とし負極をカドミウム電極とするニッケルカ
ドミウム電池等がある。
2. Description of the Related Art Generally, alkaline secondary batteries which can be charged and discharged include nickel-metal hydride batteries in which the positive electrode is a nickel hydroxide electrode and the negative electrode is a hydrogen storage alloy electrode, and nickel-hydroxide electrodes in the positive electrode and a cadmium electrode in the negative electrode. Nickel cadmium battery.

【0003】従来この種の二次電池の電極の製造方法に
は、導電助剤、結着剤等の添加剤を添加した各種の電極
活物質を集電体に充填し、この集電体に電極活物質を充
填して形成された予備成型体を固定金型と可動金型とか
らなる金型プレス機やローラプレス機等で圧接して各電
極としての電極成型体を作製する方法が採用されてい
る。この電極の製造に当り、電極活物質として粉状又は
微粒子状のものを用いる場合、当該活物質自体が易酸化
性で劣化し易いことから、比表面積を小さくして酸化劣
化を防止するために、所定以上の大きさのものを含んだ
粒度分布の粒状体として使用される。
Conventionally, in a method of manufacturing an electrode of this type of secondary battery, a current collector is filled with various electrode active materials to which additives such as a conductive auxiliary agent and a binder are added. A method is used in which the preformed body formed by filling the electrode active material is pressed into contact with a mold press or roller press consisting of a fixed mold and a movable mold to produce an electrode molded body as each electrode. Have been. In the production of this electrode, when powder or fine particles are used as the electrode active material, since the active material itself is easily oxidized and easily deteriorated, the specific surface area is reduced to prevent oxidative deterioration. Is used as a granular material having a particle size distribution including those having a predetermined size or more.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、所定以
上の大きさのものを含んだ粒度分布を持った粒状体から
なる電極活物質に導電助剤や結着剤等の添加剤を添加し
て集電体に充填したものを金型プレス又はローラプレス
等による圧接成形で電極を製作すると、活物質の大きな
粒による凹凸のために均一に押圧することができず、電
極活物質と集電体との導通接触が不十分な部分が形成さ
れるという問題がある。
However, an additive such as a conductive auxiliary agent or a binder is added to an electrode active material comprising a granular material having a particle size distribution including a particle having a predetermined size or more. When an electrode is manufactured by press-molding a material filled in a current collector with a mold press or a roller press or the like, the electrode cannot be pressed uniformly due to unevenness due to large particles of the active material, and the electrode active material and the current collector cannot be pressed. However, there is a problem that a portion with insufficient conductive contact is formed.

【0005】このように導通接触が不十分な部分がある
と、その付近の充電過電圧が増大して、負極では水素ガ
スが発生し、また正極では酸素ガスが発生することとな
り、このような電極を用いた密閉電池の寿命が短くなる
という不具合がある。
[0005] When there is a portion where the conductive contact is insufficient as described above, the charging overvoltage in the vicinity thereof increases, and hydrogen gas is generated at the negative electrode and oxygen gas is generated at the positive electrode. There is a problem that the life of the sealed battery using the battery is shortened.

【0006】特開平9−245779号公報には、活物
質の凹凸の影響を除くために静水圧プレス機を用いて圧
接することが示されているが、静水圧プレス機による場
合、プレス圧が著しく高い場合には予備成型体が圧接工
程で破損し易く、逆に、プレス圧が低い場合には、所定
の電極厚みが得られず十分な導電性を確保できないとい
う問題がある。更に、プレス圧を低くした場合に得られ
る電極厚みを薄くするべく、活物質を充填する集電体の
厚みを、予め、電極の最終厚みに近づけると、所定の活
物質充填量が得られないために、電気容量が低下する。
Japanese Patent Application Laid-Open No. 9-245779 discloses that pressing is performed by using a hydrostatic press in order to remove the influence of irregularities of the active material. When the preform is extremely high, the preform is liable to be damaged in the pressing step. Conversely, when the press pressure is low, a predetermined electrode thickness cannot be obtained and sufficient conductivity cannot be ensured. Further, in order to reduce the thickness of the electrode obtained when the pressing pressure is reduced, if the thickness of the current collector filled with the active material is previously brought close to the final thickness of the electrode, a predetermined amount of the active material cannot be obtained. Therefore, the electric capacity decreases.

【0007】更に、電極が大型化すると集電体に充填す
る電極活物質及びこれに添加する添加剤量が部分的に凹
凸となり、電極活物質と集電体との結着性が部分的に不
均一になるという問題もある。
Further, when the size of the electrode is increased, the electrode active material to be filled in the current collector and the amount of the additive added to the current collector are partially uneven, and the binding property between the electrode active material and the current collector is partially reduced. There is also the problem of non-uniformity.

【0008】本発明は上記従来の問題点を解決し、所定
の活物質充填量を有し、活物質と集電体との結着性が高
度で均一な電極、即ち、充電時のガス発生の問題がな
く、活物質の利用効率が高く、充放電特性に優れた二次
電池を実現し得る電極を製造する方法を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems, and has an electrode having a predetermined active material filling amount and a high degree of uniformity between the active material and the current collector, ie, gas generation during charging. It is an object of the present invention to provide a method for producing an electrode capable of realizing a secondary battery which does not have the above problem, has high utilization efficiency of an active material, and has excellent charge / discharge characteristics.

