JP2001035523A - Manufacture of film exterior trimming battery - Google Patents

Manufacture of film exterior trimming battery

Info

Publication number
JP2001035523A
JP2001035523A JP11209401A JP20940199A JP2001035523A JP 2001035523 A JP2001035523 A JP 2001035523A JP 11209401 A JP11209401 A JP 11209401A JP 20940199 A JP20940199 A JP 20940199A JP 2001035523 A JP2001035523 A JP 2001035523A
Authority
JP
Japan
Prior art keywords
battery
pressure
film
preliminary charging
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11209401A
Other languages
Japanese (ja)
Other versions
JP3533117B2 (en
Inventor
Masaharu Sato
正春 佐藤
Nobuhide Oyama
宣英 大山
Masahito Shirakata
雅人 白方
Yuichi Kumeuchi
友一 粂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Mobile Energy Corp
Original Assignee
NEC Corp
NEC Mobile Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Mobile Energy Corp filed Critical NEC Corp
Priority to JP20940199A priority Critical patent/JP3533117B2/en
Priority to CA002314310A priority patent/CA2314310C/en
Priority to US09/620,816 priority patent/US6558438B1/en
Priority to EP00115001A priority patent/EP1071151A1/en
Priority to KR1020000042193A priority patent/KR20010015414A/en
Publication of JP2001035523A publication Critical patent/JP2001035523A/en
Application granted granted Critical
Publication of JP3533117B2 publication Critical patent/JP3533117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a battery minimized in deformation by charge and discharge, having less possibility of deformation or breakage of the battery, even if the internal pressure is raised, superior in stability and particularly suitable for a thin lightweight one by including at least one preliminary charging process for performing a charging, while applying pressure. SOLUTION: In preliminary charging process, pressurization is performed by putting a battery between two opposed plates and applying a pressure from both sides thereof, and the pressure is preferably applied to the plates nipping the battery via an elastic body. Otherwise, in the preliminary charging process, the pressurizing is performed by utilizing hydrostatic pressure, and the battery before preliminary charging is suitably put in an insulating liquid followed by pressurization. The pressure applied in the preliminary charging process is preferably 0.05 MPa or higher. A battery (prior to charging) with a generating element trimmed with an exterior film 7 is put between two opposed plates 8, and an external extraction electrode is charged at a fixed current and a fixed voltage, while applying a pressure to the plates 8 via a spring 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極、負極および
セパレーターを含む発電要素を熱融着性フィルムで外装
したフィルム外装電池の製造方法に関し、詳しくは繰り
返し使用による充放電によっても変形が少なく安定性に
優れたフィルム外装電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a film-covered battery in which a power generating element including a positive electrode, a negative electrode, and a separator is covered with a heat-fusible film. The present invention relates to a method for producing a film-covered battery having excellent properties.

【0002】[0002]

【従来の技術】ノート型パソコン、携帯電話などの急速
な市場拡大に伴い、これらに用いられる高出力で安定性
に優れた電池への要求が高まっている。この要求に応え
るために、リチウムイオン等のアルカリ金属イオンを荷
電担体としてその電荷授受に伴う電気化学反応を利用し
た二次電池が開発されている。このような二次電池では
陽極及び負極の活物質層を多孔質フィルムからなるセパ
レーターで隔絶し、巻回もしくは積層して金属缶等に封
入して電池を構成している。
2. Description of the Related Art With the rapid market expansion of notebook personal computers, mobile phones, and the like, there is an increasing demand for batteries having high output and excellent stability used in these computers. In order to respond to this demand, secondary batteries have been developed using an alkali metal ion such as lithium ion as a charge carrier and utilizing an electrochemical reaction accompanying the charge transfer. In such a secondary battery, the active material layers of the anode and the anode are separated by a separator made of a porous film, wound or laminated, and sealed in a metal can or the like to constitute a battery.

【0003】また、各種電子機器に効率的に搭載できる
角型の二次電池も開発されている。この角型電池は電極
/セパレーター層を扁平に巻回した後、平板を用いて加
圧成形し、角型の金属缶に封入して形成されている。し
かし、近年の電子機器の小型化、軽量化への要求は外装
材にも及び、パッケージの薄型化や軽量化も求められて
いる中で、金属缶で外装した電池では自立した缶の厚さ
が必要なために重量が大きく、また、缶の成形上の問題
から4mm以下の薄型化も難しいため、このような要求
に答えることは難しかった。
Further, prismatic secondary batteries that can be efficiently mounted on various electronic devices have also been developed. This prismatic battery is formed by winding an electrode / separator layer flat, press-molding using a flat plate, and enclosing in a prismatic metal can. However, in recent years, the demand for smaller and lighter electronic devices has been increasing for outer packaging materials, and thinner and lighter packages have also been required. It is difficult to respond to such a demand because it is heavy due to the necessity, and it is difficult to reduce the thickness to 4 mm or less due to problems in molding the can.

【0004】そこで、熱融着性フィルムによる外装が検
討されている。このフィルムはアルミニウム等の金属箔
の外面にナイロンやポリエステル等の力学的強度の大き
な樹脂を、内面にポリエチレンやポリプロピレン等の熱
融着性に優れ、化学的にも安定な樹脂を配置したもので
ある。そして内部に正極および負極の活物質層を多孔質
フィルムからなるセパレーターで隔絶し、巻回もしくは
積層して構成した電池を入れ、内面どうしを重ね合わ
せ、熱融着することで電池を製造する。
[0004] Therefore, a case using a heat-fusible film has been studied. This film consists of a metal foil such as aluminum and a resin with high mechanical strength, such as nylon and polyester, on the outer surface, and a resin that is thermally stable and chemically stable, such as polyethylene and polypropylene, on the inner surface. is there. Then, the battery is manufactured by separating the active material layers of the positive electrode and the negative electrode therein by a separator made of a porous film, winding or laminating the batteries, and laminating the inner surfaces thereof and heat-sealing them.

【0005】しかしながら、熱融着性フィルムで外装し
た電池では金属缶ケースに比べてフィルム自体で発電要
素の変形を抑える力が無く、僅かな発電要素の膨張や内
圧の上昇でも変形が引き起こされるという問題点があっ
た。一般に、エネルギー密度や容量、電流密度、インピ
ーダンス、サイクル寿命等の電池の特性は、正極活物質
と負極活物質とが、セパレーターを介して密接、かつ均
一に接していることが重要である。そのため、発電要素
の膨張や変形が生じると、インピーダンスが上昇し、放
電容量が低下したり、充放電のサイクル特性が劣化した
りする。
However, in a battery packaged with a heat-fusible film, the film itself does not have the power to suppress the deformation of the power generating element as compared with a metal can case, and even a slight expansion of the power generating element or an increase in internal pressure causes deformation. There was a problem. In general, it is important for the battery characteristics such as energy density, capacity, current density, impedance, and cycle life that the positive electrode active material and the negative electrode active material are in close and uniform contact with each other via a separator. Therefore, when the power generation element expands or deforms, the impedance increases, the discharge capacity decreases, and the charge / discharge cycle characteristics deteriorate.

