JP3457624B2 - Method of manufacturing flat battery - Google Patents

Method of manufacturing flat battery

Info

Publication number
JP3457624B2
JP3457624B2 JP2000113622A JP2000113622A JP3457624B2 JP 3457624 B2 JP3457624 B2 JP 3457624B2 JP 2000113622 A JP2000113622 A JP 2000113622A JP 2000113622 A JP2000113622 A JP 2000113622A JP 3457624 B2 JP3457624 B2 JP 3457624B2
Authority
JP
Japan
Prior art keywords
battery
flat battery
flat
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000113622A
Other languages
Japanese (ja)
Other versions
JP2001297798A (en
Inventor
弘志 屋ヶ田
正春 佐藤
友一 粂内
宣英 大山
竜一 清水
裕 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000113622A priority Critical patent/JP3457624B2/en
Priority to EP00115001A priority patent/EP1071151A1/en
Priority to US09/620,816 priority patent/US6558438B1/en
Priority to CA002314310A priority patent/CA2314310C/en
Priority to KR1020000042193A priority patent/KR20010015414A/en
Publication of JP2001297798A publication Critical patent/JP2001297798A/en
Application granted granted Critical
Publication of JP3457624B2 publication Critical patent/JP3457624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば発電要素
(正極、負極、電解質等の発電に関連する要素)を熱融
着性のフィルムで外装したフィルム外装電池等の扁平型
電池の製造方法に関し、詳しくは繰り返し使用による充
放電によっても変形が少なく、安定性に優れた扁平方電
池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flat battery such as a film-covered battery in which a power-generating element (elements related to power generation such as positive electrode, negative electrode, and electrolyte) is coated with a heat-fusible film. More specifically, the present invention relates to a method for manufacturing a square battery that is excellent in stability and is less likely to be deformed by charge and discharge due to repeated use.

【0002】[0002]

【従来の技術】薄く加工された角型金属ケースを外装材
とした電池や、熱融着性アルミニウムラミネートフィル
ム等の薄く柔軟なフィルムを外装材として用いた電池
が、軽量、薄型という利点から、携帯電話などの小型軽
量化の要求が強い電子機器用の電源として急速に普及し
ている。
2. Description of the Related Art A battery using a thinly processed rectangular metal case as an exterior material and a battery using a thin flexible film such as a heat-fusible aluminum laminate film as an exterior material are advantageous in that they are lightweight and thin. It is rapidly spreading as a power source for electronic devices such as mobile phones, which are strongly demanded to be small and lightweight.

【0003】しかしながら、充放電を繰り返すと電池が
徐々に劣化していくため、ある回数使用後には交換せざ
るを得なく、より繰り返し充放電耐性(サイクル安定
性)のある電池が求められている。
However, since the battery gradually deteriorates after repeated charging and discharging, the battery must be replaced after a certain number of times of use, and a battery having more repeated charging and discharging resistance (cycle stability) is required. .

【0004】繰り返し充放電劣化の原因の一つに、発電
要素の変形が挙げられる。特に熱融着性フィルムで外装
した電池では、金属缶ケースに比べてフィルム自体で発
電要素の変形を抑える力が無く、僅かな発電要素の膨張
や内圧の上昇でも変形が引き起こされるという問題点が
あった。一般に、エネルギー密度や容量、電流密度、イ
ンピーダンス、サイクル寿命等の電池の特性を良好なも
のとするには、正極活物質と負極活物質とが、セパレー
ターを介して密接、かつ均一に接していることが重要で
ある。そのため、発電要素の膨張や変形が生じると、イ
ンピーダンスが上昇し、放電容量が低下したり、充放電
のサイクル特性が劣化したりする。
One of the causes of repeated charge and discharge deterioration is deformation of the power generation element. In particular, in the case of a battery packaged with a heat-fusible film, the film itself does not have the ability to suppress the deformation of the power generation element as compared to the metal can case, and there is a problem that even a slight expansion of the power generation element or deformation of the power generation element causes deformation. there were. Generally, in order to improve the battery characteristics such as energy density, capacity, current density, impedance, and cycle life, the positive electrode active material and the negative electrode active material are in intimate contact with each other through the separator and are in uniform contact with each other. This is very important. Therefore, when the power generation element expands or deforms, the impedance increases, the discharge capacity decreases, and the charge / discharge cycle characteristics deteriorate.

【0005】この問題に関し、本発明者らは、本出願時
に未公開の出願(特願平11−209401号)におい
て、発電要素を熱融着性フィルムで外装した電池を作製
するにあたり、電池作製後に、少なくとも1回以上圧力
を加えながら予備充電することにより、その後の使用に
よる充放電による変形を抑制する方法を提案した。この
方法で製造したフィルム外装電池は充電に伴う内部歪み
が電池全体で平均化され、それ以降の充放電においても
変形が抑えられていると考えられる。このため、発電要
素の変形に起因する集電体と電極層、あるいは電極層と
セパレーターの剥離やセパレーターの破壊、およびそれ
らの結果として生ずるインピーダンスの上昇、容量や充
放電効率の低下、内部短絡等の可能性を低減することが
でき、安定性、安全性に優れたフィルム外装電池を製造
することができる。
With respect to this problem, the present inventors have prepared a battery in which an electric power generating element is covered with a heat-fusible film in an unpublished application (Japanese Patent Application No. 11-209401) at the time of the present application. After that, a method was proposed in which pre-charging was performed at least once or more while applying pressure to suppress deformation due to charge / discharge due to subsequent use. It is considered that the film-sheathed battery manufactured by this method has an internal strain averaged over the entire battery, which is averaged over the entire battery, and is suppressed from being deformed in subsequent charging and discharging. Therefore, the collector and the electrode layer or the electrode layer and the separator are separated or the separator is broken due to the deformation of the power generation element, and the resulting increase in impedance, reduction in capacity and charge / discharge efficiency, internal short circuit, etc. It is possible to produce a film-clad battery having excellent stability and safety.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
電池作製後に圧力を加えながら充電する方法(以下、加
圧予備充電法という。)を実施するにあたっての、さら
に改良された方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a further improved method for carrying out a method of charging while applying pressure after manufacturing such a battery (hereinafter referred to as a pressurized precharging method). To do.

【0007】即ち、本発明は、充放電による変形が少な
く、内圧が上昇した場合にも電池の変形や破壊の可能性
が小さく安定性に優れた扁平型電池を製造する方法を提
供することを目的とする。また、本発明は、簡便な構成
の一つの加圧装置を用いて複数の電池に対して同時に加
圧充電法を行った場合でも、品質のばらつきを少なくす
る製造方法を目的とする。
That is, the present invention provides a method for manufacturing a flat battery which is less likely to be deformed by charge and discharge and which is less likely to be deformed or broken even when the internal pressure rises and which is excellent in stability. To aim. It is another object of the present invention to provide a manufacturing method that reduces variations in quality even when a plurality of batteries are simultaneously subjected to a pressure charging method using a single pressure device having a simple structure.

【0008】[0008]

【課題を解決するための手段】本発明は、少なくとも一
方側に緩衝層を備えた一対のプレス板の間に、1個以上
の扁平型電池を挟み、このプレス板同士の間隔を扁平型
電池を加圧しうる一定の間隔に固定しながら、圧力を加
えながら充電する予備充電工程を少なくとも1回含むこ
とを特徴とする扁平型電池の製造方法に関する。
According to the present invention, one or more flat type batteries are sandwiched between a pair of press plates provided with a buffer layer on at least one side, and the flat type batteries are added with a space between the press plates. The present invention relates to a method for manufacturing a flat battery, which comprises at least one preliminary charging step in which charging is performed while applying pressure while fixing the pressure at fixed intervals.

【0009】この緩衝層としては、例えばシート状のゴ
ム性弾性体が用いられる。また、緩衝層を、少なくとも
高硬度層と低硬度層の2層から構成してもよく、その
際、高硬度層が前記扁平型電池に接するように配置す
る。そのとき、低硬度層としては、シート状のゴム性弾
性体が好ましく、高硬度層としては低硬度層より固い金
属シートまたは樹脂シートで形成することが好ましい。
As the buffer layer, for example, a sheet-shaped rubber elastic body is used. Further, the buffer layer may be composed of at least two layers of a high hardness layer and a low hardness layer, in which case the high hardness layer is arranged so as to be in contact with the flat battery. At that time, a sheet-shaped rubber elastic body is preferable as the low hardness layer, and a metal sheet or a resin sheet which is harder than the low hardness layer is preferable as the high hardness layer.