【0009】[0009]

【課題を解決するための手段】本発明の二次電池の電極
製造方法は、電極活物質と結着剤等の添加剤とを混合し
て活物質混合物を得る混合工程と、該活物質混合物と集
電体とを一体化させて予備成型体を形成する予備成型工
程と、該予備成型体に等方的な圧力を押加して電極成型
体を形成する電極成型工程と、を備える二次電池の電極
製造方法において、該予備成型体をその気孔率が30%
以下になるまで圧縮する圧縮工程を備え、圧縮された予
備成型体を電極成型工程に供することを特徴とする。
According to the present invention, there is provided a method of manufacturing an electrode for a secondary battery, comprising the steps of mixing an electrode active material and an additive such as a binder to obtain an active material mixture; A preforming step of forming a preformed body by integrating the preform and a current collector; and an electrode forming step of forming an electrode molded body by pressing isotropic pressure on the preformed body. In a method of manufacturing an electrode for a secondary battery, the preformed body is formed by removing the
A compression step of compressing the compressed preformed body to the following, and subjecting the compressed preform to an electrode molding step.

【0010】予備成型体に等方的に圧力を押加すること
により、予備成型体のあらゆる部分を均等な圧力で押圧
して電極活物質と集電体との結着性が高度で均質な電極
成型体を得ることができる。従って、この電極活物質と
集電体との強固且つ均質な結着性により、充電時のガス
発生の問題がなく、活物質の利用効率の高い、充放電特
性に優れた二次電池を製作することが可能となる。
[0010] By pressing the preformed body isotropically with pressure, all parts of the preformed body are pressed with a uniform pressure, and the binding between the electrode active material and the current collector is highly uniform. An electrode molded body can be obtained. Therefore, due to the strong and uniform binding between the electrode active material and the current collector, there is no problem of gas generation at the time of charging, and a secondary battery with high use efficiency of the active material and excellent charge / discharge characteristics is manufactured. It is possible to do.

【0011】この予備成型体に等方的な圧力を押加して
電極成型体を形成するに当り、プレス圧の最適化が難し
く、予備成型体の破損を招いたり、圧接不足で導電性に
優れた電極成型体を得ることができないといった不具合
が生じるが、本発明に従って、予備成型体を気孔率30
%以下になるまで圧縮した後、等方的な圧力を押加する
ことにより、このような不具合を防止して、高品質な電
極成型体を確実に得ることが可能となる。
In forming an electrode molded body by applying an isotropic pressure to the preformed body, it is difficult to optimize the pressing pressure, and the preformed body may be damaged, or the preformed body may have poor conductivity due to insufficient pressure contact. Although a defect that an excellent electrode molded body cannot be obtained occurs, according to the present invention, the pre-molded body has a porosity of 30%.
%, And then pressing isotropic pressure to prevent such inconvenience and to reliably obtain a high-quality molded electrode.

【0012】本発明においては、電極成型工程における
等方的な圧力の押加は、例えば、高圧プレスと予備成型
体との間に固体状の弾性体を圧力媒体として介在させて
行うことができ、このように固体状の弾性体を介して予
備成型体を加圧することにより、予備成型体の各部分に
均一に圧力を加えることができ、活物質と集電体とを高
度且つ均質に結着させることができる。
In the present invention, the pressing of isotropic pressure in the electrode forming step can be performed, for example, by interposing a solid elastic body as a pressure medium between the high-pressure press and the preform. By pressurizing the preform via the solid elastic body in this way, it is possible to apply pressure uniformly to each part of the preform, and to form a highly and homogeneous connection between the active material and the current collector. Can be worn.

【0013】また、電極成型工程における等方的な圧力
の押加は、高圧容器中において液体状物質を圧力媒体と
して用いて行うこともでき、このように液体状物質を圧
力媒体とすることにより、予備成型体の各部分に均一に
圧力を加えることができ、活物質と集電体とを高度且つ
均質に結着させることができる。
The pressing of isotropic pressure in the electrode forming step can be performed by using a liquid substance as a pressure medium in a high-pressure vessel. In addition, pressure can be uniformly applied to each part of the preform, and the active material and the current collector can be highly and uniformly bonded.

【0014】本発明において、集電体としては、焼結式
発泡ニッケルを用いることができ、予備成型工程に供さ
れる発泡ニッケルの厚みが電極成型工程で得られる電極
成型体の厚みの1.5倍以上であるように、即ち、最終
的に得られる電極成型体の厚みが、活物質混合物と一体
化させる前の発泡ニッケルの厚みの1/1.5以下とな
るように、成型条件を設定するのが好ましい。
In the present invention, a sintered nickel foam can be used as the current collector, and the thickness of the foamed nickel supplied to the preliminary molding step is 1.times. The thickness of the electrode molded body obtained in the electrode molding step. The molding conditions are adjusted so that the thickness is 5 times or more, that is, the thickness of the finally obtained electrode molded body is 1 / 1.5 or less of the thickness of the foamed nickel before being integrated with the active material mixture. It is preferable to set.

【0015】また、本発明において、電極活物質として
は、金属水素化物、鉄、亜鉛、コバルト、銅、カドミウ
ム、水酸化ニッケル、水酸化コバルト及び水酸化マンガ
ンよりなる群から選ばれる1種又は2種以上を用いるこ
とができる。
In the present invention, the electrode active material is one or two selected from the group consisting of metal hydrides, iron, zinc, cobalt, copper, cadmium, nickel hydroxide, cobalt hydroxide and manganese hydroxide. More than one species can be used.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0017】本発明においては、まず、電極活物質と結
着剤等の添加剤とを混合して活物質混合物とする。
In the present invention, first, an electrode active material and an additive such as a binder are mixed to form an active material mixture.