【0006】この問題に対し、例えば特開平5−182
649号公報には、熱融着性フィルム内を大気圧以下に
保持することで正極、負極、電解質、セパレーターから
なる発電要素の密接性を維持し、変形を抑制する方法が
開示されている。しかし、熱融着フィルム内を大気圧以
下に保持しても、発電要素を押さえる力は高々1気圧で
あるために変形を防止するには不十分であり、また、ガ
ス発生等によって内圧が上昇した場合にも効果はなくな
る。
To solve this problem, see, for example, Japanese Patent Laid-Open No. 5-182.
Japanese Patent Application Publication No. 649 discloses a method in which the inside of a heat-fusible film is maintained at an atmospheric pressure or less to maintain the closeness of a power generating element including a positive electrode, a negative electrode, an electrolyte, and a separator and suppress deformation. However, even if the inside of the heat-sealing film is maintained at a pressure lower than the atmospheric pressure, the force for holding down the power generation element is at most 1 atm, which is insufficient to prevent deformation, and the internal pressure rises due to gas generation or the like. If you do, the effect will be lost.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
問題点を解決するためになされたもので、充放電による
変形が少なく内圧が上昇した場合にも電池の変形や破壊
の可能性が小さい安定性に優れ、特に薄型軽量のものに
適したフィルム外装電池の簡便な製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and there is little deformation due to charge / discharge and the possibility of battery deformation or destruction even when the internal pressure rises. An object of the present invention is to provide a simple method for producing a film-covered battery which is excellent in small stability and is particularly suitable for a thin and lightweight battery.

【0008】[0008]

【課題を解決するための手段】本発明は、正極、負極、
電解質およびセパレーターを少なくとも含む発電要素を
フィルムで外装したフィルム外装電池の製造方法におい
て、圧力を加えながら充電する予備充電工程を少なくと
も1回含むことを特徴とするフィルム外装電池の製造方
法に関する。
SUMMARY OF THE INVENTION The present invention provides a positive electrode, a negative electrode,
The present invention relates to a method for manufacturing a film-covered battery, which includes a preliminary charging step of charging while applying pressure at least once, in a method for manufacturing a film-covered battery in which a power generation element including at least an electrolyte and a separator is covered with a film.

【0009】本発明者らの検討によれば、発電要素を熱
融着性フィルムで外装した後に、少なくとも1回以上圧
力を加えながら充電すると、その後の使用による充放電
による変形が少ないことが判った。これは、本発明の方
法で製造したフィルム外装電池は充電に伴う内部歪みが
電池全体で平均化され、それ以降の充放電においても変
形が抑えられていると考えられる。このため、発電要素
の変形に起因する集電体と電極層、あるいは電極層とセ
パレーターの剥離やセパレーターの破壊、およびそれら
の結果として生ずるインピーダンスの上昇、容量や充放
電効率の低下、内部短絡等の可能性を低減することがで
きる。
According to the study of the present inventors, it has been found that when a power generating element is covered with a heat-fusible film and then charged while applying pressure at least once or more, deformation due to charge and discharge due to subsequent use is small. Was. This is considered to be due to the fact that in the film-covered battery manufactured by the method of the present invention, internal distortion due to charging is averaged over the entire battery, and deformation is suppressed even in subsequent charging and discharging. For this reason, the current collector and the electrode layer, or the electrode layer and the separator, or the separator are broken due to the deformation of the power generating element, and the resulting impedance rises, the capacity, the charge / discharge efficiency drops, the internal short circuit, etc. Can be reduced.

【0010】このように本発明によれば、使用によって
内圧が上昇した場合にも電池の変形や破壊の可能性が小
さい安定性、安全性に優れたフィルム外装電池を簡便に
製造することができる。本発明の製造方法は、特に薄型
軽量の電池を製造するときに極めて効果的に用いられ
る。
As described above, according to the present invention, it is possible to easily manufacture a film-covered battery excellent in stability and safety in which the possibility of deformation or destruction of the battery is small even when the internal pressure is increased by use. . The manufacturing method of the present invention is extremely effectively used particularly when manufacturing a thin and lightweight battery.

【0011】[0011]

【発明の実施の形態】本発明において、発電要素は、正
極、負極およびセパレーターを含み、それぞれ二次電池
の構成として従来公知の材料が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a power generating element includes a positive electrode, a negative electrode, and a separator, each of which is made of a material conventionally known as a constituent of a secondary battery.

【0012】例えば、正極としては放電時に正イオンを
吸収するもの、もしくは負イオンを放出するものであれ
ば特に限定されず、LiMnO2、LiMn24、Li
CoO2、LiNiO2等の金属酸化物やポリアセチレ
ン、ポリアニリン、ポリピロール、ポリチオフェン、ポ
リパラフェニレン等の導電性高分子やその誘導体、ジス
ルフィド化合物等の二次電池の正極材料として従来公知
のものが使用できる。
For example, the cathode is not particularly limited as long as it absorbs positive ions or discharges negative ions at the time of discharge. LiMnO 2 , LiMn 2 O 4 , Li
Conventionally known cathode materials for secondary batteries such as metal oxides such as CoO 2 and LiNiO 2 , conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene and derivatives thereof, and disulfide compounds can be used. .

【0013】また、負極としては、カチオンを吸蔵・放
出可能な材料であれば特に限定されず、天然黒鉛、石炭
・石油ピッチ等を高温で熱処理して得られる黒鉛化炭素
等の結晶質カーボン、石炭、石油ピッチコークス、アセ
チレンピッチコークス等を熱処理して得られる非晶質カ
ーボン、金属リチウムやAlLi等のリチウム合金な
ど、二次電池の負極活物質として従来公知のものが使用
できる。
The negative electrode is not particularly limited as long as it is a material capable of storing and releasing cations. Crystalline carbon such as graphitized carbon obtained by heat-treating natural graphite, coal or petroleum pitch at a high temperature, etc. Conventionally known negative electrode active materials for a secondary battery, such as amorphous carbon obtained by heat-treating coal, petroleum pitch coke, acetylene pitch coke, and the like, and lithium alloys such as metallic lithium and AlLi can be used.

【0014】さらに本発明では電極を形成する際に、こ
れらの電極活物質を適当な結着剤や機能性材料と混合
し、電極層を形成することもできる。この結着剤として
はポリフッ化ビニリデン等のハロゲン含有高分子等が用
いられ、また機能性材料としては電子伝導性を確保する
ためのアセチレンブラックやポリピロール、ポリアニリ
ン等の導電性高分子、イオン伝導性を確保するための高
分子電解質、それらの複合体等が挙げられる。
Further, in the present invention, when forming an electrode, these electrode active materials can be mixed with a suitable binder or a functional material to form an electrode layer. As the binder, a halogen-containing polymer such as polyvinylidene fluoride or the like is used. As the functional material, a conductive polymer such as acetylene black, polypyrrole, or polyaniline for securing electron conductivity; And a composite thereof for ensuring the above.

