JPS63124371A - Cathode for alkaline storage battery - Google Patents

Cathode for alkaline storage battery

Info

Publication number
JPS63124371A
JPS63124371A JP61270865A JP27086586A JPS63124371A JP S63124371 A JPS63124371 A JP S63124371A JP 61270865 A JP61270865 A JP 61270865A JP 27086586 A JP27086586 A JP 27086586A JP S63124371 A JPS63124371 A JP S63124371A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
active material
surface area
spherical
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61270865A
Other languages
Japanese (ja)
Inventor
Makoto Kanbayashi
誠 神林
Kensuke Nakatani
中谷 謙助
Masahito Tomita
富田 正仁
Kazuaki Ozaki
尾崎 和昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61270865A priority Critical patent/JPS63124371A/en
Publication of JPS63124371A publication Critical patent/JPS63124371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a cathode having high energy density and high productivity by using powder obtained by arranging fine nickel hydroxide having large relative surface area than spherical nickel hydroxide on the surface of the spherical nickel hydroxide as active material. CONSTITUTION:0.1 wt.% fine nickel hydroxide layer is formed on the surface of spherical nickel hydroxide having a relative surface area of 13m<2>/g to obtain nickel hydroxide powder having static bulk density of 1.8g/cc, a mean particle size of about 20mum, and a relative surface area of 83m<2>/g. 95 pts.wt. nickel hydroxide and 5 pts.wt. cobalt hydroxide powder is mixed. Methylcellulose is added to the mixture and kneaded to form paste. The paste is filled in a nickel fiber sinter having a porosity of 92%, and dried, then pressed at a pressure of 1000 kg/cm<2>. By this process, the filling ratio and the utilization of the active material are increased. Therefore, a cathode having high energy density can be obtained.

Description

【発明の詳細な説明】 U)産業上の利用分野 不発明に水酸化ニッケル金主体とする活物質粉末t、パ
ンチングメタルやスポンジ状金属などの電極芯体に、塗
布または充填して保持せしめてなるアルカリ蓄域池用陽
極にかかり、特にその活物質の改良に関する。
[Detailed description of the invention] U) Industrial application field An active material powder mainly composed of nickel hydroxide and gold is coated or filled onto an electrode core such as a punched metal or a sponge-like metal and held therein. This invention relates to anodes for alkaline storage batteries, and particularly to improvements in their active materials.

(ロ)従来の技術 従来、水酸化ニッケルを活物質として用いるアルカリ蓄
電池用ニッケル陽極に、主に焼結式が使われていたが、
近年、製造プロセスが簡単であり、且つ高エネルギー密
度化が容易であるという理由から非焼結式陽極に対する
関心が高まりている。
(b) Conventional technology In the past, sintering methods were mainly used for nickel anodes for alkaline storage batteries that use nickel hydroxide as the active material.
In recent years, interest in non-sintered anodes has increased because the manufacturing process is simple and it is easy to increase energy density.

非焼結式陽極には、活物質粉末を導電材、バインダー及
び水などと混合してペースト状とし、このベース)kパ
ンをングメタルやラス板などの電極芯体に塗着、乾燥し
た陽極、及び連続空孔を有する三次光導4マトリックス
、例えばスポンジ状金属や金属繊維焼結体などからなる
電極芯体に活物質を充填した陽極等があり、別途に製造
した活物質粉末【上紀篭極芯体に保持セレめること2大
さな特徴としている。このため、活物質である水酸化ニ
ッケルの特注の良否が極板性能を決定づける大きな要因
となる。つまり、優れた特性を有する活物質粉末を用い
ることが、非焼結式陽極の極板性能の向上につながる。
For non-sintered anodes, the active material powder is mixed with a conductive material, a binder, water, etc. to form a paste, and this base layer is applied to an electrode core such as metal or lath plate, and the dried anode is There are also anodes, etc., in which an electrode core made of a tertiary light-guiding 4 matrix with continuous pores, such as a sponge-like metal or a sintered metal fiber, is filled with an active material. Two major features are that it can be held in the core body. For this reason, the quality of the custom-made nickel hydroxide active material is a major factor in determining the performance of the electrode plate. In other words, using active material powder with excellent properties leads to improvement in the plate performance of the non-sintered anode.

ここでいう優れた活物質特性とに大さく分けると■活物
質としての電気化学的な利用率が高いこと、及び■充填
童が多くなることt云う。
The excellent active material properties mentioned here can be roughly divided into: (1) high electrochemical utilization rate as an active material, and (2) increased number of fillers.