【0018】電極活物質としては、金属水素化物、鉄、
亜鉛、コバルト、銅、カドミウム、リチウム、水酸化ニ
ッケル、水酸化コバルト、水酸化マンガンのいずれか1
種又は2種以上、好ましくは、水酸化ニッケル及び/又
は金属水素化物を用いることができる。
As the electrode active material, metal hydride, iron,
Any one of zinc, cobalt, copper, cadmium, lithium, nickel hydroxide, cobalt hydroxide, and manganese hydroxide
Species or two or more, preferably, nickel hydroxide and / or metal hydride can be used.

【0019】このような電極活物質は、粉状又は微粒子
状として使用されるが、前述の如く、酸化劣化を防止す
るために、例えば、平均粒径10〜20μm程度のもの
を10〜30%、平均粒径1〜10μm程度のものを7
0〜90%、平均粒径0.1〜1μm程度のものを0〜
10%というような比較的粒径の大きい粒分を所定量含
有する粒度分布とされる。
Such an electrode active material is used in the form of powder or fine particles. As described above, in order to prevent oxidative deterioration, for example, a material having an average particle size of about 10 to 20 μm is used in an amount of 10 to 30%. , An average particle size of about 1 to 10 μm
0 to 90%, average particle size of about 0.1 to 1 μm
The particle size distribution includes a predetermined amount of a relatively large particle size such as 10%.

【0020】添加剤としては、ポリテトラフルオロエチ
レン(PTFE)等の結着剤、平均粒径0.1〜10μ
mのニッケルやCoO・Coの粒状体又は粉状体等の各
種の良導電性の粒状体ないし粉状体あるいは繊維状体よ
りなる導電助剤、その他カルボキシメチルセルローズ
(CMC)等の増粘剤等が挙げられる。
Examples of the additive include a binder such as polytetrafluoroethylene (PTFE), and an average particle diameter of 0.1 to 10 μm.
m, conductive aids composed of various highly conductive granules or powders or fibrous materials such as nickel or CoO / Co granules or powders, and other thickeners such as carboxymethyl cellulose (CMC) And the like.

【0021】結着剤は、活物質と集電体との結着性の確
保のために、通常の場合、活物質に対して有効成分量と
して2〜10重量%混合される。
In order to ensure the binding between the active material and the current collector, the binder is usually mixed with the active material in an amount of 2 to 10% by weight as an active ingredient.

【0022】また、導電助剤は、得られる電極の電気特
性向上を目的として、必要に応じて、活物質に対して1
0〜20重量%混合される。
The conductive additive may be added to the active material, if necessary, for the purpose of improving the electrical characteristics of the obtained electrode.
0 to 20% by weight is mixed.

【0023】結着剤は、通常の場合、30〜70重量%
程度の水溶液又は水分散液として、また、増粘剤は、通
常1〜10重量%の水溶液として、活物質及び必要に応
じて混合されるその他の添加剤と共に混合される。
The binder is usually 30 to 70% by weight.
Aqueous solutions or aqueous dispersions and thickeners are usually mixed as an aqueous solution of 1 to 10% by weight with the active material and other additives, if necessary.

【0024】一方、集電体としては、ニッケル多孔体、
繊維状ニッケル、ニッケル発泡体、網状ニッケル、板状
ニッケル、エキスパンドニッケル板、穿孔ニッケル板、
良導電性の粒状体若しくは粉状体、これらの複合体及び
これらの形状を有する鉄、銅等の多孔体若しくは多孔板
にニッケル鍍金処理を施したもの、などを用いることが
できるが、特に、正極用の集電体としては、発泡ニッケ
ル、とりわけ気孔率94〜98%の焼結式発泡ニッケル
を採用するのが好ましい。即ち、従来、発泡ウレタンに
Niメッキした後にウレタン部分を焼成除去したメッキ
式の発泡ニッケルが多数採用されているが、より閉気孔
部分が少なく、表面積の大きい焼結式発泡ニッケルが正
極活物質との密着性がよく、活物質利用率の向上に有効
であるため、集電体として好適である。なお、負極用の
集電体としては、ニッケルメッキ処理を施した鉄あるい
は銅製パンチングメタルが好適である。
On the other hand, as the current collector, a nickel porous body,
Nickel fibrous, nickel foam, mesh nickel, plate nickel, expanded nickel plate, perforated nickel plate,
Good conductive granules or powders, composites of these and irons having these shapes, porous bodies of copper or the like, or those obtained by subjecting a porous plate to nickel plating can be used. As the current collector for the positive electrode, it is preferable to use foamed nickel, particularly, sintered nickel foam having a porosity of 94 to 98%. That is, conventionally, a large number of plated nickel foams in which the urethane portion is baked and removed after Ni plating on the foamed urethane has been adopted, but a sintered nickel foam having a smaller closed pore portion and a larger surface area is used as the positive electrode active material. Is suitable as a current collector because it has good adhesion and is effective in improving the active material utilization rate. As the current collector for the negative electrode, a punched metal made of iron or copper plated with nickel is preferable.