【0015】本発明では集電体は特に限定されないが、
例えば導電率が高く、展性に優れた金属箔または金属メ
ッシュ等が用いられる。このような集電体としては、例
えば正極の場合はアルミニウム箔、負極の場合は銅箔が
好ましく、厚さは、例えば5〜50μmである。これら
の集電体に対して活物質が結着剤によって接着されてい
る。
In the present invention, the current collector is not particularly limited.
For example, a metal foil or a metal mesh having high conductivity and excellent malleability is used. As such a current collector, for example, an aluminum foil is preferable for a positive electrode, and a copper foil is preferable for a negative electrode. The thickness is, for example, 5 to 50 μm. An active material is bonded to these current collectors with a binder.

【0016】本発明の発電要素に含まれる電解質は、例
えば電解質溶液、高分子固体電解質、および高分子ゲル
電解質等の二次電池の電解質として従来公知の材料を用
いることができる。電解質中に含まれる電解質塩として
はClO4 -、BF4 -、PF6 -、CF3SO3 -、(CF3
22-、(C25SO22-、(CF3SO2
3-、(C25SO23-等のハロゲン含有化合物ア
ニオンのLi、K、Na等のアルカリ金属塩が挙げられ
る。これらの電解質塩は、単独または複数組み合わせて
用いることができる。
As the electrolyte contained in the power generating element of the present invention, for example, a conventionally known material as an electrolyte for a secondary battery such as an electrolyte solution, a polymer solid electrolyte, and a polymer gel electrolyte can be used. The electrolyte salt contained in the electrolyte includes ClO 4 , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 S
O 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , (CF 3 SO 2 )
3 C -, (C 2 F 5 SO 2) 3 C - halogen-containing compound anions such as Li, K, and alkali metal salts such as Na. These electrolyte salts can be used alone or in combination.

【0017】電解質溶液としては、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネート、アセトニトリル、ジメトキシエタ
ン、スルホラン、テトラヒドロフラン、γ−ブチロラク
トン、N−メチル−2−ピロリドン、ジメチルホルムア
ミド等の非水系溶媒に、上記の電解質塩を溶解した溶液
が挙げられる。
As the electrolyte solution, ethylene carbonate, propylene carbonate, butylene carbonate,
A solution in which the above-mentioned electrolyte salt is dissolved in a non-aqueous solvent such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, acetonitrile, dimethoxyethane, sulfolane, tetrahydrofuran, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylformamide, etc. Can be

【0018】高分子固体電解質としては、上記の電解質
塩を含むポリエチレンオキシドおよびポリプロピレンオ
キシド等のポリエーテル系高分子を挙げることができ
る。
Examples of the solid polymer electrolyte include polyether polymers such as polyethylene oxide and polypropylene oxide containing the above-mentioned electrolyte salt.

【0019】また、高分子ゲル電解質としては、上記の
電解質塩と、前述の電解質溶液に使用可能な非水系溶媒
として列挙したような溶媒を、ポリフッ化ビニリデン、
ポリヘキサフルオロプロピレンおよびポリテトラフルオ
ロエチレン等のフッ素系ポリマー;ポリメチルメタクリ
レート、ポリメチルアクリレート等のアクリレート系ポ
リマー;ポリアクリロニトリル等の高分子に含ませたも
のを挙げることができる。これらの溶媒または高分子
は、単独で、あるいは複数組み合わせて用いることがで
きる。特に高分子は共重合等によって複合化したものを
用いることもできる。
Further, as the polymer gel electrolyte, the above-mentioned electrolyte salts and the solvents listed as the non-aqueous solvents usable in the above-mentioned electrolyte solution may be obtained by mixing polyvinylidene fluoride,
Fluorine-based polymers such as polyhexafluoropropylene and polytetrafluoroethylene; acrylate-based polymers such as polymethyl methacrylate and polymethyl acrylate; and polymers included in polymers such as polyacrylonitrile. These solvents or polymers can be used alone or in combination of two or more. In particular, a polymer compounded by copolymerization or the like can be used.

【0020】また本発明で用いられる多孔質セパレータ
は、一般的にはマイクロポーラスセパレータを用いる
が、本発明の効果が得られれば織布、不織布を用いるこ
ともできる。マイクロポーラスセパレータとしては、例
えば孔径0.1〜5μm、空孔率30〜70%、厚さ1
〜50μmのものを用いることができる。セパレータの
材質は、ポリエチレン、ポリプロピレン等のポリオレフ
ィン系樹脂、ポリエステルなどを用いることができる。
As the porous separator used in the present invention, a microporous separator is generally used, but a woven fabric or a nonwoven fabric can be used as long as the effects of the present invention can be obtained. As the microporous separator, for example, a pore diameter of 0.1 to 5 μm, a porosity of 30 to 70%, and a thickness of 1
5050 μm can be used. As the material of the separator, a polyolefin-based resin such as polyethylene or polypropylene, polyester, or the like can be used.

【0021】本発明において、発電要素の形状は特に制
限はなく、円筒形であってもよいが、薄型・軽量化のた
めと封口のしやすさ等の理由から平板な形状が好まし
く、図1に示したように角形のものが好ましい。角形に
は、セパレータを挟んで正極と負極を多数積層した積層
型、正極、負極およびセパレータを巻き回した巻回型等
が含まれる。
In the present invention, the shape of the power generating element is not particularly limited and may be a cylindrical shape. However, a flat shape is preferable for reasons such as thinness and weight reduction and ease of sealing. As shown in FIG. The square shape includes a stacked type in which a large number of positive electrodes and negative electrodes are stacked with a separator interposed therebetween, and a wound type in which a positive electrode, a negative electrode, and a separator are wound.