ところで、従来の活物質に特公昭44−28415号公
報、特公昭48−2385号公報または特公昭52−2
094号公報に示されるように、硝酸ニッケルや硫酸ニ
ッケルなどのニッケル塩を水酸化ナト9ウムや水酸化カ
リウムなどの苛性アルカリ水溶液と反応させて沈殿物と
して生成させ、次いで濾過、中間乾燥、粗粉砕、水洗、
乾燥などの各工程C経て完成させるものであり、この活
物質に比表面積が大きく微細なものであったため、前記
■の利用率にほぼ満足できるものでありたが、前記■の
充填、ltに満足できる程多くはなかった。
By the way, conventional active materials are disclosed in Japanese Patent Publication No. 44-28415, Japanese Patent Publication No. 48-2385, or Japanese Patent Publication No. 52-2.
As shown in Publication No. 094, a nickel salt such as nickel nitrate or nickel sulfate is reacted with an aqueous caustic alkali solution such as sodium hydroxide or potassium hydroxide to form a precipitate, which is then subjected to filtration, intermediate drying, and coarsening. Grinding, washing,
The active material is completed through each process C such as drying, and since this active material has a large specific surface area and is fine, the utilization rate in (2) above is almost satisfied, but the filling and lt in (2) above There wasn't enough to satisfy me.

一方、近年になって特8昭61−110966号公報に
示されるように、球状の活物質を用いることが提案ざn
ている。このような球状水酸化ニッケルなどの球状の活
物質粉末は粒子同志のからみ合いがほとんど無いため流
動性が高く、活物質を均一に且つ多く充填することがで
き、前記■の要件は満足できる。ところが、活物質は緻
密で高結晶性であって比表面積が小さいため、前記■の
利用率に関しては光分満足できる程高くはなかりた。
On the other hand, in recent years, it has been proposed to use spherical active materials, as shown in Japanese Patent No. 8-110966.
ing. Spherical active material powder such as spherical nickel hydroxide has high fluidity because there is almost no entanglement between particles, and the active material can be filled uniformly and in large quantities, so that the above requirement (2) can be satisfied. However, since the active material is dense, highly crystalline, and has a small specific surface area, the utilization rate of the above item (2) was not high enough to satisfy the optical component.

(ハ)発明が屏決しよりとする問題点 本発明に電気化学的な利用率が高く、且充填童が多い水
酸化ニッケル粉末を活物質とする高エネルギー蜜良で生
殖性の、4いアルカリ蓄颯池用非焼結陽極を得よりとテ
るものである。
(c) Problems faced by the invention The present invention is directed to a high-energy, fertile, and fertile alkali that has a high electrochemical utilization rate and uses nickel hydroxide powder as an active material. It is desirable to obtain a non-sintered anode for a storage pond.

に)問題点τ旌決するための手段 球状水酸化ニッケルの表面に、この球状水酸化ニッケル
より比表面積が大きい微細な水酸化ニッケル勿配設した
粉末を活物質とする。
(b) Means for determining the problem τ A fine nickel hydroxide powder having a larger specific surface area than the spherical nickel hydroxide is disposed on the surface of the spherical nickel hydroxide as an active material.

(ホ)作 用 微細な水酸化ニッケルに比表面積が太さいものであるが
、この微aな水酸化ニッケルの層の内部にはこの微細な
水酸化ニッケルより比表面積が小さい球状水酸化ニッケ
ルが位置し工いるので、粉末自体の密度を高めらnる。
(E) Effect Although fine nickel hydroxide has a large specific surface area, inside this fine nickel hydroxide layer there are spherical nickel hydroxides that have a smaller specific surface area than the fine nickel hydroxide. Because of the positioning process, the density of the powder itself can be increased.

また前記微細な水酸化ニッケルは比表@積が大さく反応
性rC富Erと共に、円部に位置する比表面積が小さく
利用率が比較的低い球状水酸化ニッケルの反ムロ性tも
高めるため、粉末自体のオリ用率も高いものとなる。
In addition, the fine nickel hydroxide has a large specific surface area and a reactive rC-rich Er, and also increases the anti-murro property t of the spherical nickel hydroxide, which is located in the circular part and has a small specific surface area and a relatively low utilization rate. The reuse rate of the powder itself is also high.