【0010】また、本発明は、予備充電工程において、
前記一対のプレス板の間に、複数の扁平型電池を挟ん
で、複数の扁平型電池を同時に製造するときに特に有利
である。
Further, in the present invention, in the preliminary charging step,
It is particularly advantageous when a plurality of flat type batteries are sandwiched between the pair of press plates to simultaneously manufacture a plurality of flat type batteries.

【0011】[0011]

【発明の実施の形態】前述のように、本発明者は、電池
作製後に少なくとも1回以上圧力を加えながら予備充電
すること(加圧予備充電)により、その後の使用による
充放電による変形を抑制することができることを見出し
た。しかし、この方法を、特に複数個の扁平型電池に適
用するあたり、加圧装置等にさらに配慮が必要であるこ
とがわかった。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the present inventor suppresses deformation due to charge and discharge due to subsequent use by performing precharging while applying pressure at least once after manufacturing a battery (pressurized precharging). I found that I can do it. However, it has been found that when applying this method to a plurality of flat type batteries, further consideration needs to be given to the pressurizing device and the like.

【0012】即ち、加圧予備充電している間に、発電要
素に過剰な圧力がかかると、電極層やセパレーターにダ
メージを与えてしまう恐れがある。例えば一対の剛性平
板で緩衝層を設けずに直接フィルム外装電池を挟み、こ
の一対の平板を一定の間隔に固定する装置を用いて加圧
充電法を行った場合、充電(または充放電)に伴って電
池が膨れようとする力が働くために、徐々に加圧力が高
くなり、発電要素に過剰な圧力がかかる恐れがある。過
剰な圧力が電池に印加されないようにするためには、加
圧装置に圧力緩衝手段を設けることが好ましい。
That is, if excessive pressure is applied to the power generating element during the pressurized precharging, the electrode layer and the separator may be damaged. For example, when a film-clad battery is directly sandwiched between a pair of rigid flat plates without providing a buffer layer, and a pressurization charging method is performed using a device that fixes the pair of flat plates at regular intervals, charging (or charging / discharging) Along with this, a force that causes the battery to swell is exerted, so that the applied pressure gradually increases, and excessive pressure may be applied to the power generation element. In order to prevent excessive pressure from being applied to the battery, it is preferable to provide the pressurizing device with pressure buffering means.

【0013】また、大量生産のために複数の電池に対し
て加圧予備充電法を適用する場合において、複数の電池
を、一対の剛性平板の間に平面状に並べて同時に加圧し
ようとすると、最も厚い電池に力が集中し、他の電池に
加わる力が弱くなる。つまり、電池の厚さのわずかなば
らつきによって加圧充電法の効果がばらついてしまい、
品質のばらつきを拡大させる恐れがある。平板を各電池
に対して個別に設ければこのばらつきを防ぐことができ
るが、その場合、平板に圧力を印加する手段も個別に必
要となり、装置が煩雑となる。
Further, in the case of applying the pressure pre-charging method to a plurality of batteries for mass production, if a plurality of batteries are arranged in a plane between a pair of rigid flat plates and pressure is applied simultaneously, Power concentrates on the thickest battery, and weakens on other batteries. In other words, the effect of the pressure charging method varies due to slight variations in the battery thickness,
There is a risk of increasing the variation in quality. This variation can be prevented by separately providing a flat plate for each battery, but in that case, means for applying pressure to the flat plate is also required individually, which complicates the apparatus.

【0014】そこで本発明では、扁平型電池を、少なく
とも一方側に緩衝層を備えた一対のプレス板の間に挟ん
で加圧充電法を適用することにより、充電(または充放
電)に伴って電池が膨れようとする力が働いても、発電
要素に過剰な圧力がかかるのを防止することができる。
Therefore, in the present invention, the flat type battery is sandwiched between a pair of press plates having a buffer layer on at least one side to apply a pressure charging method, so that the battery is charged (or charged / discharged). It is possible to prevent excessive pressure from being applied to the power generation element even if the force of swelling acts.

【0015】また、複数の電池を加圧予備充電する場合
にも、緩衝層が電池の厚さのわずかなばらつきを緩和し
て、複数の電池に均等に力が加わるため、品質のばらつ
きの少ない扁平電池を得ることができる。
Even when a plurality of batteries are precharged under pressure, the buffer layer alleviates a slight variation in the thickness of the batteries and evenly applies a force to the plurality of batteries, so that there is little variation in quality. A flat battery can be obtained.

【0016】以下、図面を参照しながら、本発明の実施
の形態を詳述する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0017】図1は、本発明の方法を実施するための装
置の一例を模式的に示したものである。上側プレス板1
と下側プレス板2は、スペーサ4とねじ3によって一定
の間隔に固定されている。下側プレス板2の上には巻回
型でかつ扁平な形状の発電要素をフィルムで外装したフ
ィルム外装電池7が複数置かれており、高硬度層6およ
び低硬度層5からなる緩衝層56が取りつけられた上側
プレス板1によって加圧されている。高硬度層6は複数
のフィルム外装電池7の上にまたがるように接してお
り、高硬度層6はこれと略同じ大きさの(複数のフィル
ム外装電池にまたがる大きさの)低硬度層5に取り付け
られており、低硬度層5は上側プレス板1に取り付けら
れている。ここで、高硬度層6は、例えば厚さ数百μm
の金属シート等の変形可能で硬くて薄い部材からなり、
低硬度層5は例えば厚さ数mmのシート状のゴム性弾性
体からなる。上側プレス板1と下側プレス板2の間隔は
低硬度層5を若干縮ませるような間隔に設定されてお
り、縮んだ低硬度層の復元力によってフィルム外装電池
7は下側プレス板2と高硬度層6との間で加圧力を受け
ている。
FIG. 1 schematically shows an example of an apparatus for carrying out the method of the present invention. Upper press plate 1
The lower press plate 2 is fixed by a spacer 4 and a screw 3 at a constant interval. On the lower press plate 2, a plurality of film-covered batteries 7 in which a winding-type and flat-shaped power generating element is covered with a film are placed, and a buffer layer 56 including a high hardness layer 6 and a low hardness layer 5. Is pressed by the upper press plate 1 to which is attached. The high-hardness layer 6 is in contact with the plurality of film-sheathed batteries 7 so as to straddle it, and the high-hardness layer 6 is a low-hardness layer 5 having substantially the same size (a size that spans a plurality of film-sheathed batteries). The low hardness layer 5 is attached to the upper press plate 1. Here, the high hardness layer 6 has, for example, a thickness of several hundred μm.
Made of deformable, hard and thin material such as metal sheet of
The low hardness layer 5 is made of, for example, a sheet-shaped rubber elastic body having a thickness of several mm. The distance between the upper press plate 1 and the lower press plate 2 is set so that the low hardness layer 5 is slightly contracted, and the film-covered battery 7 is separated from the lower press plate 2 by the restoring force of the contracted low hardness layer. A pressing force is applied to the high hardness layer 6.

【0018】この構成では、低硬度層が個々のフィルム
外装電池の厚さのわずかな差に対応して変形するので
(この際、高硬度層も変形する)、最も厚いフィルム外
装電池だけに強い圧力が加わったり最も薄いフィルム外
装電池への圧力が不足したりすることがなく、電池個々
の厚さのばらつきに対応して圧力を印加することが可能
となる。しかも一対のプレス板と、例えばスペーサとね
じだけで構成される固定手段と、1枚のゴムシートと、
1枚の金属シートとによって、同時に複数のフィルム外
装電池を加圧することができるので、簡便な装置であり
ながら多数の扁平型電池の同時加圧が可能となる。
In this structure, the low hardness layer is deformed in response to a slight difference in the thickness of the individual film-encased battery (the high hardness layer is also deformed at this time), and therefore, it is strong only for the thickest film-encased battery. It is possible to apply pressure in response to variations in the thickness of each battery without applying pressure or running out of pressure on the thinnest film-covered battery. Moreover, a pair of press plates, a fixing means composed only of spacers and screws, and a rubber sheet,
Since it is possible to pressurize a plurality of film-clad batteries at the same time by using one metal sheet, it is possible to simultaneously pressurize a large number of flat type batteries with a simple device.