【0022】本発明により製造される電池は、このよう
な発電要素をフィルムで外装した薄型軽量の電池であ
る。外装に用いられるフィルムとしては、発電要素を中
に入れてから周囲を封じることができるものが好まし
く、少なくとも封着部分が熱融着できるフィルムが好ま
しい。例えば、フィルム全体をポリエチレンおよびポリ
プロピレン等のポリオレフィン系樹脂等からなる熱融着
性フィルムで形成しても、フィルムを必要により多層構
造にして最内層を熱融着性の樹脂層としてもよい。この
ような多層フィルムの好ましいものとしては、表面保護
層、中間金属層、熱融着層の少なくとも3層からなり、
表面保護層には熱融着温度で溶融しない樹脂、例えばポ
リエチレンテレフタレート、ナイロン、ポリイミド等の
樹脂層が用いられる。また、中間金属層は、クラックま
たはピンホール等が少なく、各種ガスを透過しない金
属、例えばアルミニウム、ニッケル、金等の箔を用いる
ことが好ましい。本発明では中間金属層の厚みは特に限
定されないが、あまり薄くなるとピンホールが発生しや
すくなるので、一般には0.015〜0.1mmの範囲
で用いる。熱融着層としては、電解質溶液に侵され難
く、熱可塑性であって150〜250℃の範囲で熱融着
できるものであれば特に限定されず、ポリエチレンおよ
びポリプロピレン等のポリオレフィン系樹脂、ポリイミ
ド樹脂、アイオノマー等が用いられる。
The battery manufactured according to the present invention is a thin and lightweight battery having such a power generation element covered with a film. As the film used for the exterior, a film that can seal the periphery after the power generation element is put therein is preferable, and a film that can be heat-sealed at least at the sealing portion is preferable. For example, the entire film may be formed of a heat-fusible film made of a polyolefin-based resin such as polyethylene and polypropylene, or the film may have a multilayer structure if necessary, and the innermost layer may be a heat-fusible resin layer. Preferred examples of such a multilayer film include at least three layers of a surface protective layer, an intermediate metal layer, and a heat sealing layer,
A resin that does not melt at the heat-sealing temperature, for example, a resin layer of polyethylene terephthalate, nylon, polyimide, or the like is used for the surface protective layer. In addition, it is preferable to use a metal that has few cracks or pinholes and does not transmit various gases, such as aluminum, nickel, or gold, for the intermediate metal layer. In the present invention, the thickness of the intermediate metal layer is not particularly limited, but if it is too thin, pinholes are likely to be generated. Therefore, it is generally used in the range of 0.015 to 0.1 mm. The heat-sealing layer is not particularly limited as long as it is hardly eroded by the electrolyte solution, is thermoplastic and can be heat-sealed in the range of 150 to 250 ° C., and a polyolefin-based resin such as polyethylene and polypropylene, and a polyimide resin. , Ionomers and the like are used.

【0023】また、本発明では接着剤層を用いたり金属
箔の表面修飾処理を行って熱可塑性樹脂フィルムと金属
箔との接着力を上げることもできる。
In the present invention, the adhesive strength between the thermoplastic resin film and the metal foil can be increased by using an adhesive layer or by performing a surface modification treatment of the metal foil.

【0024】次に、本発明の製造方法の1例を図面を参
照しながら説明する。
Next, an example of the manufacturing method of the present invention will be described with reference to the drawings.

【0025】この例では、図1、図2に示すように、ま
ず正極4、負極5およびセパレーター6を含む発電要素
1を外装フィルム2で外装し、周囲(熱融着領域4)を
熱融着する。そのとき正極4および負極5から外部に外
部引き出し電極3a、3bがそれぞれ引き出されるよう
にする。
In this example, as shown in FIGS. 1 and 2, a power generation element 1 including a positive electrode 4, a negative electrode 5, and a separator 6 is first packaged with a package film 2, and the periphery (heat fusion region 4) is thermally fused. To wear. At this time, the external lead electrodes 3a and 3b are drawn out from the positive electrode 4 and the negative electrode 5, respectively.

【0026】本発明の予備充電工程では、このように形
成した充電前の電池に圧力を加えながら充電する。
In the pre-charging step of the present invention, the pre-charged battery thus formed is charged while applying pressure.

【0027】その1例を図3に示す。この方法では発電
要素を外装フィルムで外装した電池(充電前)7を、対
向する2枚の平板8で挟み、その平板にバネ9を介して
圧力を加えながら、外部引き出し電極に定電流・定電圧
で充電を行う。
One example is shown in FIG. In this method, a battery (before charging) 7 in which a power generation element is covered with an outer film is sandwiched between two opposing flat plates 8, and a constant current and a constant current are applied to the external extraction electrodes while applying pressure to the flat plates via a spring 9. Charge with voltage.

【0028】電池(充電前)を挟む平板に使用される材
質は特に限定されず、金属、ガラス、プラスチック等の
平板が用いられるが、端子とのショートの可能性を低減
する観点から絶縁性のガラス、プラスチック、およびプ
ラスチックで被覆した金属板等が好ましい。また、本発
明ではこれらの平板の厚さおよび形状は特に限定され
ず、発電要素の形状または変形しようとする力に対応し
て適宜選択することができる。
The material used for the flat plate sandwiching the battery (before charging) is not particularly limited, and a flat plate such as metal, glass, plastic, or the like is used. Glass, plastic, and metal plates coated with plastic are preferred. In the present invention, the thickness and shape of these flat plates are not particularly limited, and can be appropriately selected according to the shape of the power generating element or the force to be deformed.

【0029】本発明で電池に加える圧力は、電池の容量
および形状等によって選択できる。充電時の発電要素の
変形を抑えるのに十分で、しかも発電要素内のセパレー
ターを破壊しない範囲で行われる。一般に、発電要素の
変形がし易いものについては大きな圧力を加えるのが好
ましく、例えば電極の積層数が多い電池ほど大きな圧力
を適用する。発電要素の変形を抑えるためには、通常、
0.05MPa以上の圧力が必要であり、また10MP
a以下が好ましい。
In the present invention, the pressure applied to the battery can be selected according to the capacity and shape of the battery. The operation is performed within a range that is sufficient to suppress deformation of the power generation element during charging and that does not destroy the separator in the power generation element. Generally, it is preferable to apply a large pressure to a power generation element that is easily deformed. For example, a battery having a large number of stacked electrodes is applied with a large pressure. To reduce the deformation of the power generating element,
Pressure of 0.05MPa or more is required, and 10MPa
a or less is preferable.

【0030】具体的な圧力としては、発電要素の変形が
少ない例えば携帯電話等に使用される容量600mAh
でサイズ30×60mm程度の電池では、0.05MP
a〜1MPaの圧力範囲が好ましい。また、発電要素の
変形し易い例えばノート型パソコン等に使用される容量
1600mAhでサイズ35×65mm程度の電池で
は、0.5MPa〜10MPaの圧力範囲が好ましい。
The specific pressure is, for example, a capacity of 600 mAh used for a cellular phone or the like in which the power generating element is less deformed.
For a battery with a size of about 30 × 60 mm, 0.05MP
A pressure range of a to 1 MPa is preferred. Further, in the case of a battery having a capacity of about 1600 mAh and a size of about 35 × 65 mm used for a notebook computer or the like in which the power generating element is easily deformed, the pressure range is preferably 0.5 MPa to 10 MPa.

【0031】また、充電している間に、発電要素に過剰
な圧力がかかり、その結果電極層やセパレーターが破壊
することのないように、過剰な圧力の上昇に対して緩和
できる手段を設けておくことが好ましい。例えば、電池
が膨張しても過剰な圧力が加わらないように平板間の隙
間は固定されていないことが望ましく、そのためには、
平板と圧力発生装置の間に、油圧シリンダー、バネ等の
ように弾性体を介在させておくことが好ましい。
In order to prevent an excessive pressure from being applied to the power generating element during the charging, and to prevent the electrode layer and the separator from being destroyed as a result, means for mitigating an excessive increase in the pressure are provided. Preferably. For example, it is desirable that the gap between the flat plates is not fixed so that excessive pressure is not applied even when the battery expands.
It is preferable that an elastic body such as a hydraulic cylinder or a spring is interposed between the flat plate and the pressure generating device.

