JP2798700B2 - Method for producing sintered substrate for alkaline storage battery - Google Patents

Method for producing sintered substrate for alkaline storage battery

Info

Publication number
JP2798700B2
JP2798700B2 JP1096709A JP9670989A JP2798700B2 JP 2798700 B2 JP2798700 B2 JP 2798700B2 JP 1096709 A JP1096709 A JP 1096709A JP 9670989 A JP9670989 A JP 9670989A JP 2798700 B2 JP2798700 B2 JP 2798700B2
Authority
JP
Japan
Prior art keywords
hollow sphere
sintered substrate
organic hollow
nickel
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1096709A
Other languages
Japanese (ja)
Other versions
JPH02276160A (en
Inventor
賢治 横田
隆久 淡路谷
秀樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1096709A priority Critical patent/JP2798700B2/en
Publication of JPH02276160A publication Critical patent/JPH02276160A/en
Application granted granted Critical
Publication of JP2798700B2 publication Critical patent/JP2798700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、アルカリ蓄電池用焼結基板の製造方法に関
する。
The present invention relates to a method for producing a sintered substrate for an alkaline storage battery.

(ロ) 従来の技術 ニッケル−カドミウム電池等のアルカリ蓄電池の電極
基体として、従来から用いられている焼結基板は、機械
的強度や導電性の点で優れたものであり、活物質の保持
体として適している。しかし、近年の市場用途の拡大
は、電池の高容量化の要求をもたらし、現在使用されて
いる焼結基板を電極基体として用いる電池を高容量化す
るための活発な技術開発が行なわれている。
(B) Conventional technology A sintered substrate conventionally used as an electrode substrate of an alkaline storage battery such as a nickel-cadmium battery is excellent in mechanical strength and conductivity, and is a holder for an active material. Suitable as. However, the expansion of market applications in recent years has caused a demand for higher capacity of batteries, and active technology development for increasing the capacity of batteries using currently used sintered substrates as electrode substrates is being carried out. .

さて、ニッケル粉末、増粘剤及び水を混合してスラリ
ーとなし、これを導電性芯体に塗着し、乾燥、焼結を行
なって作製するいわゆるスラリー法ニッケル焼結基体
は、通常、その多孔度が80%程度となっている。そし
て、この焼結基板の多孔度を高くすれば活物質の充填量
を多くでき高容量化を計ることが可能となる。したがっ
て、多孔度を高めることは、これまでにも種々研究され
ており、最も実際的な方法としては、スラリー中に造孔
剤を混合して、この造孔剤を加熱、除去するものがあ
る。
By the way, a so-called slurry-processed nickel-sintered substrate produced by mixing nickel powder, a thickener and water to form a slurry, applying the slurry to a conductive core, drying and sintering the slurry is usually used. The porosity is about 80%. If the porosity of the sintered substrate is increased, the amount of the active material to be filled can be increased and the capacity can be increased. Therefore, increasing the porosity has been studied variously until now, and the most practical method is to mix a pore-forming agent in a slurry and heat and remove the pore-forming agent. .

このように造孔剤を利用し、工業的に用いることがで
きるようにするためには、 均一な造孔作用を有すること 焼結基板の機械的強度を維持できること 造孔剤の除去が容易なこと 良好な生産性を維持できること という要件を満たす必要があり、最も有望なものとし
て、造孔剤として球状の有機樹脂体を使用する発明が多
くなされている。
In order to use a pore-forming agent in this way and to be able to use it industrially, it must have a uniform pore-forming action, maintain the mechanical strength of the sintered substrate, and easily remove the pore-forming agent. It is necessary to satisfy the requirement that good productivity can be maintained, and most inventions using a spherical organic resin body as a pore-forming agent have been most promising.