【0019】ここで、上側プレス板および下側プレス板
としては圧力に対して変形しないような充分な剛性を持
つものであることが好ましく、材質としては金属が好ま
しい。
Here, it is preferable that the upper press plate and the lower press plate have sufficient rigidity so as not to be deformed by pressure, and the material is preferably metal.

【0020】低硬度層の厚さは特に限定しないが、薄す
ぎると圧力緩衝効果が得られないため、0.1mm以上
が好ましい。厚さの上限は、特に制限はなく例えば50
mm程度であっても構わないが、一般的には30mm以
下である。低硬度層の硬さとしては、例えば5mmの厚
さのゴムシートの場合は、1×10-3N/m2の応力印
加に対し0.01mm〜3mmの縮みが起きる硬さ、好
ましくは0.1mm〜1mmの縮みが起きる硬さが好ま
しい。材質としては、ウレタンゴム、発泡ウレタンゴ
ム、フッ化ビニリデン−ヘキサフルオロプロピレン共重
合体などのフッ素ゴム、シリコーンゴム、シリコーンス
ポンジゴム、SBR、NBR、天然ゴム、EPDM、ク
ロロプレンゴム、ニトリルゴム、アクリルゴム等、種々
のゴム等が使用できる。その他にも、各種ポリマーのス
ポンジ体や、空気袋なども使用できる。
The thickness of the low hardness layer is not particularly limited, but if it is too thin, the pressure buffering effect cannot be obtained, so 0.1 mm or more is preferable. The upper limit of the thickness is not particularly limited and is, for example, 50.
Although it may be about mm, it is generally 30 mm or less. As for the hardness of the low hardness layer, for example, in the case of a rubber sheet having a thickness of 5 mm, the hardness at which a shrinkage of 0.01 mm to 3 mm occurs when a stress of 1 × 10 −3 N / m 2 is applied, preferably 0. A hardness at which shrinkage of 1 mm to 1 mm occurs is preferable. Materials include urethane rubber, foamed urethane rubber, fluororubber such as vinylidene fluoride-hexafluoropropylene copolymer, silicone rubber, silicone sponge rubber, SBR, NBR, natural rubber, EPDM, chloroprene rubber, nitrile rubber, acrylic rubber. Various rubbers can be used. In addition, sponge bodies of various polymers and air bags can be used.

【0021】図1の例で設けられている高硬度層6とし
ては、低硬度層5よりも硬く、薄いシート状であること
が好ましい。また、表面が平坦であることが好ましい。
使用できるものの例としては、ポリエステル、ポリプロ
ピレン、ポリエチレン、アクリル樹脂、シリコーン樹脂
などの樹脂シート、金属シートが挙げられる。また、低
硬度層に使用可能な各種ゴム材料として挙げたもので
も、低硬度層よりも硬いものであれば高硬度層に使用可
能である。
The high hardness layer 6 provided in the example of FIG. 1 is preferably harder than the low hardness layer 5 and has a thin sheet shape. Further, it is preferable that the surface is flat.
Examples of usable materials include resin sheets of polyester, polypropylene, polyethylene, acrylic resin, silicone resin, and the like, and metal sheets. Further, among the various rubber materials that can be used for the low hardness layer, any material that is harder than the low hardness layer can be used for the high hardness layer.

【0022】高硬度層6は、次に述べるような効果をも
たらす。例えば巻回型でかつ扁平な形状の発電要素を収
納したフィルム外装電池では、充電によって、電極シー
トの折れ曲がり部8の部分(図2参照)が、他の部分に
比べて電池の厚さ方向に膨らみやすく、外装体が柔軟な
フィルムであるために電池外形としてもこの部分が局所
的に膨らみやすい。このような局所的な膨らみが生ずる
ことは、電子機器内の狭い収納スペースに電池を収納す
る際に好ましくなく、電池表面は平坦であることが好ま
しい。加圧装置において高硬度層6が存在することによ
って、局所的な電池の膨らみを抑制することができ、充
電を行ってもフィルム外装電池の表面の平坦性を維持す
ることができる。しかも高硬度層6を薄いシート状とす
ることにより、個々のフィルム外装電池の厚さのわずか
な差に対応した低硬度層5の変形に追従して変形するこ
とが可能である。つまり、電池内の局所的な膨れといっ
た小サイズの電池変形の抑制と、電池間の厚さの差とい
った離れた場所での厚さの差への柔軟な対応を両立させ
ることができる。
The high hardness layer 6 has the following effects. For example, in a film-clad battery that houses a winding-type and flat-shaped power generation element, the portion of the bent portion 8 (see FIG. 2) of the electrode sheet is charged in the thickness direction of the battery more than other portions due to charging. Since the film is swellable and the outer casing is a flexible film, this portion easily swells locally even in the outer shape of the battery. The occurrence of such local swelling is not preferable when the battery is stored in a narrow storage space in the electronic device, and the battery surface is preferably flat. The presence of the high-hardness layer 6 in the pressurizing device can suppress local bulging of the battery, and can maintain the flatness of the surface of the film-clad battery even after charging. Moreover, by forming the high-hardness layer 6 into a thin sheet shape, it is possible to follow the deformation of the low-hardness layer 5 corresponding to the slight difference in the thickness of the individual film-clad batteries and to deform the battery. That is, it is possible to both suppress small-sized battery deformation such as local swelling in the battery and flexibly cope with a difference in thickness at a distant place such as a difference in thickness between batteries.

【0023】この高硬度層の厚さとしては、例えば金属
シートの場合0.05〜1mmが好ましい。金属シート
の場合、薄すぎると柔軟性が過度となり、電池内の局所
的な膨れを充分に抑制することができない。また金属シ
ートの場合、厚い過ぎると金属シートの変形が電池間の
厚さの差に対応できなくなり、最も厚い電池には最も強
い力が加わり、それ以外の電池には弱い力が加わること
となり、電池の厚さのわずかなばらつきによって加圧充
電法の効果がばらついてしまい、品質のばらつきを拡大
させるという不都合が生じる。高硬度層が樹脂シートで
ある場合は、0.1〜5mm程度が好ましい。高硬度層
が金属シートである場合は、電池配置予定部の電極リー
ドに位置する金属シート部分に、ショートを防止するた
めの保護部材を設けていてもよい。また、高硬度層と低
硬度層は、互いに接着されて一体化されていても、また
一体化されていなくてもどちらでもよい。
The thickness of the high hardness layer is preferably 0.05 to 1 mm in the case of a metal sheet, for example. In the case of a metal sheet, if it is too thin, the flexibility becomes excessive and local swelling in the battery cannot be sufficiently suppressed. In the case of a metal sheet, if it is too thick, the deformation of the metal sheet cannot cope with the difference in thickness between batteries, the strongest force is applied to the thickest battery, and the weak force is applied to other batteries. Even a slight variation in the thickness of the battery causes variations in the effect of the pressure charging method, which causes an inconvenience of increasing the variation in quality. When the high hardness layer is a resin sheet, it is preferably about 0.1 to 5 mm. When the high-hardness layer is a metal sheet, a protection member for preventing a short circuit may be provided on the metal sheet portion located at the electrode lead of the battery placement planned portion. Further, the high hardness layer and the low hardness layer may be adhered to each other and integrated, or may not be integrated.

【0024】図1において、上側または下側プレス板に
電池の電極リードへの接続端子を設けていてもよい。
In FIG. 1, the upper or lower press plate may be provided with connection terminals to the electrode leads of the battery.

【0025】また、緩衝層を設ける場所は、上側プレス
板と電池配置予定部の間でもよいし、下側プレス板と電
池配置予定部の間でもよいし、その両方でもよい。
The buffer layer may be provided between the upper press plate and the planned battery placement portion, between the lower press plate and the planned battery placement portion, or both.

【0026】上記の例では、緩衝層として高硬度層と低
硬度層からなる例を示したが、緩衝層は一層のみであっ
てもよく、その際に層を構成する材料としては、上記の
低硬度層として挙げたゴム性弾性体が好ましい。
In the above example, the buffer layer is composed of the high hardness layer and the low hardness layer. However, the buffer layer may have only one layer, and the material constituting the layer at that time is as described above. The rubber elastic material mentioned as the low hardness layer is preferable.