【0032】予備充電工程における加圧方法として、こ
のような平板を用いる方法の他にも、静水圧を利用する
方法でもよい。即ち、流体を用いて電池に対して流体と
の界面から垂直方向に圧力をかける方法である。例え
ば、充電前の電池を圧力容器等の中に入れて液体や気体
を充填し、加圧することによって行うことができる。加
える圧力は、このような他の方法の場合でも、平板を用
いるときと同様であり、電池の容量/形状等によって適
宜変更することができるが、変形を抑えることができる
だけの圧力を用いることが必要であり、0.05MPa
以上が好ましい。また、同時に、発電要素内のセパレー
ターをつぶさない程度の圧力であることが必要である。
例えば携帯電話等に使用される容量600mAhでサイ
ズ30×60mm程度での電池では、同様に0.05M
Pa〜1MPaの範囲の圧力範囲で行われる。静水圧を
かけるために用いる液体は電池を製造する温度で安定な
液体であれば特に限定されないが、実施の容易さから、
シリコンオイル、超純水等の絶縁性液体が好ましい。そ
して、このような液体中に浸漬し静水圧を加えながら、
外部引き出し電極に対して所定の電流・電圧を供給して
充電すればよい。
As a pressurizing method in the preliminary charging step, a method using hydrostatic pressure may be used in addition to the method using such a flat plate. That is, this is a method in which a fluid is used to apply pressure to the battery in a vertical direction from the interface with the fluid. For example, it can be performed by placing a battery before charging in a pressure vessel or the like, filling it with a liquid or gas, and pressurizing the battery. The pressure to be applied is the same as in the case of using a flat plate even in the case of such other methods, and can be appropriately changed depending on the capacity / shape of the battery, but it is necessary to use a pressure that can suppress deformation. Necessary, 0.05MPa
The above is preferred. At the same time, the pressure needs to be low enough not to crush the separator in the power generation element.
For example, a battery having a capacity of about 600 mAh and a size of about 30 × 60 mm used for a mobile phone or the like has a similar capacity of 0.05 M
It is performed in a pressure range of Pa to 1 MPa. The liquid used to apply the hydrostatic pressure is not particularly limited as long as it is a liquid stable at the temperature at which the battery is manufactured.
Insulating liquids such as silicon oil and ultrapure water are preferred. And while immersing in such a liquid and applying hydrostatic pressure,
What is necessary is just to supply a predetermined current and voltage to the external extraction electrode and charge the same.

【0033】[0033]

【実施例】以下、本発明の詳細について実施例を用いて
具体的に説明するが、本発明はこれらの実施例に限定さ
れるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0034】<実施例1>平均粒径5μmのコバルト酸
リチウム、アセチレンブラック、ポリフッ化ビニリデ
ン、N―メチル−2−ピロリドンを10:1:1:30
の重量比で混合、分散した。これをワイヤーバーを用い
てアルミ箔の片面に均一に塗布し、100℃で2時間真
空乾燥させ、溶媒を除去した。得られた薄層を、適当な
大きさとなるようにカットして約25mAhの容量を持
つ正極層を作製した。この正極層に厚さ25μm、空孔
率50%のポリエチレン製セパレーターフィルムを積層
した。さらに、その上にポリフッ化ビニリデン、N―メ
チル−2−ピロリドン(以下、NMP)、粉末石油コー
クス、及びアセチレンブラックを1:30:20:1の
重量比で混合したスラリーを流延し、ワイヤーバーによ
って均一に成形して、100℃で2時間真空乾燥して負
極層とした。次に、集電体として正極のアルミ箔と同じ
面積の銅箔を負極層の上に載せ、巻回してリード端子を
接続し、リチウムイオン二次電池の電極積層体とした。
<Example 1> Lithium cobaltate, acetylene black, polyvinylidene fluoride and N-methyl-2-pyrrolidone having an average particle size of 5 µm were mixed at a ratio of 10: 1: 1: 30.
And mixed at a weight ratio of This was uniformly applied on one side of an aluminum foil using a wire bar, and vacuum dried at 100 ° C. for 2 hours to remove the solvent. The obtained thin layer was cut into an appropriate size to prepare a positive electrode layer having a capacity of about 25 mAh. A polyethylene separator film having a thickness of 25 μm and a porosity of 50% was laminated on the positive electrode layer. Further, a slurry obtained by mixing polyvinylidene fluoride, N-methyl-2-pyrrolidone (hereinafter, NMP), petroleum coke powder, and acetylene black at a weight ratio of 1: 30: 20: 1 was cast thereon, and a wire was cast. The mixture was uniformly molded with a bar, and dried under vacuum at 100 ° C. for 2 hours to form a negative electrode layer. Next, a copper foil having the same area as the aluminum foil of the positive electrode was placed on the negative electrode layer as a current collector, wound, and lead terminals were connected to obtain an electrode laminate of a lithium ion secondary battery.

【0035】その後、厚さ25μmのアルミニウム箔の
表裏に、表面保護層としてナイロンフィルム、熱融着層
としてポリプロピレンフィルム積層したラミネートフィ
ルムで前記電極積層体を挟み、外周から1cmの範囲で
200℃のヒーターバーを圧着し、熱融着を行った。こ
のとき、最後の辺を封口する前に電解質塩としてLiP
6を含むエチレンカーボネート−プロピレンカーボネ
ート混合溶液(混合比50/50)からなる電解質溶液
を含浸させて、予備充電前の薄型電池を得た。
Thereafter, the electrode laminate was sandwiched between a laminate film having a nylon film as a surface protective layer and a polypropylene film as a heat sealing layer on the front and back of an aluminum foil having a thickness of 25 μm. The heater bar was press-bonded and heat-sealed. At this time, before closing the last side, LiP is used as an electrolyte salt.
An electrolyte solution composed of a mixed solution of ethylene carbonate and propylene carbonate containing F 6 (mixing ratio 50/50) was impregnated to obtain a thin battery before preliminary charging.

【0036】このようにして組み立てた薄型電池(充電
前)に対して、平板を用いて電池の両面に1kg/cm
2の圧力を加えながら、112mAの定電流で4.2V
まで充電し、次に4.2Vの一定電圧で合計10時間の
充電を実施し、薄型電池を完成させた。
With respect to the thin battery (before charging) assembled in this manner, 1 kg / cm
4.2 V at a constant current of 112 mA while applying a pressure of 2.
The battery was then charged at a constant voltage of 4.2 V for a total of 10 hours to complete a thin battery.