【0025】活物質混合物と集電体とを一体化させて予
備成型体を形成する方法としては、 スラリー状ないしペースト状の活物質混合物を多孔
性集電体に充填した後乾燥する。 ペースト状の活物質混合物をシート化して乾燥し、
得られた乾燥シート間に集電体を挟み、加圧して一体化
する。 ペースト状の活物質混合物を集電体に一定厚みで塗
布し、乾燥させる。などの方法を採用することができ
る。
As a method of forming a preform by integrating the active material mixture and the current collector, a slurry or paste active material mixture is filled in a porous current collector and then dried. The paste-like active material mixture is sheeted and dried,
A current collector is sandwiched between the obtained dried sheets, and they are integrated by pressing. The paste-like active material mixture is applied to a current collector with a constant thickness, and dried. Such a method can be adopted.

【0026】なお、集電体に対する活物質混合物の割合
は、用いた活物質及び集電体の種類や目的とする電極特
性等によっても異なるが、通常の場合、集電体に対する
活物質の重量%で200〜400重量%程度である。
The ratio of the active material mixture to the current collector varies depending on the type of the active material and the current collector used, the desired electrode characteristics, and the like. % Is about 200 to 400% by weight.

【0027】本発明では、このようにして得られた予備
成型体を金型プレス機等を用いて加圧することにより気
孔率が30%以下、好ましくは10〜20%になるまで
圧縮する。この圧縮時のプレス圧力は通常の場合500
〜2000kgf/cm2程度である。これ以上のプレ
ス圧では、電極の弾力性が失われ破損し易くなる。
In the present invention, the preformed body obtained in this manner is compressed by using a mold press or the like until the porosity becomes 30% or less, preferably 10 to 20%. The pressing pressure during this compression is usually 500
20002000 kgf / cm 2 . If the pressing pressure is higher than this, the elasticity of the electrode is lost and the electrode is easily broken.

【0028】この圧縮工程を経ることにより、次の等方
的圧力の押加による電極成型工程で、活物質と集電体と
の結着性がより一層高度で均一なものとなる。
Through the compression step, the binding between the active material and the current collector is further enhanced and uniform in the electrode forming step by pressing the isotropic pressure in the next step.

【0029】圧縮後の予備成型体(以下「圧縮予備成型
体」と称す。)は、次いで電極成型工程で等方的な圧力
を押加して活物質混合物と集電体とを加圧接着させて電
極成型体とする。
The preformed body after compression (hereinafter referred to as "compressed preformed body") is then subjected to an isotropic pressure in the electrode forming step to bond the active material mixture and the current collector under pressure. Then, an electrode molded body is obtained.

【0030】具体的には、圧縮予備成型体とプレス金型
との間にゴムや合成樹脂等の固体状の弾性体を介在させ
て加圧する方法、或いは、図1に示す如く、静水圧プレ
ス機(CIP)1において、ゴムシート等の包装フィル
ム2に収納された圧縮予備成型体3を高圧容器4内に密
閉収納し、この高圧容器4内に水等の液体状物質を高圧
発生機5から注入し、所定圧力で圧縮予備成型体3に水
等の液体状物質を圧力媒体6として等方的な圧力を押加
する方法などを採用することができる。
More specifically, a method in which a solid elastic body such as rubber or synthetic resin is interposed between the compression preform and the press mold to pressurize, or as shown in FIG. In a machine (CIP) 1, a compression preform 3 housed in a packaging film 2 such as a rubber sheet is hermetically housed in a high-pressure container 4, and a liquid substance such as water is filled in the high-pressure container 4 with a high-pressure generator 5. And pressurizing the isotropic pressure with a liquid material such as water as the pressure medium 6 at a predetermined pressure.

【0031】なお、圧力媒体としては、水等の各種の液
体の他、各種の気体や粉状体、粒状体等の流体を用いる
ことができる。
As the pressure medium, in addition to various liquids such as water, various gases and fluids such as powders and granules can be used.

【0032】この電極成型工程において、予備成型体に
加える等方的な圧力の程度は500〜3000kgf/
cm2程度とされる。これ以上の圧力を印加すると電極
が硬化して巻き取り時に破損し易くなる。
In this electrode molding step, the degree of isotropic pressure applied to the preform is 500 to 3000 kgf /
cm 2 . If a pressure higher than this is applied, the electrode is hardened and easily broken at the time of winding.

【0033】本発明の方法は、特に、電極の製造に当
り、焼結式発泡ニッケル、メッキ式発泡ニッケル等のよ
うに、気孔率の高い、例えば気孔率80%以上の集電体
を用いる場合に有効であり、この場合において、厚さD
1の集電体に活物質混合物を充填して得られた予備成型
体を圧縮して、気孔率30%以下、好ましくは10〜2
0%の圧縮予備成型体を得、この圧縮予備成型体に等方
的な圧力を押加して厚さD2の電極成型体を得るに当
り、D1≧1.5×D2、特に2.5×D2≧D1≧1.5
×D2となるように、各工程の条件設定を行うのが好ま
しい。このような条件を採用することにより、所定の活
物質充填量を有し、活物質と集電体との結着性がより一
層高度で均一な電極成型体を得ることができる。
The method of the present invention is particularly applicable to the case where a current collector having a high porosity, for example, a porosity of 80% or more, such as sintered foamed nickel and plated foamed nickel, is used in the production of an electrode. And in this case the thickness D
The preform obtained by filling the active material mixture into the current collector is compressed to a porosity of 30% or less, preferably 10 to 2%.
Give 0% compression preform, per isotropic pressure to the compressed preform to obtain an electrode molded product having a thickness of D 2 and押加, D 1 ≧ 1.5 × D 2, in particular 2.5 × D 2 ≧ D 1 ≧ 1.5
It is preferable to set the conditions for each step so that xD 2 is obtained. By adopting such conditions, it is possible to obtain an electrode molded body having a predetermined active material filling amount and a higher degree of uniformity between the active material and the current collector.