更にこの粉末は球状水酸化ニッケルの表面に微細な水酸
化ニッケル勿配設したものであり、粒子表面は凸凹して
いるが粒子形状としては球状金呈しているので、不定形
の外形を待つものに比較して流動性が高く、均一に且つ
密に充填することが可能でるる。
Furthermore, this powder is made by disposing fine nickel hydroxide on the surface of spherical nickel hydroxide, and although the particle surface is uneven, the particle shape is spherical, so it has an irregular external shape. It has high fluidity compared to other materials and can be filled evenly and densely.

(へ)実施例 本発明の一実施例を以下に示し、比較例との刈地に言及
する。
(f) Example An example of the present invention will be shown below, and reference will be made to mowed land in comparison with a comparative example.

〔実施例〕〔Example〕

比表面積16吟Tの球状水酸化ニッケルの表面に微細な
水酸化ニッケルの薄層’Ik0.1!fit%の割合で
配設した靜カサ密度1.8 f/(J::、  平均粒
径約20μ、比表面積834)の球状の水酸化ニッケル
粉末95重:!1部と、水酸化コバルト粉末sXt部と
會混合し、メチルセルロース糊料液’!il”7111
えて混練してペースト状とした後、このペーストを多孔
度929Mのニッケル繊維焼結体に充填し乾燥を行ない
、その後1000#/−の圧力でプレスして本発明陽極
Ak得た。
A thin layer of fine nickel hydroxide on the surface of spherical nickel hydroxide with a specific surface area of 16 GinT'Ik0.1! 95 weights of spherical nickel hydroxide powder with a bulk density of 1.8 f/(J::, average particle size approximately 20μ, specific surface area 834) arranged at a proportion of fit%:! 1 part and sXt part of cobalt hydroxide powder to form a methylcellulose glue solution'! il”7111
After kneading to form a paste, this paste was filled into a nickel fiber sintered body having a porosity of 929M, dried, and then pressed at a pressure of 1000 #/- to obtain an anode Ak of the present invention.

〔比轄例1〕 前記実施例の水酸化ニッケル粉末から表面の微細な水酸
化ニッケルを除いた状態の靜カサ密度ta y/CCs
  平均粒径約18μ、比表面積13ψTの球状の水酸
化ニッケル粉末を前記実施例の水酸化ニッケルに代えτ
用い、七の他の条件は同一で比較陽極Bt得た。
[Comparative Example 1] Silent bulk density ta y/CCs of the nickel hydroxide powder of the above example after removing fine nickel hydroxide on the surface
Spherical nickel hydroxide powder with an average particle size of about 18μ and a specific surface area of 13ψT was used instead of the nickel hydroxide in the above example.
A comparative anode Bt was obtained under the same conditions.

〔比較例2〕 静カザ密度1.2y/CC,平均粒径6μ、比表面積8
0 d/fの不足形の水酸化ニッケル粉末を前記実施例
の水酸化ニッケルに代えて用い、その他の条件は同一で
比較陽&Ct−得た。
[Comparative Example 2] Static Kaza density 1.2y/CC, average particle size 6μ, specific surface area 8
A comparison positive &Ct- was obtained by using 0 d/f deficient nickel hydroxide powder in place of the nickel hydroxide of the above example and under the same conditions as above.

上記本発明陽極A及び比較陽極B、Cのプレス前の活物
質充填量、プレス後の活物質密度、さらにこnら陽極t
カドミウム陰極と組み合わせて構成したニッケルーカド
ミウム′RL池の特性を下表に示す。
The active material filling amount before pressing of the above-mentioned present invention anode A and comparative anodes B and C, the active material density after pressing, and the anode t
The characteristics of a nickel-cadmium RL cell constructed in combination with a cadmium cathode are shown in the table below.

尚、表中、充填量とはプレス前に於けるニッケル繊維焼
結体の空間体積あたりの活物質充填量t1プレス後Wi
度とにプレス後に於けるニッケル繊維焼結体の空間体積
あたりの活物質充填童v]l−大々示している。
In the table, the filling amount is the active material filling amount per space volume of the nickel fiber sintered body before pressing t1 after pressing Wi
The amount of active material filling per space volume of the nickel fiber sintered body after pressing is shown.