【0037】得られた薄型電池の充放電試験を行ったと
ころ、初期放電容量は685mAhで設計値通りであ
り、150サイクル後の放電容量も625mAと、10
%の低下に抑えることができた。また、電池の厚さも1
0サイクル後で5%増と、安定性に優れたものであるこ
とがわかった。
When a charge / discharge test was performed on the obtained thin battery, the initial discharge capacity was 685 mAh, which was the designed value, and the discharge capacity after 150 cycles was 625 mA.
% Decrease. Also, the battery thickness is 1
After 0 cycles, a 5% increase was found, indicating excellent stability.

【0038】<実施例2>スピネル構造を持つマンガン
酸リチウム粉末、炭素質導電性付与材、およびポリフッ
化ビニリデンを90:5:5の重量比でNMPに混合分
散、攪拌してスラリーとした。NMPの量はスラリーが
適当な粘度になるように調整した。このスラリーをドク
ターブレードを用いて、正極集電体となる厚さ20μm
のアルミニウム箔の片面に均一に塗布し、100℃で2
時間真空乾燥させた。同様にもう一方の面にもスラリー
を塗布し、真空乾燥させた。このシートをロールプレス
し、正極用活物質層を形成した。
Example 2 A lithium manganate powder having a spinel structure, a carbonaceous conductivity-imparting material, and polyvinylidene fluoride were mixed and dispersed in NMP at a weight ratio of 90: 5: 5 to form a slurry by stirring. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. Using a doctor blade, this slurry was used as a positive electrode current collector to a thickness of 20 μm.
Uniformly on one side of aluminum foil
Vacuum dried for hours. Similarly, the slurry was applied to the other surface and dried under vacuum. This sheet was roll-pressed to form a positive electrode active material layer.

【0039】次に、アモルファスカーボン粉末、ポリフ
ッ化ビニリデンを91:9の重量比でNMPに混合、分
散、攪拌してスラリーとした。NMPの量はスラリーが
適当な粘度になるように調整した。このスラリーをドク
ターブレードを用いて、負極集電体となる厚さ10μm
の銅箔の片面に均一に塗布し、100℃2時間真空乾燥
した。このとき負極層の単位面積あたりの理論容量と正
極層の単位面積あたりの理論容量を1:1となるように
調整した。同様にもう一方の面にもスラリーを塗布し真
空乾燥した。このシートをロールプレスし、負極集電体
の両面に接着した負極活物質層を形成した。
Next, amorphous carbon powder and polyvinylidene fluoride were mixed with NMP at a weight ratio of 91: 9, dispersed and stirred to form a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. Using a doctor blade, this slurry was used as a negative electrode current collector to a thickness of 10 μm.
Was uniformly applied on one side of a copper foil and vacuum dried at 100 ° C. for 2 hours. At this time, the theoretical capacity per unit area of the negative electrode layer and the theoretical capacity per unit area of the positive electrode layer were adjusted to be 1: 1. Similarly, the slurry was applied to the other surface and dried under vacuum. This sheet was roll-pressed to form a negative electrode active material layer adhered to both surfaces of the negative electrode current collector.

【0040】これらの正極と負極の間にポリプロピレン
/ポリエチレン/ポリプロピレンの3層構造を持つマイ
クロポーラスセパレーター(ヘキストセラニーズ社製、
セルガード2300)を挟み、正極/セパレーター/負
極を一体としてワインディングし、電極積層体を形成し
た。
A microporous separator having a three-layer structure of polypropylene / polyethylene / polypropylene between these positive and negative electrodes (manufactured by Hoechst Celanese Co., Ltd.)
Cellguard 2300) was sandwiched, and the positive electrode / separator / negative electrode was integrally wound to form an electrode laminate.

【0041】この電極積層体を実施例1と同様にして電
解液を注入しフィルムで外装して充電前の薄型電池を得
た。
This electrode laminate was filled with an electrolyte and covered with a film in the same manner as in Example 1 to obtain a thin battery before charging.

【0042】組み立てた薄型電池に対して、平板を用い
てその両面に1kg/cm2の圧力を加えながら、11
2mAの定電流で4.2Vまで充電し、次に4.2Vの
一定電圧で合計10時間の充電を実施して薄型電池を完
成した。
A flat plate was applied to the assembled thin battery while applying a pressure of 1 kg / cm 2 to both sides of the battery.
The battery was charged to 4.2 V at a constant current of 2 mA, and then charged at a constant voltage of 4.2 V for a total of 10 hours to complete a thin battery.

【0043】得られた薄型電池の充放電試験を行ったと
ころ、図4に示すように、初期放電容量は設計値通りの
645mAhであり、150サイクル後の放電容量も5
89mAと、10%の低下に抑えることができた。ま
た、電池の厚さも図5に示すように10サイクル後で5
%増であり、安定性に優れていることがわかった。
A charge / discharge test was performed on the obtained thin battery. As shown in FIG. 4, the initial discharge capacity was 645 mAh as designed, and the discharge capacity after 150 cycles was 5 times.
89 mA, which was a 10% reduction. In addition, as shown in FIG.
% Increase, which proved to be excellent in stability.

【0044】<比較例1>実施例2において、予備充電
する前の電池を試料とし、この薄型電池に対して圧力を
加えることなく、充放電試験を行った。図4に示すよう
に初期容量が400mAhと設計値の60%に低下し、
さらに150サイクル後の容量も330mAhとなっ
た。また、電池の厚さも図5に示すように、10サイク
ル後に15%増加した。充放電による変形が不均一であ
るため、密着面の剥離等が生じていることによると考え
られる。
<Comparative Example 1> In Example 2, the battery before pre-charging was used as a sample, and a charge / discharge test was performed on this thin battery without applying pressure. As shown in FIG. 4, the initial capacity is reduced to 400 mAh and 60% of the designed value.
Further, the capacity after 150 cycles was also 330 mAh. The thickness of the battery also increased by 15% after 10 cycles, as shown in FIG. It is considered that the deformation due to charge / discharge is non-uniform, and the adhesion surface is peeled off.

【0045】尚、発電要素をフィルムで外装した薄型電
池に対して圧力を加えながら充電する工程を含むことを
特徴とする薄型電池の製造方法は、二次電池の製造の他
にも電圧または電流を印加する際に変形等が生じる可能
性のある分野において応用が可能であり、電気二重層コ
ンデンサ、電解コンデンサ、各種センサー等の製造方法
においても、圧力を加えながら電圧または電流を印加し
て形成することで安定性の優れた製品を製造することが
できる。
The method of manufacturing a thin battery, which includes a step of applying pressure to a thin battery having a power generation element covered with a film while applying pressure, is not limited to manufacturing a secondary battery. It can be applied in the field where deformation etc. may occur when applying voltage.In the manufacturing method of electric double layer capacitor, electrolytic capacitor, various sensors, etc., it is formed by applying voltage or current while applying pressure. By doing so, a product with excellent stability can be manufactured.