【0027】上記の例ではフィルムで外装した電池を用
いて説明したが、角型の金属缶、角型の樹脂ケース等で
外装したものでも、発電要素に外部から圧力が伝達しう
るものであれば本発明の効果が得られる。
In the above-mentioned example, the film-covered battery is used. However, a battery covered with a rectangular metal can, a rectangular resin case, or the like is not limited as long as the pressure can be externally transmitted to the power generating element. For example, the effect of the present invention can be obtained.

【0028】また上記の例では巻回型の発電要素を有す
る電池を用いて説明したが、平板電極積層型の発電要素
を有する電池等、別の構造の電池であっても、繰り返し
充放電により発電要素の変形などの内部歪みが起こり性
能が徐々に劣化する電池に対しては、本発明の効果が得
られる。
In the above example, a battery having a wound type power generating element is used for explanation, but a battery having another structure such as a battery having a flat plate electrode laminated type power generating element can be repeatedly charged and discharged. The effect of the present invention can be obtained for a battery in which internal strain such as deformation of a power generation element occurs and performance gradually deteriorates.

【0029】本発明の扁平型電池に用いられる発電要素
は、正極、負極、電解質、必要によりセパレータ等の公
知の材料を含むものであり、例えば次のようなものであ
る。
The power generating element used in the flat battery of the present invention contains a known material such as a positive electrode, a negative electrode, an electrolyte, and if necessary, a separator, and is, for example, as follows.

【0030】例えば、正極としては放電時に正イオンを
吸収するもの、もしくは負イオンを放出するものであれ
ば特に限定されず、LiMnO2、LiMn24、Li
CoO2、LiNiO2等の金属酸化物やポリアセチレ
ン、ポリアニリン、ポリピロール、ポリチオフェン、ポ
リパラフェニレン等の導電性高分子やその誘導体、ジス
ルフィド化合物等の二次電池の正極材料として従来公知
のものが使用できる。
For example, the positive electrode is not particularly limited as long as it absorbs positive ions or discharges negative ions during discharge, and LiMnO 2 , LiMn 2 O 4 , Li
Conventionally known materials such as metal oxides such as CoO 2 and LiNiO 2 and conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyparaphenylene and their derivatives, and disulfide compounds can be used as positive electrode materials for secondary batteries. .

【0031】また、負極としては、カチオンを吸蔵・放
出可能な材料であれば特に限定されず、天然黒鉛、石炭
・石油ピッチ等を高温で熱処理して得られる黒鉛化炭素
等の結晶質カーボン、石炭、石油ピッチコークス、アセ
チレンピッチコークス等を熱処理して得られる非晶質カ
ーボン、金属リチウムやAlLi等のリチウム合金な
ど、二次電池の負極活物質として従来公知のものが使用
できる。
The negative electrode is not particularly limited as long as it is a material capable of occluding and releasing cations, and crystalline carbon such as graphitized carbon obtained by heat-treating natural graphite, coal or petroleum pitch at high temperature, Conventionally known negative electrode active materials for secondary batteries can be used, such as amorphous carbon obtained by heat treatment of coal, petroleum pitch coke, acetylene pitch coke, and the like, lithium alloys such as metallic lithium and AlLi, and the like.

【0032】さらに本発明では電極を形成する際に、こ
れらの電極活物質を適当な結着剤や機能性材料と混合
し、電極層を形成することもできる。この結着剤として
はポリフッ化ビニリデン等のハロゲン含有高分子等が用
いられ、また機能性材料としては電子伝導性を確保する
ためのアセチレンブラックやポリピロール、ポリアニリ
ン等の導電性高分子、イオン伝導性を確保するための高
分子電解質、それらの複合体等が挙げられる。
Further, in the present invention, when forming an electrode, these electrode active materials may be mixed with an appropriate binder or a functional material to form an electrode layer. As the binder, a halogen-containing polymer such as polyvinylidene fluoride is used, and as the functional material, acetylene black or polypyrrole for ensuring electron conductivity, a conductive polymer such as polyaniline, and an ion conductive material are used. Examples of the polymer electrolyte include a polymer electrolyte and a complex thereof.

【0033】集電体は特に限定されないが、例えば導電
率が高く、展性に優れた金属箔または金属メッシュ等が
用いられる。このような集電体としては、例えば正極の
場合はアルミニウム箔、負極の場合は銅箔が好ましく、
厚さは、例えば5〜50μmである。これらの集電体に
対して活物質が結着剤によって接着されている。
Although the current collector is not particularly limited, for example, a metal foil or a metal mesh having high conductivity and excellent malleability is used. As such a current collector, for example, an aluminum foil is preferable in the case of a positive electrode, and a copper foil is preferable in the case of a negative electrode,
The thickness is, for example, 5 to 50 μm. The active material is bonded to these current collectors with a binder.

【0034】本発明の発電要素に含まれる電解質は、例
えば電解質溶液、高分子固体電解質、および高分子ゲル
電解質等の二次電池の電解質として従来公知の材料を用
いることができる。電解質中に含まれる電解質塩として
はClO4 -、BF4 -、PF6 -、CF3SO3 -、(CF3
22-、(C25SO22-、(CF3SO2
3-、(C25SO23-等のハロゲン含有化合物ア
ニオンのLi、K、Na等のアルカリ金属塩が挙げられ
る。これらの電解質塩は、単独または複数組み合わせて
用いることができる。
As the electrolyte contained in the power generating element of the present invention, conventionally known materials such as electrolyte solution, polymer solid electrolyte, and polymer gel electrolyte can be used. The electrolyte salts contained in the electrolyte include ClO 4 , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 S
O 2) 2 N -, ( C 2 F 5 SO 2) 2 N -, (CF 3 SO 2)
Examples thereof include alkali metal salts of Li, K, Na and the like of halogen-containing compound anions such as 3 C and (C 2 F 5 SO 2 ) 3 C . These electrolyte salts can be used alone or in combination.

【0035】電解質溶液としては、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネート、アセトニトリル、ジメトキシエタ
ン、スルホラン、テトラヒドロフラン、γ−ブチロラク
トン、N−メチル−2−ピロリドン、ジメチルホルムア
ミド等の非水系溶媒に、上記の電解質塩を溶解した非水
電解液が挙げられる。
As the electrolyte solution, ethylene carbonate, propylene carbonate, butylene carbonate,
Non-aqueous electrolysis in which the above electrolyte salt is dissolved in a non-aqueous solvent such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, acetonitrile, dimethoxyethane, sulfolane, tetrahydrofuran, γ-butyrolactone, N-methyl-2-pyrrolidone, and dimethylformamide. A liquid is included.

【0036】高分子固体電解質としては、上記の電解質
塩を含むポリエチレンオキシドおよびポリプロピレンオ
キシド等のポリエーテル系高分子を挙げることができ
る。
Examples of the polymer solid electrolyte include polyether polymers such as polyethylene oxide and polypropylene oxide containing the above-mentioned electrolyte salts.

【0037】また、高分子ゲル電解質としては、上記の
電解質塩と、前述の非水電解液に使用可能な非水系溶媒
として列挙したような溶媒を、ポリフッ化ビニリデン、
ポリヘキサフルオロプロピレンおよびポリテトラフルオ
ロエチレン等のフッ素系ポリマー;ポリメチルメタクリ
レート、ポリメチルアクリレート等のアクリレート系ポ
リマー;ポリアクリロニトリル等の高分子に含ませたも
のを挙げることができる。これらの溶媒または高分子
は、単独で、あるいは複数組み合わせて用いることがで
きる。特に高分子は共重合等によって複合化したものを
用いることもできる。
Further, as the polymer gel electrolyte, polyvinylidene fluoride, the above-mentioned electrolyte salt, and the solvents listed as the non-aqueous solvent usable for the above-mentioned non-aqueous electrolytic solution are used.
Fluorine-based polymers such as polyhexafluoropropylene and polytetrafluoroethylene; acrylate-based polymers such as polymethyl methacrylate and polymethyl acrylate; and polymers contained in polymers such as polyacrylonitrile. These solvents or polymers can be used alone or in combination. In particular, the polymer may be used as a composite compound by copolymerization or the like.