以上の様に、本発明陽極Aは高利用率と高エネルギー密
度上同時に実現している。比較陽極Bは水酸化ニッケル
粉末が球状で粒径が大なるものであるため充填性は高い
が、比表面積が小さいものであるため利用率は低く、ま
た、比較陽極Crc水酸化ニッケル粉本が比表面積大な
るものであるため利用率り高いか、形状か不足形であり
流動性が低く、粒径も非常に小さいものであるため充填
性は低いものであった。
As described above, the anode A of the present invention simultaneously achieves high utilization efficiency and high energy density. Comparative anode B has high filling properties because the nickel hydroxide powder is spherical and has a large particle size, but the utilization rate is low because the specific surface area is small. Since the specific surface area is large, the utilization rate is high, or because the shape is deficient, the fluidity is low, and the particle size is also very small, so the filling property is low.

このように不発明陽極Aに用いた活物質は、単位体&あ
たりの充填量が多く、高オリ用率であるため、所足の容
tk有する陽極板全作製するに際しては、極板の厚み〒
小さくすることが可能である。
In this way, the active material used for the uninvented anode A has a large amount of filling per unit and a high rate of use. 〒
It is possible to make it smaller.

特に連続空孔を有する三次元導電マトリックスを電極芯
体とする場合には、電極芯体の体積上手さくし厚さr薄
くすると電極芯体の強度が増すといり効果がある。更に
前記活物質は成極芯体への充填量?多くできるため、/
yr足缶度までのプレス度合會小さくすることができる
。このことは工業的な設備構成、生産性に非常に有利で
ある。
Particularly when a three-dimensional conductive matrix having continuous pores is used as an electrode core, reducing the volumetric thickness r of the electrode core has the effect of increasing the strength of the electrode core. Furthermore, is the amount of the active material filled into the polarization core body? Because you can do more, /
It is possible to reduce the pressing degree up to 30 degrees. This is very advantageous for industrial equipment configuration and productivity.

また、この不発141!極ATlc用いた活物質は、ま
ず前記比較例1で用いたような球状水酸化ニッケル葡生
成させ、その表jVc微細な水酸化ニッケルvi−夏量
で0.01〜196配設して形成したものであり、大部
分を占める内部の球状水酸化ニッケルは緻密な結晶構造
を愕ら、結晶格子が整然と配列し欠陥が少なく電気化学
的反応の開始点が少ない利用率の低いものであることか
ら、表層部に存在する微細な水酸化ニッケルだけが利用
率同上に寄与したと考えると、トータルの利用率がこれ
程大幅に数音されるはずはない。上述し几よ51C本発
明陽極Aに於いて高利用率が得られたのは、詳しい理由
に明らかではないが、表面の微細な水酸化ニッケルの存
在によりて電気化学的反応の開始点が増加し、この水酸
化ニッケルを介して内部の水酸化ニッケルの反応もスム
ーズに進ひエリになりたからであると推測きれる。
Also, this misfire 141! The active material using polar ATlc was formed by first producing spherical nickel hydroxide as used in Comparative Example 1, and then disposing fine nickel hydroxide on its surface in an amount of 0.01 to 196. The internal spherical nickel hydroxide, which makes up the majority of the nickel hydroxide, has a dense crystal structure, and the crystal lattice is arranged in an orderly manner, with few defects and few starting points for electrochemical reactions. Considering that only the fine nickel hydroxide present in the surface layer contributed to the above utilization rate, there is no way that the total utilization rate would be as large as this. The detailed reason why the high utilization rate was obtained in the above-mentioned 51C anode A of the present invention is not clear, but the presence of fine nickel hydroxide on the surface increases the number of starting points for electrochemical reactions. However, it can be assumed that this is because the reaction of the internal nickel hydroxide proceeded smoothly through this nickel hydroxide.

次いで、前記実施例で用いた水酸化ニッケル粉末の粒径
が異なるものを畝樵類作り、前記と同様にしτ陽極を作
製して本積効率r測定し、粒径と体積効率の関係を調べ
た。この結果C図に示す。
Next, the nickel hydroxide powder used in the above example was made into ridges with different particle sizes, and a τ anode was made in the same manner as above, the volumetric efficiency r was measured, and the relationship between particle size and volumetric efficiency was investigated. Ta. The results are shown in Figure C.