【0046】[0046]

【発明の効果】本発明によれば、使用によって内圧が上
昇した場合にも電池の変形や破壊の可能性が小さく、諸
特性の劣化、特にサイクル特性の劣化の少ない安定性、
安全性に優れたフィルム外装電池を簡便に製造すること
ができる。
According to the present invention, even when the internal pressure rises due to use, the possibility of deformation or destruction of the battery is small, and the stability of the battery is reduced with deterioration of various characteristics, particularly, the deterioration of cycle characteristics.
A film-covered battery having excellent safety can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発電要素を熱融着フィルムで外装した様子を示
す図である。
FIG. 1 is a view showing a state in which a power generation element is covered with a heat sealing film.

【図2】発電要素を熱融着フィルムで外装した様子を示
す断面図である。
FIG. 2 is a cross-sectional view showing a state where a power generation element is covered with a heat sealing film.

【図3】予備充電の際に、電池の両面から圧力を加えな
がら充電している状態を示す図である。
FIG. 3 is a diagram showing a state in which charging is performed while applying pressure from both sides of the battery at the time of preliminary charging.

【図4】本発明の製造方法で得られた電池と従来の電池
の、放電容量の繰り返しサイクル特性を示すグラフであ
る。
FIG. 4 is a graph showing repetitive cycle characteristics of discharge capacity of a battery obtained by the manufacturing method of the present invention and a conventional battery.

【図5】本発明の製造方法で得られた電池と従来の電池
の、厚さの繰り返しサイクル数依存性を比較して示すグ
ラフである。
FIG. 5 is a graph showing a comparison between the thickness of the battery obtained by the manufacturing method of the present invention and a conventional battery in terms of the number of repeated cycles.

【符号の説明】[Explanation of symbols]

1 フィルム外装電池電池素子 2 外装フィルム 3a、3b 外部引き出し電極 4 正極 5 負極 6 セパレーター 7 電池(充電前) 8 平板 9 バネ DESCRIPTION OF SYMBOLS 1 Film-covered battery battery element 2 Package film 3a, 3b External lead-out electrode 4 Positive electrode 5 Negative electrode 6 Separator 7 Battery (before charging) 8 Flat plate 9 Spring

フロントページの続き (72)発明者 大山 宣英 神奈川県横浜市港北区新横浜2丁目5番5 号 エヌイーシーモリエナジー株式会社内 (72)発明者 白方 雅人 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 粂内 友一 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H028 AA07 BB04 BB10 CC12 HH09 5H029 AJ12 AK03 AK16 AL06 AL07 AL08 AL12 AM00 AM03 AM04 AM07 AM16 BJ04 BJ14 BJ15 CJ03 CJ16 DJ02 EJ12 HJ15Continuation of the front page (72) Inventor Nobuhide Oyama 2-5-5 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Inside NEC Mori Energy Co., Ltd. (72) Inventor Masato Shirakata 5-7-1 Shiba, Minato-ku, Tokyo No. Within NEC Corporation (72) Inventor Yuichi Kumeuchi 5-7-1 Shiba, Minato-ku, Tokyo F-term within NEC Corporation 5H028 AA07 BB04 BB10 CC12 HH09 5H029 AJ12 AK03 AK16 AL06 AL07 AL08 AL12 AM00 AM03 AM04 AM07 AM16 BJ04 BJ14 BJ15 CJ03 CJ16 DJ02 EJ12 HJ15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、電解質およびセパレーター
を少なくとも含む発電要素をフィルムで外装したフィル
ム外装電池の製造方法において、 圧力を加えながら充電する予備充電工程を少なくとも1
回含むことを特徴とするフィルム外装電池の製造方法。
1. A method of manufacturing a film-covered battery in which a power generating element including at least a positive electrode, a negative electrode, an electrolyte, and a separator is packaged with a film, at least one preliminary charging step of charging while applying pressure.
A method for producing a film-covered battery, comprising:
【請求項2】 前記予備充電工程において圧力を加える
方法が、対向する2枚の平板の間に電池を挟んで両側か
ら圧力を加える方法であることを特徴とする請求項1記
載のフィルム外装電池の製造方法。
2. The film-covered battery according to claim 1, wherein the method of applying pressure in the pre-charging step is a method of sandwiching the battery between two opposing flat plates and applying pressure from both sides. Manufacturing method.
【請求項3】 前記の対向する2枚の平板の間に電池を
挟んで両側から圧力を加える際に、電池を挟んだ平板に
対して弾性体を介して圧力を加えることを特徴とする請
求項2記載のフィルム外装電池の製造方法。
3. A pressure is applied to the flat plate sandwiching the battery via an elastic body when applying pressure from both sides with the battery sandwiched between the two opposed flat plates. Item 3. A method for producing a film-covered battery according to Item 2.
【請求項4】 前記予備充電工程において圧力を加える
方法が、静水圧を利用する方法であることを特徴とする
請求項1記載のフィルム外装電池の製造方法。
4. The method for manufacturing a film-covered battery according to claim 1, wherein the method of applying pressure in the preliminary charging step is a method of utilizing hydrostatic pressure.
【請求項5】 前記静水圧を利用する方法が、予備充電
前の電池を絶縁性の液体の中に入れて圧力を加えること
を特徴とする請求項4記載のフィルム外装電池の製造方
法。
5. The method of manufacturing a film-covered battery according to claim 4, wherein in the method using hydrostatic pressure, the battery before precharge is put in an insulating liquid to apply pressure.
【請求項6】 前記予備充電工程において加える圧力
が、0.05MPa以上であることを特徴とする請求項
1〜5のいずれかに記載のフィルム外装電池の製造方
法。
6. The method according to claim 1, wherein a pressure applied in the preliminary charging step is 0.05 MPa or more.
【請求項7】 前記正極と負極がセパレーターを介して
巻回したものであることを特徴とする請求項1〜5のい
ずれかに記載のフィルム外装電池の製造方法。
7. The method according to claim 1, wherein the positive electrode and the negative electrode are wound with a separator interposed therebetween.
JP20940199A 1999-07-23 1999-07-23 Method of manufacturing film-covered battery Expired - Lifetime JP3533117B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20940199A JP3533117B2 (en) 1999-07-23 1999-07-23 Method of manufacturing film-covered battery
CA002314310A CA2314310C (en) 1999-07-23 2000-07-21 Method for producing film packed battery
US09/620,816 US6558438B1 (en) 1999-07-23 2000-07-21 Method for producing a pressurized package for a film packed battery
EP00115001A EP1071151A1 (en) 1999-07-23 2000-07-21 Method for producing film packed battery
KR1020000042193A KR20010015414A (en) 1999-07-23 2000-07-22 Method for producing film packed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20940199A JP3533117B2 (en) 1999-07-23 1999-07-23 Method of manufacturing film-covered battery

Publications (2)

Publication Number Publication Date
JP2001035523A true JP2001035523A (en) 2001-02-09
JP3533117B2 JP3533117B2 (en) 2004-05-31