【0034】[0034]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0035】なお、以下の実施例及び比較例で用いた原
材料は次の通りである。
The raw materials used in the following examples and comparative examples are as follows.

【0036】正極活物質:水酸化ニッケル(粒度分布
粒径10〜30μmの粉分を約80重量%、粒径10μ
m以下の微粒分を約20重量%) 負極活物質:水素吸蔵合金(MmNi3.62Co0.70Mn
0.29Al0.39)粉末(粒度分布 粒径30〜60μmの
粒分を約50重量%、粒径30μm以下の微粒分を約5
0重量%) 結着剤:PTFEディスパージョン(60重量%PTF
E水分散液) 増粘剤:CMC水溶液(5重量%CMC水溶液) 正極用導電助剤:CoO・Co(粒径範囲1〜10μm
程度) 負極用導電助剤:Ni粉(平均粒径5μm) 正極集電体:焼結式発泡ニッケル板(日本重化学社製,
気孔率96%、17cm×3.1cm、厚さ1.3m
m) 負極集電体:表面にNiメッキ処理を施した鉄製パンチ
ングメタル(18cm×3.1cm、厚さ0.08m
m) 実施例1 正極活物質7.6gにCoO・Coを0.8gとPTF
Eディスパージョン0.4gとCMC水溶液1.5gと
蒸留水1.5gを添加混合してスラリー状の活物質混合
物11.8gを得、この活物質混合物を1.3mm厚さ
の正極集電体に充填して予備成型体を得た。
Positive electrode active material: nickel hydroxide (particle size distribution
About 80% by weight of a powder having a particle size of 10 to 30 μm and a particle size of 10 μm
m about 20% by weight of fine particles) Negative electrode active material: hydrogen storage alloy (MmNi 3.62 Co 0.70 Mn)
0.29 Al 0.39 ) powder (particle size distribution) 50% by weight of particles having a particle size of 30 to 60 μm, and 5% by weight of fine particles having a particle size of 30 μm or less.
0% by weight) Binder: PTFE dispersion (60% by weight PTF)
E aqueous dispersion) Thickener: CMC aqueous solution (5 wt% CMC aqueous solution) Conductive auxiliary for positive electrode: CoO.Co (particle size range 1 to 10 μm)
Anode) Conductive auxiliary for negative electrode: Ni powder (average particle size 5 μm) Positive electrode current collector: Sintered nickel foam plate
Porosity 96%, 17cm × 3.1cm, thickness 1.3m
m) Negative electrode current collector: iron punching metal (18 cm × 3.1 cm, thickness 0.08 m) with Ni plating on the surface
m) Example 1 0.8 g of CoO.Co in 7.6 g of the positive electrode active material and PTF
0.4 g of E-dispersion, 1.5 g of CMC aqueous solution and 1.5 g of distilled water were added and mixed to obtain 11.8 g of a slurry-like active material mixture. To obtain a preform.

【0037】この予備成型体を1100kgf/cm2
で冷間プレスした後、ロールプレス並びに再度冷間プレ
スを行って、平均厚み0.80mmとして、表1に示す
気孔率の正極用圧縮予備成型体を得た。
[0037] The pre-molded body was 1100 kgf / cm 2
, And then roll-pressed and cold-pressed again to obtain a compression preformed body for a positive electrode having an porosity shown in Table 1 with an average thickness of 0.80 mm.

【0038】別に、負極活物質12.6gにこの負極活
物質に対してNi粉15重量%とPTFEディスパージ
ョン1.0gとCMC水溶液1.3gと蒸留水2.0g
とを添加混合して得られたペーストを厚さ0.5mmの
2枚のシート状(18cm×3.1cm)とした。この
シート2枚の間に負極集電体を挟んで1100kgf/
cm2で結着した後、ロールプレス並びに再度冷間プレ
スを行って平均厚み0.60mmで表1に示す気孔率の
負極用圧縮予備成型体を得た。
Separately, to 12.6 g of the negative electrode active material, 15% by weight of Ni powder, 1.0 g of PTFE dispersion, 1.3 g of CMC aqueous solution, and 2.0 g of distilled water based on the negative electrode active material
And a paste obtained by adding and mixing were formed into two sheets (18 cm × 3.1 cm) having a thickness of 0.5 mm. 1100 kgf /
After binding in cm 2 , roll pressing and cold pressing again were performed to obtain a preform for negative electrode compression having an average thickness of 0.60 mm and a porosity shown in Table 1.