図から明らかなよつに体積効率に粒径20μ付近で最大
となり、粒径が小さくなる程、また粒径が大さくなる程
体積効率は小さくなっている。このように粒径が小さく
なると体積効率が小さくなるのに、粒径が小さくなるに
従ってカサ密度が小さくなり充填性が低下するからであ
り、よた粒径が大きくなると体積効率が小さくなるのは
、粒径が大さくなるに従りて電極芯体への充填が困難と
なり充填性が低下するからである。よって粒径の望まし
い範囲は10〜25μである。尚、前述の粒径の測足に
V−ザー光散乱法によるものである。
As is clear from the figure, the volumetric efficiency reaches its maximum when the particle size is around 20 μm, and the smaller the particle size or the larger the particle size, the smaller the volumetric efficiency becomes. This is because the volumetric efficiency decreases as the particle size decreases, but as the particle size decreases, the bulk density decreases and the filling property decreases.As the particle size increases, the volumetric efficiency decreases. This is because as the particle size increases, it becomes difficult to fill the electrode core, and the filling performance decreases. Therefore, the desirable range of particle size is 10 to 25 microns. Incidentally, the aforementioned particle size was measured by the V-ser light scattering method.

(ト〕発明の効果 不発明のアルカリ蓄電池用陽極は、活物質として球状水
酸化ニッケルの表面に、この球状水酸化ニッケルより比
表面積が大きい微細な水酸化ニセ ツケル配設した粉末音用いたものであり、これに八 より冒充填量及び高オリ用率tなし得るため、高エネル
ギー密度で生産性の高い陽極盆提供することかでさる。
(G) Effects of the Invention The uninvented anode for alkaline storage batteries uses powder particles of nickel hydroxide disposed on the surface of spherical nickel hydroxide as an active material, and has a larger specific surface area than the spherical nickel hydroxide. In addition, it is possible to achieve a high filling amount and a high ore usage rate, which makes it possible to provide an anode tray with high energy density and high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図に本発明1椴極で用いた活物質の粒径と、体積効率と
の関係會ボす図である。
The figure shows the relationship between the particle size of the active material used in the first electrode of the present invention and the volumetric efficiency.

Claims (1)

【特許請求の範囲】[Claims] (1)球状水酸化ニッケルの表面に、該球状水酸化ニッ
ケルより比表面積が大きい微細な水酸化ニッケルを配設
した粉末状活物質を電極芯体に保持せしめてなるアルカ
リ蓄電池用陽極。
(1) An anode for an alkaline storage battery in which an electrode core holds a powdered active material in which fine nickel hydroxide having a larger specific surface area than the spherical nickel hydroxide is disposed on the surface of the spherical nickel hydroxide.
JP61270865A 1986-11-12 1986-11-12 Cathode for alkaline storage battery Pending JPS63124371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270865A JPS63124371A (en) 1986-11-12 1986-11-12 Cathode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270865A JPS63124371A (en) 1986-11-12 1986-11-12 Cathode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS63124371A true JPS63124371A (en) 1988-05-27

Family

ID=17492048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270865A Pending JPS63124371A (en) 1986-11-12 1986-11-12 Cathode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63124371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
JP2008011817A (en) * 2006-07-07 2008-01-24 Shimano Inc Fishing rod

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH0724218B2 (en) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション Nickel electrode for alkaline battery and battery using the same
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
US5366831A (en) * 1991-06-14 1994-11-22 Yuasa Corporation Nickel electrode for alkaline battery
JP2008011817A (en) * 2006-07-07 2008-01-24 Shimano Inc Fishing rod

Similar Documents

Publication Publication Date Title
EP0337029B1 (en) Nickel electrode for alkaline battery and battery using said nickel electrode
JPS63124371A (en) Cathode for alkaline storage battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH07320735A (en) Non-sintered nickel electrode for alkaline storage battery
JP3077473B2 (en) Alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH02262245A (en) Manufacture of nickel hydroxide electrode
JPH0393161A (en) Nickel positive electrode for battery and manufacture thereof
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JPH0794182A (en) Paste type cathode plate for alkaline storage battery
JPH02262244A (en) Sealed alkaline battery
JPS6254235B2 (en)
JP2615869B2 (en) Cadmium negative electrode for alkaline storage batteries
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JP2840270B2 (en) Paste type cadmium electrode for alkaline storage battery and method for producing the same
JPH01292754A (en) Electrode for alkaline storage battery and manufacture thereof
JPH11307091A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JPH027368A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH0217910B2 (en)
JP2792913B2 (en) Non-sintered cadmium negative electrode plate for alkaline storage batteries
JPH06140037A (en) Paste type positive electrode plate for alkaline storage battery, active material powder for alkaline storage battery positive electrode, and manufacture thereof
JPH027369A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH07320736A (en) Non-sintered nickel electrode for alkaline storage battery
JPS61264670A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JPH04184866A (en) Electrode plate for battery