【0038】また多孔質セパレータは、一般的にはマイ
クロポーラスセパレータを用いるが、本発明の効果が得
られれば織布、不織布を用いることもできる。マイクロ
ポーラスセパレータとしては、例えば孔径0.1〜5μ
m、空孔率30〜70%、厚さ1〜50μmのものを用
いることができる。セパレータの材質は、ポリエチレ
ン、ポリプロピレン等のポリオレフィン系樹脂、ポリエ
ステルなどを用いることができる。
As the porous separator, a microporous separator is generally used, but a woven fabric or a non-woven fabric may be used as long as the effect of the present invention can be obtained. As the microporous separator, for example, a pore size of 0.1 to 5 μm
m, porosity 30 to 70%, and thickness 1 to 50 μm can be used. As a material of the separator, a polyolefin resin such as polyethylene or polypropylene, polyester, or the like can be used.

【0039】本発明をフィルム外装電池に適用する場
合、外装に用いられるフィルムとしては、発電要素を中
に入れてから周囲を封じることができるものが好まし
く、少なくとも封着部分が熱融着できるフィルムが好ま
しい。例えば、フィルム全体をポリエチレンおよびポリ
プロピレン等のポリオレフィン系樹脂等からなる熱融着
性フィルムで形成しても、フィルムを必要により多層構
造にして最内層を熱融着性の樹脂層としてもよい。
When the present invention is applied to a film-clad battery, the film used for the packaging is preferably a film capable of sealing the periphery after putting the power generating element therein, and a film capable of heat-sealing at least the sealing portion. Is preferred. For example, the entire film may be formed of a heat-fusible film made of a polyolefin resin such as polyethylene and polypropylene, or the film may have a multilayer structure if necessary and the innermost layer may be a heat-fusible resin layer.

【0040】このような多層フィルムの好ましいものと
しては、表面保護層、中間金属層、熱融着層の少なくと
も3層からなり、表面保護層には熱融着温度で溶融しな
い樹脂、例えばポリエチレンテレフタレート、ナイロ
ン、ポリイミド等の樹脂層が用いられる。また、中間金
属層は、クラックまたはピンホール等が少なく、各種ガ
スを透過しない金属、例えばアルミニウム、ニッケル、
金等の箔を用いることが好ましい。本発明では中間金属
層の厚みは特に限定されないが、あまり薄くなるとピン
ホールが発生しやすくなるので、一般には0.015〜
0.1mmの範囲で用いる。熱融着層としては、電解質
溶液に侵され難く、熱可塑性であって150〜250℃
の範囲で熱融着できるものであれば特に限定されず、ポ
リエチレンおよびポリプロピレン等のポリオレフィン系
樹脂、ポリイミド樹脂、アイオノマー等が用いられる。
A preferable example of such a multilayer film is at least three layers of a surface protective layer, an intermediate metal layer, and a heat-sealing layer, and the surface protective layer is a resin which does not melt at the heat-sealing temperature, such as polyethylene terephthalate. A resin layer such as nylon, nylon or polyimide is used. In addition, the intermediate metal layer has few cracks or pinholes, etc., and a metal that does not permeate various gases, for example, aluminum, nickel,
It is preferable to use a foil such as gold. In the present invention, the thickness of the intermediate metal layer is not particularly limited, but if it is too thin, pinholes are likely to occur.
Used in the range of 0.1 mm. As a heat-sealing layer, it is hard to be attacked by an electrolyte solution, is thermoplastic, and has a temperature of 150 to 250 ° C.
There is no particular limitation as long as it can be heat-sealed within the range, and polyolefin resins such as polyethylene and polypropylene, polyimide resins, ionomers, etc. are used.

【0041】また、接着剤層を用いたり金属箔の表面修
飾処理を行って熱可塑性樹脂フィルムと金属箔との接着
力を上げることもできる。
It is also possible to increase the adhesive strength between the thermoplastic resin film and the metal foil by using an adhesive layer or by modifying the surface of the metal foil.

【0042】なお、本発明の製造方法は、二次電池の製
造の他にも電圧または電流を印加する際に変形等が生じ
る可能性のある分野において利用が可能であり、電気二
重層コンデンサ、電解コンデンサ、各種センサー等の製
造方法においても、本発明の加圧装置で圧力を加えなが
ら電圧または電流を印加して形成することで安定性の優
れた製品を製造することができる。
The manufacturing method of the present invention can be used in fields in which deformation or the like may occur when a voltage or current is applied in addition to the manufacturing of a secondary battery. Also in the manufacturing method of the electrolytic capacitor, various sensors, etc., a product with excellent stability can be manufactured by applying voltage or current while applying pressure with the pressurizing device of the present invention.

【0043】[0043]

【実施例】以下、本発明の詳細について実施例を用いて
具体的に説明するが、本発明はこれらの実施例に限定さ
れるものではない。
EXAMPLES The details of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0044】<実施例1>スピネル構造を持つマンガン
酸リチウム粉末、炭素質導電性付与材、およびポリフッ
化ビニリデンを90:5:5の重量比でNMPに混合分
散、攪拌してスラリーとした。NMPの量はスラリーが
適当な粘度になるように調整した。このスラリーをドク
ターブレードを用いて、正極集電体となる厚さ20μm
のアルミニウム箔の片面に均一に塗布し、100℃で2
時間真空乾燥させた。同様にもう一方の面にもスラリー
を塗布し、真空乾燥させた。このシートをロールプレス
し、正極用活物質層を形成した。理論容量は600mA
hとなるようにした。
Example 1 Lithium manganate powder having a spinel structure, carbonaceous conductivity-imparting material, and polyvinylidene fluoride were mixed and dispersed in NMP at a weight ratio of 90: 5: 5 to prepare a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. Using a doctor blade, this slurry was used as a positive electrode current collector and had a thickness of 20 μm.
Apply evenly on one side of the aluminum foil, and
Vacuum dried for an hour. Similarly, the other surface was coated with the slurry and vacuum dried. This sheet was roll-pressed to form a positive electrode active material layer. Theoretical capacity is 600mA
It was set to h.

【0045】次に、アモルファスカーボン粉末、ポリフ
ッ化ビニリデンを91:9の重量比でNMPに混合、分
散、攪拌してスラリーとした。NMPの量はスラリーが
適当な粘度になるように調整した。このスラリーをドク
ターブレードを用いて、負極集電体となる厚さ10μm
の銅箔の片面に均一に塗布し、100℃2時間真空乾燥
した。このとき負極層の単位面積あたりの理論容量と正
極層の単位面積あたりの理論容量を1:1となるように
調整した。同様にもう一方の面にもスラリーを塗布し真
空乾燥した。このシートをロールプレスし、負極集電体
の両面に接着した負極活物質層を形成した。
Next, amorphous carbon powder and polyvinylidene fluoride were mixed in NMP at a weight ratio of 91: 9, dispersed and stirred to obtain a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. This slurry was used as a negative electrode current collector with a doctor blade and had a thickness of 10 μm.
Was evenly applied to one side of the copper foil and dried in vacuum at 100 ° C. for 2 hours. At this time, the theoretical capacity per unit area of the negative electrode layer and the theoretical capacity per unit area of the positive electrode layer were adjusted to be 1: 1. Similarly, the other surface was coated with the slurry and vacuum dried. This sheet was roll-pressed to form a negative electrode active material layer adhered to both surfaces of the negative electrode current collector.

【0046】これらの正極と負極の間にポリプロピレン
/ポリエチレン/ポリプロピレンの3層構造を持つマイ
クロポーラスセパレーター(ヘキストセラニーズ社製、
セルガード2300)を介し、楕円状の巻き芯を用いて
巻き上げ、さらに熱プレスを行って薄い楕円状電極巻回
体を得た。
A microporous separator (made by Hoechst Celanese Co., Ltd.) having a three-layer structure of polypropylene / polyethylene / polypropylene between the positive electrode and the negative electrode.
The thin elliptical electrode winding body was obtained by winding up through the Celgard 2300) using an elliptical winding core, and further hot pressing.