Family

ID=16572293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20940199A Expired - Lifetime JP3533117B2 (en) 1999-07-23 1999-07-23 Method of manufacturing film-covered battery

Country Status (1)

Country Link
JP (1) JP3533117B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110252A (en) * 2000-09-28 2002-04-12 At Battery:Kk Method of producing battery
JP2002216849A (en) * 2001-01-15 2002-08-02 Mitsubishi Cable Ind Ltd Manufacturing method of lithium ion secondary cell
KR100439351B1 (en) * 2001-09-14 2004-07-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
JP2004311103A (en) * 2003-04-03 2004-11-04 Toshiba Corp Method for manufacturing non-aqueous electrolyte secondary battery
KR100470594B1 (en) * 2001-09-14 2005-02-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
JP2007005069A (en) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JPWO2010095230A1 (en) * 2009-02-19 2012-08-16 トヨタ自動車株式会社 All solid battery
JP2014116237A (en) * 2012-12-11 2014-06-26 Sei Kk Electrochemical device
WO2015016008A1 (en) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 Method for manufacturing secondary battery
JP2015037047A (en) * 2013-08-14 2015-02-23 日産自動車株式会社 Method for pressurizing film exterior battery
JP2015179566A (en) * 2014-03-18 2015-10-08 トヨタ自動車株式会社 Solid battery and manufacturing method thereof, and battery pack and manufacturing method thereof
CN105580194A (en) * 2013-09-27 2016-05-11 汽车能源供应公司 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
US9399404B2 (en) 2013-11-08 2016-07-26 Toyota Jidosha Kabushiki Kaisha Charging system for all-solid-state battery
CN108306062A (en) * 2018-01-31 2018-07-20 北京国能电池科技股份有限公司 Improve chemical synthesizing method, Battery formation fixture and application and the Soft Roll power battery of Soft Roll power battery cycle life
JP2018206644A (en) * 2017-06-06 2018-12-27 日産自動車株式会社 Charging method of lithium ion secondary battery and lithium ion secondary battery system
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
US11355777B2 (en) 2017-06-02 2022-06-07 Murata Manufacturing Co., Ltd. Battery manufacturing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102261176B1 (en) * 2015-11-26 2021-06-07 주식회사 엘지에너지솔루션 Method for preparing secondary battery
KR102282481B1 (en) * 2016-09-01 2021-07-27 주식회사 엘지에너지솔루션 Pressing jig and method of fabricating secondary battery using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582126A (en) * 1991-09-24 1993-04-02 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for enclosed type alkaline storage battery
JPH08153542A (en) * 1994-09-27 1996-06-11 Asahi Chem Ind Co Ltd Nonaqueous battery
JPH11144715A (en) * 1997-11-10 1999-05-28 Agency Of Ind Science & Technol Manufacture of electrode for secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582126A (en) * 1991-09-24 1993-04-02 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for enclosed type alkaline storage battery
JPH08153542A (en) * 1994-09-27 1996-06-11 Asahi Chem Ind Co Ltd Nonaqueous battery
JPH11144715A (en) * 1997-11-10 1999-05-28 Agency Of Ind Science & Technol Manufacture of electrode for secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110252A (en) * 2000-09-28 2002-04-12 At Battery:Kk Method of producing battery
JP2002216849A (en) * 2001-01-15 2002-08-02 Mitsubishi Cable Ind Ltd Manufacturing method of lithium ion secondary cell
KR100439351B1 (en) * 2001-09-14 2004-07-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
KR100470594B1 (en) * 2001-09-14 2005-02-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
JP2004311103A (en) * 2003-04-03 2004-11-04 Toshiba Corp Method for manufacturing non-aqueous electrolyte secondary battery
JP4564238B2 (en) * 2003-04-03 2010-10-20 株式会社東芝 Method for producing non-aqueous electrolyte secondary battery
JP2007005069A (en) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JPWO2010095230A1 (en) * 2009-02-19 2012-08-16 トヨタ自動車株式会社 All solid battery
JP2014116237A (en) * 2012-12-11 2014-06-26 Sei Kk Electrochemical device
WO2015016008A1 (en) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 Method for manufacturing secondary battery
JP2015037047A (en) * 2013-08-14 2015-02-23 日産自動車株式会社 Method for pressurizing film exterior battery
CN105580194A (en) * 2013-09-27 2016-05-11 汽车能源供应公司 Nonaqueous electrolyte secondary battery and method for manufacturing same
EP3051621A4 (en) * 2013-09-27 2016-09-14 Automotive Energy Supply Corp Nonaqueous electrolyte secondary battery and method for manufacturing same
US10044071B2 (en) 2013-09-27 2018-08-07 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery and method for manufacturing same
US9399404B2 (en) 2013-11-08 2016-07-26 Toyota Jidosha Kabushiki Kaisha Charging system for all-solid-state battery
JP2015179566A (en) * 2014-03-18 2015-10-08 トヨタ自動車株式会社 Solid battery and manufacturing method thereof, and battery pack and manufacturing method thereof
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
US11355777B2 (en) 2017-06-02 2022-06-07 Murata Manufacturing Co., Ltd. Battery manufacturing apparatus
JP2018206644A (en) * 2017-06-06 2018-12-27 日産自動車株式会社 Charging method of lithium ion secondary battery and lithium ion secondary battery system
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
US11567048B2 (en) 2017-11-17 2023-01-31 Lg Energy Solution, Ltd. Jig for pressing gas analysis monocell, and gas analysis device including same
CN108306062A (en) * 2018-01-31 2018-07-20 北京国能电池科技股份有限公司 Improve chemical synthesizing method, Battery formation fixture and application and the Soft Roll power battery of Soft Roll power battery cycle life

Also Published As

Publication number Publication date
JP3533117B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
CA2314310C (en) Method for producing film packed battery
JP3533117B2 (en) Method of manufacturing film-covered battery
JP4038699B2 (en) Lithium ion battery
KR100279071B1 (en) Lithium ion secondary battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP2002260739A (en) Nonaqueous electrolyte secondary battery and manufacturing method
WO2005013408A1 (en) Lithium ion secondary cell
WO2012014780A1 (en) Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
WO1998004015A1 (en) Electrochemical cell and method of making same
JP2000235868A (en) Nonaqueous electrolyte secondary battery
JP3457624B2 (en) Method of manufacturing flat battery
JP3405380B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2000133220A (en) Lithium-ion secondary battery
JP2006310033A (en) Storage battery
JP2008097991A (en) Electric storage device
JP2000030742A (en) Lithium-ion secondary battery element
WO2022000314A1 (en) Separator for electrochemical device, electrochemical device and electronic device
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JPH10261386A (en) Battery case and battery
JPH11154534A (en) Lithium ion secondary battery element
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP3858465B2 (en) Lithium secondary battery
JP3544889B2 (en) Sealed battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040305

R150 Certificate of patent or registration of utility model

Ref document number: 3533117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

EXPY Cancellation because of completion of term