【0039】得られた正極用圧縮予備成型体と、負極用
圧縮予備成型体をそれぞれ2枚ずつ積層し、各々の積層
体をゴムシートで包装して図1に示す静水圧プレス機の
高圧容器内に入れ、水を圧力媒体として1000kgf
/cm2の静水圧を印加してCIP成型し、表1に示す
厚み及び気孔率の正極(成型体)及び負極(成型体)を
得た。
The obtained compression preformed body for a positive electrode and the compression preformed body for a negative electrode are each laminated two by two, and each of the laminated bodies is wrapped with a rubber sheet, and the high pressure vessel of the hydrostatic press shown in FIG. 1000kgf with water as pressure medium
CIP molding was performed by applying a hydrostatic pressure of / cm 2 to obtain a positive electrode (molded body) and a negative electrode (molded body) having the thickness and porosity shown in Table 1.

【0040】得られたニッケル正極をポリオレフィンセ
パレーターを介して水素吸蔵合金負極と対置させ、6規
定KOHと1規定LiOHからなる電解液を用いて、理
論容量2200mAhの密閉円筒型ニッケル−水素電池
を作製した。これを200mAで14時間充電し、20
0mAで1Vまで放電して活物質利用率を求め、結果を
表1に示した。
The obtained nickel positive electrode was opposed to a hydrogen storage alloy negative electrode via a polyolefin separator, and a sealed cylindrical nickel-hydrogen battery having a theoretical capacity of 2200 mAh was prepared using an electrolyte consisting of 6 N KOH and 1 N LiOH. did. This was charged at 200 mA for 14 hours,
The active material utilization was determined by discharging to 0 V at 0 mA, and the results are shown in Table 1.

【0041】実施例2 実施例1において、正極用圧縮予備成型体を2枚積層し
て3000kgf/cm2の静水圧を印加したこと以外
は同様にして正極を製造した。
Example 2 A positive electrode was produced in the same manner as in Example 1 except that two compression preformed bodies for a positive electrode were laminated and a hydrostatic pressure of 3000 kgf / cm 2 was applied.

【0042】また、負極については、実施例1におい
て、得られた静水圧印加前のものをそのまま用いた。
The negative electrode obtained in Example 1 before applying the hydrostatic pressure was used as it was.

【0043】この正極及び負極を用いて実施例1と同様
にして活物質利用率を調べ、結果を各極の気孔率等と共
に表1に示した。
Using this positive electrode and negative electrode, the utilization rate of the active material was examined in the same manner as in Example 1, and the results are shown in Table 1 together with the porosity of each electrode.

【0044】実施例3 実施例1において、正極用集電体に活物質混合物を充填
する前に、その厚さが0.8mmになるまでプレスし、
その後活物質混合物を充填したこと以外は同様にして正
極を製造した。なお、この場合、正極集電体の厚さが薄
いため、正極活物質は5.2gしか充填できなかった。
Example 3 In Example 1, before filling the positive electrode current collector with the active material mixture, pressing was performed until the thickness became 0.8 mm.
Thereafter, a positive electrode was manufactured in the same manner except that the active material mixture was filled. In this case, since the thickness of the positive electrode current collector was small, only 5.2 g of the positive electrode active material could be filled.

【0045】また、負極については、実施例1で用いた
ものと同様のものを用いた。
The same negative electrode as that used in Example 1 was used.

【0046】この正極及び負極を用いて実施例1と同様
にして活物質利用率を調べ、結果を各極の気孔率等と共
に表1に示した。
Using the positive electrode and the negative electrode, the active material utilization was examined in the same manner as in Example 1. The results are shown in Table 1 together with the porosity of each electrode.

【0047】この実施例では、活物質利用率は高いが、
活物質混合物充填前の正極集電体の厚さが薄く、正極活
物質の充填量が少ないため、理論容量は1500mAh
であった。
In this embodiment, the active material utilization is high,
Since the thickness of the positive electrode current collector before filling the active material mixture is small and the filling amount of the positive electrode active material is small, the theoretical capacity is 1500 mAh.
Met.

【0048】比較例1 実施例1において、負極用圧縮予備成型体を2枚積層し
て3000kgf/cm2の静水圧を印加したこと以外
は同様にして負極を製造した。
Comparative Example 1 A negative electrode was manufactured in the same manner as in Example 1, except that two sheets of the negative electrode compression preform were laminated and a hydrostatic pressure of 3000 kgf / cm 2 was applied.

【0049】また、正極については、実施例1におい
て、得られた静水圧印加前のものをそのまま用いた。
The positive electrode obtained in Example 1 before applying the hydrostatic pressure was used as it was.

【0050】この正極及び負極を用いて実施例1と同様
にして活物質利用率を調べ、結果を各極の気孔率等と共
に表1に示した。
Using the positive electrode and the negative electrode, the active material utilization was examined in the same manner as in Example 1. The results are shown in Table 1 together with the porosity of each electrode.

【0051】比較例2 実施例1において、正極、負極共に、実施例1で、得ら
れた静水圧印加前のものをそのまま用い、実施例1と同
様にして活物質利用率を調べ、結果を各極の気孔率等と
共に表1に示した。
Comparative Example 2 In Example 1, the active material utilization was examined in the same manner as in Example 1 except that the positive electrode and the negative electrode obtained in Example 1 were used as they were before the application of the hydrostatic pressure. The results are shown in Table 1 together with the porosity of each electrode.

【0052】比較例3 比較例2において正極を更にロールプレスして用いたこ
と以外は実施例1と同様にして活物質利用率を調べ、結
果を各極の気孔率等と共に表1に示した。
Comparative Example 3 The active material utilization was examined in the same manner as in Example 1 except that the positive electrode was further roll-pressed and used in Comparative Example 2, and the results are shown in Table 1 together with the porosity of each electrode. .