【0047】一方、ポリプロピレン樹脂(封着層、厚み
70μm)、ポリエチレンテレフタレート(20μ
m)、アルミニウム(50μm)、ポリエチレンテレフ
タレート(20μm)の順に積層した構造を有するラミ
ネートフィルムを所定の大きさに2枚切り出し、そのう
ちの1枚の一部分に上記の電極巻回体の大きさに合った
底面部分と側面部分とを有する凹部を形成した。これら
を対向させて上記の電極巻回体を包み込み、周囲を熱融
着させて図2、図3に模式的に示されるような形状のフ
ィルム外装電池を作製した。電極巻回体に予め正極リー
ド73および負極リード74(まとめて電極リードとも
称する)を接続しておき、ラミネートフィルム71で電
極巻回体の周囲を熱融着する際に電極リードを外部に引
き出した形で挟むようにしてこの部分を熱融着した。最
後の1辺を熱融着封口する前に電解液を電極巻回体に含
浸させた。最後の1辺は電極リード熱融着部以外とし
た。電解液が含浸された電極巻回体は図2における発電
要素に対応する。電解液は1MのLiPF6を支持塩と
し、プロピレンカーボネートとエチレンカーボネートの
混合溶媒(重量比50:50)を溶媒とした。このよう
にして厚さ約3.6mm、理論容量600mAhのフィ
ルム外装電池を4個作製した。
On the other hand, polypropylene resin (sealing layer, thickness 70 μm), polyethylene terephthalate (20 μm
m), aluminum (50 μm), and polyethylene terephthalate (20 μm) are laminated in this order, two laminated films are cut into a predetermined size, and one of them is fitted with the size of the above electrode winding body. A recess having a bottom surface portion and a side surface portion was formed. The electrode-wound body was wrapped so that they faced each other, and the periphery thereof was heat-sealed to produce a film-clad battery having a shape as schematically shown in FIGS. 2 and 3. A positive electrode lead 73 and a negative electrode lead 74 (collectively referred to as electrode leads) are connected to the electrode winding body in advance, and the electrode lead is pulled out when the periphery of the electrode winding body is heat-sealed with the laminate film 71. This part was heat-sealed so as to be sandwiched between the two. The electrode winding body was impregnated with the electrolytic solution before the last one side was heat-sealed. The last one side was other than the electrode lead heat-sealed portion. The electrode winding body impregnated with the electrolytic solution corresponds to the power generating element in FIG. The electrolyte was 1 M LiPF 6 as a supporting salt, and a mixed solvent of propylene carbonate and ethylene carbonate (weight ratio 50:50) was used as a solvent. Thus, four film-clad batteries having a thickness of about 3.6 mm and a theoretical capacity of 600 mAh were produced.

【0048】次に、図1に示すように本発明の加圧装置
を組んだ。厚さ5mmのアルミニウム板からなる下部プ
レス板2の上に上記のフィルム外装電池を4個、2行2
列に並べ、これら4つの電池をまたがる大きさの厚さ
0.2mmのステンレス製の金属シートを設置し、さら
にその上に厚さ5mmの多孔質ゴムシートを設置した。
このゴムシートは、1×10-3N/m2の応力印加に対
し0.5mmの縮みが起きる硬さのものである。次にス
ペーサを挟んで厚さ5mmのアルミニウム板からなる上
部プレス板を設置し、ねじ止めを行った。スペーサの厚
さは電池/金属シート/ゴムシート積層体の自然の厚さ
よりも0.3mm小さい厚さとした。このようにしてフ
ィルム外装電池を加圧した。なお、電池群の電極リード
にはあらかじめ充放電装置からの端子を接続しておい
た。
Next, the pressurizing device of the present invention was assembled as shown in FIG. On the lower press plate 2 made of an aluminum plate having a thickness of 5 mm, four of the above film-clad batteries are arranged in two rows and two.
A 0.2 mm-thick stainless steel sheet having a size that straddled these four batteries was placed in a row, and a 5 mm-thick porous rubber sheet was further placed thereon.
This rubber sheet has a hardness that causes 0.5 mm of contraction when a stress of 1 × 10 −3 N / m 2 is applied. Next, an upper press plate made of an aluminum plate having a thickness of 5 mm was placed with a spacer in between and screwed. The thickness of the spacer was 0.3 mm smaller than the natural thickness of the battery / metal sheet / rubber sheet laminate. In this way, the film-clad battery was pressurized. The terminals from the charging / discharging device were previously connected to the electrode leads of the battery group.

【0049】この加圧状態のまま、各電池を112mA
の定電流で4.2Vまで充電し、次に4.2Vの一定電
圧で合計10時間充電することにより、予備充電を行っ
た。
With this pressure applied, each battery was heated to 112 mA.
Pre-charging was performed by charging to 4.2 V with a constant current of 4.2 V and then with a constant voltage of 4.2 V for a total of 10 hours.

【0050】<実施例2>実施例1と同様にしてフィル
ム外装電池を4個作製し、実施例1において金属シート
を設けなかった以外は実施例1と同様にして予備充電を
行った。加圧装置のスペーサは実施例1より0.2mm
小さいものとした。
Example 2 Four film-clad batteries were prepared in the same manner as in Example 1 and precharged in the same manner as in Example 1 except that the metal sheet was not provided. Spacer of the pressure device is 0.2 mm from the first embodiment
I made it small.

【0051】<比較例1>実施例1と同様にしてフィル
ム外装電池を4個作製し、実施例1において金属シート
およびゴムシートを設けなかった以外は実施例1と同様
にして予備充電を行った。加圧装置のスペーサは実施例
1より5.2mm小さいものとした。
Comparative Example 1 Four film-covered batteries were prepared in the same manner as in Example 1 and precharged in the same manner as in Example 1 except that the metal sheet and the rubber sheet were not provided. It was The spacer of the pressurizer was smaller than that of Example 1 by 5.2 mm.

【0052】<比較例2>実施例1と同様にしてフィル
ム外装電池を4個作製し、加圧せずに開放状態のまま、
各電池を112mAの定電流で4.2Vまで充電し、次
に4.2Vの一定電圧で合計10時間の予備充電を行っ
た。
<Comparative Example 2> Four film-covered batteries were prepared in the same manner as in Example 1, and were left open without pressurization.
Each battery was charged to a constant current of 112 mA to 4.2 V, and then pre-charged at a constant voltage of 4.2 V for a total of 10 hours.

【0053】<電池の評価および結果>以上のようにし
て各方法にて予備充電を行った電池を、加圧装置からは
ずし、20℃において充放電サイクル試験を100サイ
クル行った。充電は600mAで4.2Vまで、放電は
600mAで3.0Vまで行った。サイクル試験前後の
電池厚さおよび容量の測定結果、電池表面平坦性の観察
結果を表1にまとめる。なお、4個の電池の最小値と最
大値を示している。
<Evaluation and Results of Battery> The battery preliminarily charged by each method as described above was removed from the pressurizing device, and a charge / discharge cycle test was conducted at 20 ° C. for 100 cycles. Charging was performed at 600 mA to 4.2 V, and discharging was performed at 600 mA to 3.0 V. Table 1 shows the measurement results of the battery thickness and capacity before and after the cycle test, and the observation results of the battery surface flatness. The minimum and maximum values of four batteries are shown.

【0054】[0054]

【表1】 [Table 1]

【0055】予備充電後の電池厚さ、およびサイクル試
験後の電池厚さは、加圧を行わないで予備充電を行った
比較例2に比べ、本発明の加圧装置を用いて予備充電を
行った実施例1、2の方が薄かった。サイクル試験後の
電池容量も、比較例1、2よりも実施例1、2の方が高
容量を保っていた。これらの結果から、加圧しながら予
備充電を行うことにより、その後の電池使用中の膨れが
抑えられると共に容量劣化も抑えられることがわかる。
なお、比較例1では膨れは抑制されているが、容量劣化
は抑えられていない。この原因の詳細は明らかでない
が、緩衝層を設けずに一定の間隔に固定された上下のプ
レス板で直接フィルム外装電池を挟み込んだため、充電
に伴って電池が膨れようとする力が働き、徐々に加圧力
が高くなり、発電要素に過剰な圧力がかかって電極層や
セパレーターがダメージを受けたものと考えられる。ま
た、比較例1、2の容量のばらつき(4個の電池の容量
の最小値と最大値の幅)が20mAhであったのに対
し、実施例1、2では4〜8mAhとばらつきが抑えら
れている。これは、当初、電極巻回体の電極密着状態や
厚さが電池個々でばらついており、比較例2ではそのば
らつきがそのまま現れたのに対し、本発明の加圧装置を
用いて予備充電を行った実施例1、2では予備充電時に
電池個々の厚さのばらつきに対応して圧力が印加された
ために特性のばらつきが減少したものと考えられる。な
お比較例1では、緩衝層がなかったために、電池個々の
厚さの違いが、個々に印加される圧力の違いを引き起こ
し、加圧効果にばらつきが生じたために実施例よりも容
量のばらつきが大きかったと考えられる。また、実施例
1と2で比較すると、サイクル試験後の電池容量のばら
つき抑制度、電池膨れ抑制度、および表面平坦性におい
て、実施例1の方が実施例2よりも優れていた。これ
は、ゴムシートとフィルム外装電池との間に金属シート
を設置することにより、予備充電中の電極巻回体の局所
的な膨らみを抑制することができたためと考えられる。
The battery thickness after the pre-charging and the battery thickness after the cycle test were compared with Comparative Example 2 in which the pre-charging was performed without applying the pressure, and the pre-charging was performed using the pressurizing device of the present invention. The performed Examples 1 and 2 were thinner. Regarding the battery capacities after the cycle test, the capacities of Examples 1 and 2 were higher than those of Comparative Examples 1 and 2. From these results, it is understood that by performing the preliminary charging while applying pressure, the swelling during the subsequent use of the battery is suppressed and the capacity deterioration is also suppressed.
In Comparative Example 1, the swelling is suppressed, but the capacity deterioration is not suppressed. The details of this cause are not clear, but since the film-clad battery was directly sandwiched between the upper and lower press plates that were fixed at regular intervals without providing a buffer layer, a force that the battery tried to swell with charging, It is considered that the applied pressure gradually increased and excessive pressure was applied to the power generation element, and the electrode layer and the separator were damaged. In addition, the variation in the capacity of Comparative Examples 1 and 2 (width between the minimum value and the maximum value of the capacity of the four batteries) was 20 mAh, whereas in Examples 1 and 2, the variation was suppressed to 4 to 8 mAh. ing. This is because the electrode contact state and the thickness of the electrode winding body initially vary depending on the battery, and the variation appears as it is in Comparative Example 2, whereas the precharging using the pressurizing device of the present invention is performed. In Examples 1 and 2 performed, it is considered that variations in characteristics were reduced because pressure was applied corresponding to variations in thickness of individual batteries during precharging. In Comparative Example 1, since there was no buffer layer, the difference in the thickness of each battery caused the difference in the pressure applied to each battery, and the variation in the pressurizing effect occurred, so that the variation in capacity was larger than that in the Example. I think it was big. Further, when comparing Examples 1 and 2, Example 1 was superior to Example 2 in the degree of suppression of battery capacity variation after the cycle test, the degree of suppression of battery swelling, and the surface flatness. It is considered that this is because by installing the metal sheet between the rubber sheet and the film-clad battery, local bulging of the electrode winding body during precharging could be suppressed.

【0056】[0056]

【発明の効果】本発明によれば、充放電による変形が少
なく内圧が上昇した場合にも電池の変形や破壊の可能性
が小さく安定性に優れた扁平型電池を提供することがで
きる。
According to the present invention, it is possible to provide a flat battery which is less likely to be deformed or broken even when the internal pressure rises due to a small amount of deformation due to charge and discharge, and which is excellent in stability.

【0057】特に、複数の電池に対して同時に加圧充電
法を行った場合でも、電池個々の厚さのばらつきに対応
して圧力が印加することができ、加圧後の電池特性のば
らつきを減少させることができる。またその手段とし
て、簡便な構成の加圧装置を用いて実現することができ
るのでコスト的にも有利である。
In particular, even when the pressure charging method is applied to a plurality of batteries at the same time, the pressure can be applied corresponding to the variation in the thickness of each battery, and the variation in the battery characteristics after the application of pressure can be suppressed. Can be reduced. Further, as a means thereof, it can be realized by using a pressurizing device having a simple structure, which is advantageous in terms of cost.

【0058】また、本発明によれば、電池内の局所的な
膨れなどの小サイズの電池変形の抑制(電池平坦性)
と、電池間の厚さの差といった離れた場所での厚さの差
への柔軟な対応を両立させることができるので、電池特
性のばらつきと使用中における平坦性とを同時に満足さ
せることができる。
Further, according to the present invention, deformation of a small-sized battery such as local swelling in the battery is suppressed (battery flatness).
In addition, since it is possible to achieve both flexibility in responding to the difference in thickness at a distant place such as difference in thickness between batteries, it is possible to satisfy variations in battery characteristics and flatness during use at the same time. .

【図面の簡単な説明】[Brief description of drawings]

【図1】複数のフィルム外装電池を加圧予備充電する際
の加圧装置を模式的に示した図である。
FIG. 1 is a diagram schematically showing a pressurizing device when pressurizing and precharging a plurality of film-clad batteries.

【図2】フィルム外装電池の一例の断面を模式的に示し
た図である。
FIG. 2 is a diagram schematically showing a cross section of an example of a film-clad battery.

【図3】フィルム外装電池の一例の全体図を模式的に示
した図である。
FIG. 3 is a diagram schematically showing an overall view of an example of a film-clad battery.

【符号の説明】 1 上側プレス板 2 下側プレス板 3 ねじ 4 スペーサ 5 低硬度層 6 高硬度層 56 緩衝層 7 フィルム外装電池 71 ラミネートフィルム 72 発電要素 73 正極リード 74 負極リード 8 電極シート折れ曲がり部[Explanation of symbols] 1 Upper press plate 2 Lower press plate 3 screws 4 spacers 5 Low hardness layer 6 High hardness layer 56 buffer layer 7 Film exterior battery 71 Laminated film 72 Power generation element 73 Positive lead 74 Negative electrode lead 8 Electrode sheet bent part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粂内 友一 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 大山 宣英 栃木県宇都宮市針ヶ谷町484番地 エヌ イーシーモバイルエナジー株式会社内 (72)発明者 清水 竜一 栃木県宇都宮市針ヶ谷町484番地 エヌ イーシーモバイルエナジー株式会社内 (72)発明者 坂内 裕 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平11−111339(JP,A) 特開 昭58−73968(JP,A) 特開 平11−339853(JP,A) 特開2001−35523(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/04 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomokazu Urauchi 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Nobuhide Oyama 484 Harigaya-cho, Utsunomiya-shi, Tochigi NCE Mobile Energy Co., Ltd. (72) Inventor Ryuichi Shimizu 484 Harigaya-cho, Utsunomiya City, Tochigi Prefecture NMC Mobile Energy Co., Ltd. (72) Inventor Yu Sakauchi 5-7-1, Shiba, Minato-ku, Tokyo NEC Corporation (56) References JP-A-11-111339 (JP, A) JP-A-58-73968 (JP, A) JP-A-11-339853 (JP, A) JP-A-2001-35523 (JP, A) (58) ) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/04 H01M 10/40