【0053】比較例4 実施例1において、正極用の予備成型体を圧縮しなかっ
たこと、また、3000kg/cm2の静水圧を印加し
たこと以外は同様にして正極及び負極を製造した(ただ
し、静水圧印加前の負極平均厚みは0.75mm)。
Comparative Example 4 A positive electrode and a negative electrode were produced in the same manner as in Example 1 except that the preformed body for the positive electrode was not compressed and that a hydrostatic pressure of 3000 kg / cm 2 was applied. The average thickness of the negative electrode before application of hydrostatic pressure is 0.75 mm).

【0054】この正極及び負極を用いて実施例1と同様
にして活物質利用率を調べ、結果を各極の気孔率等と共
に表1に示した。なお、静水圧印加のみでは、正極及び
負極の厚さを低減できず、また、電極の柔軟性が低下し
た。このため、この電池では正極割れが発生していた。
Using this positive electrode and negative electrode, the utilization rate of the active material was examined in the same manner as in Example 1. The results are shown in Table 1 together with the porosity of each electrode. Note that the thickness of the positive electrode and the negative electrode could not be reduced only by applying the hydrostatic pressure, and the flexibility of the electrode was reduced. Therefore, cracking of the positive electrode occurred in this battery.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】以上詳述した通り、本発明の二次電池の
電極製造方法によれば、所定の活物質充填量を有し、活
物質と集電体との結着性が高度で均一な電極を製造する
ことができる。
As described above in detail, according to the method for manufacturing an electrode of a secondary battery of the present invention, the active material and the current collector have a predetermined amount of active material and a high degree of uniformity. Electrode can be manufactured.

【0057】従って、本発明の方法により製造された電
極によれば、充填時のガス発生の問題がなく、活物質の
利用効率が高く、充放電特性に優れた二次電池を実現す
ることができる。
Therefore, according to the electrode manufactured by the method of the present invention, it is possible to realize a secondary battery which has no problem of gas generation at the time of filling, has high utilization efficiency of the active material, and has excellent charge / discharge characteristics. it can.

【0058】このような本発明の二次電池の電極製造方
法は、ニッケル−水素電池、鉛電池、ニッケル−カドミ
ウム電池、ニッケル−鉄電池、ニッケル−亜鉛電池、リ
チウム電池などあらゆる二次電池、特に大型二次電池に
おいて有効であり、二次電池の高性能化を図ることがで
きる。
Such a method for manufacturing an electrode of a secondary battery according to the present invention is applicable to any secondary battery such as a nickel-hydrogen battery, a lead battery, a nickel-cadmium battery, a nickel-iron battery, a nickel-zinc battery, and a lithium battery. This is effective for a large secondary battery and can improve the performance of the secondary battery.

【0059】特に、本発明の二次電池の電極製造方法
は、発泡ニッケルを集電体として用いる正極の製造に有
効であり、正極の充電効率の高い電池を実現することが
できる。
In particular, the method for manufacturing an electrode of a secondary battery according to the present invention is effective for manufacturing a positive electrode using foamed nickel as a current collector, and can realize a battery having a high positive electrode charging efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電極成型工程で使用される静水圧プレス機の模
式的な断面図である。
FIG. 1 is a schematic sectional view of a hydrostatic press used in an electrode molding step.

【符号の説明】 1 静水圧プレス機 2 包装フィルム 3 圧縮予備成型体 4 高圧容器 5 高圧発生機 6 圧力媒体[Description of Signs] 1 Hydrostatic press 2 Packaging film 3 Pre-compressed body 4 High-pressure container 5 High-pressure generator 6 Pressure medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 栗山 信宏 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 上原 斎 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tetsuo Sakai 1-38-31 Midorioka, Ikeda-shi, Osaka Pref. Inside the Osaka Institute of Technology (72) Inventor Nobuhiro Kuriyama 1--8-3 Midorioka, Ikeda-shi, Osaka No. 31 Inside the Osaka Institute of Technology (72) Inventor Sei Uehara 1-8-31 Midorioka, Ikeda-shi, Osaka Inside the Osaka Institute of Technology