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一方側に緩衝層を備えた一対
のプレス板の間に、熱融着性のフィルムで外装した1個
以上の扁平型電池を挟み、このプレス板同士の間隔を
扁平型電池を加圧しうる一定の間隔に固定しながら、
圧力を加えながら充電する予備充電工程を少なくとも1
回含むことを特徴とする扁平型電池の製造方法。
1. One or more flat type batteries covered with a heat-fusible film are sandwiched between a pair of press plates having a buffer layer on at least one side, and the spaces between the press plates are set to the front.
While fixed to a constant interval, which can pressurize the serial flat battery,
At least one pre-charging step of charging while applying pressure
A method of manufacturing a flat battery, comprising:
【請求項2】 前記緩衝層が、シート状のゴム性弾性体
である請求項1記載の扁平型電池の製造方法。
2. The method for manufacturing a flat battery according to claim 1, wherein the buffer layer is a sheet-shaped rubber elastic body.
【請求項3】 前記緩衝層が、少なくとも高硬度層と低
硬度層の2層からなり、高硬度層が前記扁平型電池に接
するように配置される請求項1記載の扁平型電池の製造
方法。
3. The method for manufacturing a flat battery according to claim 1, wherein the buffer layer is composed of at least two layers of a high hardness layer and a low hardness layer, and the high hardness layer is arranged in contact with the flat battery. .
【請求項4】 前記低硬度層がシート状のゴム性弾性体
であり、前記高硬度層が金属シートまたは樹脂シートか
らなる請求項3記載の扁平型電池の製造方法。
4. The method for manufacturing a flat battery according to claim 3, wherein the low hardness layer is a sheet-shaped rubber elastic body, and the high hardness layer is a metal sheet or a resin sheet.
【請求項5】 前記扁平型電池が、非水電解液を含むも
のである請求項1〜のいずれかに記載の扁平型電池の
製造方法。
Wherein said flat battery method of producing a flat battery according to any one of claims 1-4 is intended to include non-aqueous electrolyte solution.
【請求項6】 前記扁平型電池が、高分子固体電解質ま
たは高分子ゲル電解質を含むものである請求項1〜
いずれかに記載の扁平型電池の製造方法。
Wherein said flat battery method of producing a flat battery according to any one of claims 1 to 5, intended to include a polymer solid electrolyte or polymer gel electrolyte.
【請求項7】 前記扁平型電池が、正極と負極とがセパ
レーターを介して扁平な形状に巻回されてなる発電要素
を有するものである請求項1〜のいずれかに記載の扁
平型電池の製造方法。
Wherein said flat battery is flat battery according to any one of claims 1 to 6 as it has a power generating element in which a cathode and an anode made by winding a flat shape via a separator Manufacturing method.
【請求項8】 少なくとも一方側に緩衝層を備えた一対
のプレス板の間に、熱融着性のフィルムで外装した複数
の扁平型電池を挟み、このプレス板同士の間隔を前記扁
平型電池を加圧しうる一定の間隔に固定しながら、圧力
を加えながら充電する予備充電工程を少なくとも1回含
むことを特徴とする扁平型電池の製造方法。
8. A plurality of flat type batteries covered with a heat-fusible film are sandwiched between a pair of press plates having a buffer layer on at least one side, and the flat type batteries are added with a space between the press plates. A method of manufacturing a flat battery, comprising a preliminary charging step of charging while applying pressure while fixing at a fixed interval that can be pressed.
JP2000113622A 1999-07-23 2000-04-14 Method of manufacturing flat battery Expired - Lifetime JP3457624B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000113622A JP3457624B2 (en) 2000-04-14 2000-04-14 Method of manufacturing flat battery
EP00115001A EP1071151A1 (en) 1999-07-23 2000-07-21 Method for producing film packed battery
US09/620,816 US6558438B1 (en) 1999-07-23 2000-07-21 Method for producing a pressurized package for a film packed battery
CA002314310A CA2314310C (en) 1999-07-23 2000-07-21 Method for producing film packed battery
KR1020000042193A KR20010015414A (en) 1999-07-23 2000-07-22 Method for producing film packed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113622A JP3457624B2 (en) 2000-04-14 2000-04-14 Method of manufacturing flat battery

Publications (2)

Publication Number Publication Date
JP2001297798A JP2001297798A (en) 2001-10-26
JP3457624B2 true JP3457624B2 (en) 2003-10-20

Family

ID=18625554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113622A Expired - Lifetime JP3457624B2 (en) 1999-07-23 2000-04-14 Method of manufacturing flat battery

Country Status (1)

Country Link
JP (1) JP3457624B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880811B2 (en) * 2000-09-28 2012-02-22 株式会社東芝 Battery manufacturing method
JP2002216849A (en) * 2001-01-15 2002-08-02 Mitsubishi Cable Ind Ltd Manufacturing method of lithium ion secondary cell
JP2003257802A (en) * 2002-03-06 2003-09-12 Meidensha Corp Method for manufacturing electric double-layer capacitor
JP4821141B2 (en) * 2005-03-09 2011-11-24 トヨタ自動車株式会社 Secondary battery manufacturing method, secondary battery limiting jig, secondary battery charging / discharging device, and secondary battery charging device
JP4867213B2 (en) * 2005-06-22 2012-02-01 パナソニック株式会社 Method for producing non-aqueous electrolyte secondary battery
JP2009009801A (en) * 2007-06-27 2009-01-15 Panasonic Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP5157547B2 (en) * 2008-03-13 2013-03-06 トヨタ自動車株式会社 Method and apparatus for manufacturing flat spiral electrode
JP5386917B2 (en) * 2008-10-06 2014-01-15 日産自動車株式会社 Secondary battery
JP5747895B2 (en) * 2012-11-06 2015-07-15 トヨタ自動車株式会社 Manufacturing method of battery pack
JP2015153478A (en) * 2014-02-11 2015-08-24 株式会社豊田自動織機 Battery-restraining tool
JP2017010933A (en) * 2015-06-19 2017-01-12 株式会社半導体エネルギー研究所 Power storage device charging method, method of manufacturing power storage device, battery module and vehicle
JP2018006223A (en) * 2016-07-06 2018-01-11 日産自動車株式会社 Spacer in pressurizing device of battery cell
KR102441813B1 (en) 2017-09-18 2022-09-08 주식회사 엘지에너지솔루션 Method for Preparing Pouch-Type Battery Cell Comprising Jig Grading
KR102447619B1 (en) 2017-09-18 2022-09-27 주식회사 엘지에너지솔루션 Method for Preparing Pouch-Type Battery Cell Comprising Fixing Step Using Jig
WO2019098673A1 (en) * 2017-11-17 2019-05-23 주식회사 엘지화학 Jig for pressing gas analysis monocell, and gas analysis device including same
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
KR20200129379A (en) * 2019-05-08 2020-11-18 주식회사 엘지화학 Method for manufacturing of All-Solid Battery and All-Solid Battery Prepared by the Same.
KR20210103282A (en) * 2020-02-13 2021-08-23 주식회사 엘지에너지솔루션 Pressing device and pressing method for secondary battery
WO2021167353A1 (en) * 2020-02-17 2021-08-26 주식회사 엘지에너지솔루션 Method for pre-lithiation of negative electrode, pre-lithiated negative electrode, and lithium secondary battery comprising same
JP7302507B2 (en) * 2020-03-02 2023-07-04 トヨタ自動車株式会社 BATTERY MODULE AND BATTERY MODULE MANUFACTURING METHOD
KR20220054027A (en) * 2020-10-23 2022-05-02 주식회사 엘지에너지솔루션 Pressing jig of battery cell including pressing pad and degassing method of battery cell using same

Also Published As

Publication number Publication date
JP2001297798A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3457624B2 (en) Method of manufacturing flat battery
US6558438B1 (en) Method for producing a pressurized package for a film packed battery
KR101217562B1 (en) Flexible battery and flexible electronic device including the same
JP3937422B2 (en) Lithium ion battery and manufacturing method thereof
JP4281129B2 (en) Lithium ion secondary battery
US9136556B2 (en) Electrode assembly of novel structure and process for preparation of the same
JP5573954B2 (en) Bipolar electrode, bipolar secondary battery using the same, and method of manufacturing bipolar electrode
JPWO2002043178A1 (en) Polymer electrolyte battery and method of manufacturing the same
JP3533117B2 (en) Method of manufacturing film-covered battery
US6338920B1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP7049708B2 (en) Flexible battery, this manufacturing method and auxiliary battery including it
TW517405B (en) Nonaqueous electrolyte secondary cell and method of producing the same
JP2006202680A (en) Polymer battery
JP2021512464A5 (en)
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JP2008311173A (en) Electric storage device
JP2001155779A (en) Nonaqueous electrolyte battery
EP3726638A1 (en) Secondary battery capacity recovery method and secondary battery capacity recovery apparatus
US11973187B2 (en) Lithium polymer battery
JP2001023695A (en) Battery
JP2003100350A (en) Cell and its making method
JP4821043B2 (en) Electrochemical devices
JP3806540B2 (en) Method for manufacturing thin battery using laminate outer package
WO2022041247A1 (en) Electrochemical device and electronic device including same
JP2000133274A (en) Polymer lithium secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3457624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term