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電極活物質と結着剤等の添加剤とを混合
して活物質混合物を得る混合工程と、 該活物質混合物と集電体とを一体化させて予備成型体を
形成する予備成型工程と、 該予備成型体に等方的な圧力を押加して電極成型体を形
成する電極成型工程と、を備える二次電池の電極製造方
法において、 該予備成型体をその気孔率が30%以下になるまで圧縮
する圧縮工程を備え、圧縮された予備成型体を電極成型
工程に供することを特徴とする二次電池の電極製造方
法。
1. A mixing step of mixing an electrode active material and an additive such as a binder to obtain an active material mixture, and integrating the active material mixture and a current collector to form a preform. A method of manufacturing an electrode for a secondary battery, comprising: a preforming step; and an electrode forming step of pressing an isotropic pressure on the preformed body to form an electrode formed body. A method for producing an electrode of a secondary battery, comprising a compression step of compressing the preformed body to 30% or less, and subjecting the compressed preform to an electrode molding step.
【請求項2】 請求項1に記載の方法において、前記等
方的な圧力の押加を、高圧プレスと予備成型体との間に
固体状の弾性体を圧力媒体として介在させて行うことを
特徴とする二次電池の電極製造方法。
2. The method according to claim 1, wherein the pressing of the isotropic pressure is performed by interposing a solid elastic body as a pressure medium between the high-pressure press and the preform. A method for manufacturing an electrode of a secondary battery, characterized by:
【請求項3】 請求項1に記載の方法において、前記等
方的な圧力の押加を、高圧容器中において液体状物質を
圧力媒体として用いて行うことを特徴とする二次電池の
電極製造方法。
3. The method according to claim 1, wherein the pressing of the isotropic pressure is performed by using a liquid substance as a pressure medium in a high-pressure container. Method.
【請求項4】 請求項1ないし3のいずれか1項に記載
の方法において、前記集電体が焼結式発泡ニッケルであ
り、前記予備成型工程に供される発泡ニッケルの厚み
が、前記電極成型工程で得られる電極成型体の厚みの
1.5倍以上であることを特徴とする二次電池の電極製
造方法。
4. The method according to claim 1, wherein the current collector is a sintered nickel foam, and the thickness of the nickel foam supplied to the preforming step is the thickness of the electrode. A method for manufacturing an electrode for a secondary battery, wherein the thickness is 1.5 times or more the thickness of an electrode molded body obtained in a molding step.
【請求項5】 前記請求項1ないし4のいずれか1項に
記載の方法において、前記電極活物質が、金属水素化
物、鉄、亜鉛、コバルト、銅、カドミウム、水酸化ニッ
ケル、水酸化コバルト及び水酸化マンガンよりなる群か
ら選ばれる1種又は2種以上であることを特徴とする二
次電池の電極製造方法。
5. The method according to claim 1, wherein the electrode active material is a metal hydride, iron, zinc, cobalt, copper, cadmium, nickel hydroxide, cobalt hydroxide and A method for producing an electrode for a secondary battery, wherein the method is one or more selected from the group consisting of manganese hydroxide.
JP9307034A 1997-11-10 1997-11-10 Manufacture of electrode for secondary battery Pending JPH11144715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9307034A JPH11144715A (en) 1997-11-10 1997-11-10 Manufacture of electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9307034A JPH11144715A (en) 1997-11-10 1997-11-10 Manufacture of electrode for secondary battery

Publications (1)

Publication Number Publication Date
JPH11144715A true JPH11144715A (en) 1999-05-28

Family

ID=17964251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9307034A Pending JPH11144715A (en) 1997-11-10 1997-11-10 Manufacture of electrode for secondary battery

Country Status (1)

Country Link
JP (1) JPH11144715A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035523A (en) * 1999-07-23 2001-02-09 Nec Corp Manufacture of film exterior trimming battery
JP2007026984A (en) * 2005-07-20 2007-02-01 Daido Metal Co Ltd Electrode for secondary battery
JPWO2012164723A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Manufacturing method of all solid state battery
US20150171431A1 (en) * 2013-12-17 2015-06-18 Samsung Electronics Co., Ltd. Secondary battery and method of manufacturing the same
JP2018014249A (en) * 2016-07-21 2018-01-25 日産自動車株式会社 Method of manufacturing electrode
JP2019140054A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Positive electrode and non-aqueous electrolyte secondary battery
JP2019537233A (en) * 2017-05-22 2019-12-19 エルジー・ケム・リミテッド Flexible electrode, method of manufacturing the same, and secondary battery including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035523A (en) * 1999-07-23 2001-02-09 Nec Corp Manufacture of film exterior trimming battery
JP2007026984A (en) * 2005-07-20 2007-02-01 Daido Metal Co Ltd Electrode for secondary battery
JPWO2012164723A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Manufacturing method of all solid state battery
US20150171431A1 (en) * 2013-12-17 2015-06-18 Samsung Electronics Co., Ltd. Secondary battery and method of manufacturing the same
JP2018014249A (en) * 2016-07-21 2018-01-25 日産自動車株式会社 Method of manufacturing electrode
JP2019537233A (en) * 2017-05-22 2019-12-19 エルジー・ケム・リミテッド Flexible electrode, method of manufacturing the same, and secondary battery including the same
US11196038B2 (en) 2017-05-22 2021-12-07 Lg Chem, Ltd. Flexible electrode, method for manufacturing the same and secondary battery including the same
JP2019140054A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Positive electrode and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JPH11154517A (en) Metallic porous body for secondary battery and its manufacture
JPH11144715A (en) Manufacture of electrode for secondary battery
EP1088354B1 (en) Hydrogen storage alloy electrode, battery including the same and method for producing the both
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JPH03743B2 (en)
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JPH09245779A (en) Manufacture of electrode for secondary battery
JP2009026622A (en) Alkaline storage battery, and manufacturing method thereof
JPH07335211A (en) Manufacture of paste electrode for alkaline battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH11111280A (en) Hydride secondary battery
JPH103928A (en) Nickel-hydrogen secondary battery
JPH11144739A (en) Manufacture of paste type plate for alkaline storage batery
JPH1064533A (en) Electrode for secondary battery and manufacture thereof
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP2983135B2 (en) Alkaline secondary battery
JP2000090934A (en) Paste type electrode for storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH09306499A (en) Manufacture of electrode for secondary battery
JPH11176433A (en) Alkaline storage battery
JP2001307734A (en) Powder of raw material for production of positive electrode of alkaline secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102