しかしながら、造孔剤として通常の有機樹脂球体を用
い、焼結基板の高多孔度化をはかるためには、樹脂量が
多く必要となり、焼結の際に樹脂の分解生成物が、焼結
炉や焼結基板中に残留することになる。一方、特開昭58
−169773号公報に開示されるように、造孔剤として低沸
点炭化水素を内包した有機中空球体を用い、これをスラ
リー中に混合し、加熱、乾燥時に前記有機中空球体を膨
張させ、高多孔度の焼結基板を作製する方法がある。こ
の方法では、造孔剤として使用する樹脂量が少なくて良
く、分解生成物の影響を受け難いため有効である。とこ
ろが、加熱乾燥時における温度のバラツキや、基板内の
温度分布、つまり、焼結基板を作製する際には通常導電
性芯体にスラリーを帯状に間隔をおいて複数列塗着する
ため、スラリーを塗着していない導電性芯体の露出部が
存在し、この露出部近傍やスラリーの表面では温度が上
昇し易くなり、これらの影響によって、有機中空球体が
均一に膨張できなくなり、均一な空孔分布を得るのは難
しい。また、導電性芯体付近や導電性芯体に密着した有
機中空球体は、膨張する際に導電性芯体からニッケル層
を押し上げ引き離そうとする力が働き、導電性芯体とニ
ッケル層との間の密着性を著しく阻害する。このため、
ニッケル層が導電性芯体からはがれたり、脱落したりす
る可能性があった。
However, in order to use a normal organic resin sphere as a pore-forming agent and increase the porosity of the sintered substrate, a large amount of resin is required, and decomposition products of the resin during sintering are generated by a sintering furnace. Or remains in the sintered substrate. On the other hand,
As disclosed in Japanese Patent No. 169773, an organic hollow sphere containing a low-boiling hydrocarbon is used as a pore-forming agent, and this is mixed into a slurry. There is a method of producing a sintered substrate of different degrees. This method is effective because the amount of resin used as a pore-forming agent may be small and is not easily affected by decomposition products. However, variations in temperature during heating and drying, and temperature distribution in the substrate, that is, when a sintered substrate is produced, usually a plurality of rows of slurry are applied to the conductive core at intervals in a strip shape. There is an exposed portion of the conductive core that is not coated with, and the temperature tends to rise near this exposed portion and on the surface of the slurry, and due to these effects, the organic hollow sphere cannot be expanded uniformly, and the uniform It is difficult to obtain a pore distribution. In addition, the organic hollow sphere in the vicinity of or in close contact with the conductive core exerts a force to push up and separate the nickel layer from the conductive core when expanding, thereby causing a gap between the conductive core and the nickel layer. Significantly impairs the adhesion of For this reason,
There was a possibility that the nickel layer was peeled off or dropped off from the conductive core.

(ハ) 発明が解決しようとする課題 本発明は、導電性芯体からのニッケル層のはがれ及び
脱落がなく、均一な空孔を有する高多孔度のアルカリ蓄
電池用焼結基板を提供しようとするものである。
(C) Problems to be Solved by the Invention The present invention seeks to provide a highly porous sintered substrate for an alkaline storage battery having uniform pores without peeling and falling off of a nickel layer from a conductive core. Things.

(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用焼結基板は、低沸点炭化水
素を内包した有機中空球体を予め加熱し膨張させた後、
前記有機中空球体をニッケル粉末及び増粘剤とともに混
合してスラリーとなし、導電性芯体に塗着し乾燥した
後、焼結することを特徴とするものである。
(D) Means for Solving the Problems The sintered substrate for an alkaline storage battery of the present invention is obtained by preliminarily heating and expanding an organic hollow sphere containing a low-boiling hydrocarbon.
The organic hollow sphere is mixed with a nickel powder and a thickener to form a slurry, coated on a conductive core, dried, and then sintered.

また、前記予め膨張させた有機中空球体の中空度を95
%以上とすると、より一層の効果を得ることが可能であ
る。
Further, the hollowness of the previously expanded organic hollow sphere is 95%.
%, It is possible to obtain a further effect.

(ホ) 作用 低沸点炭化水素を内包した有機中空球体は、この中空
球体の外壁に用いる樹脂の材質にも影響するが、樹脂の
軟化が始まる温度以上で一定時間保持すると、内部のガ
ス圧力の上昇により、その温度に応じて倍率にまで速や
かに膨張する。第1図は、この加熱温度と膨張倍率との
関係を示す図である。温度が高くなる程、膨張倍率が高
くなるが、ある温度を越えると樹脂壁の破壊が起こり、
それ以降は計算上の膨張倍率は低下する。また、図中に
おいて曲線の変曲点が膨張限界であり、このとき中空球
体は最大の体積となり、内包ガスはほとんど外部に逸散
した状態となっている。
(E) Action The organic hollow sphere containing the low-boiling hydrocarbon also affects the material of the resin used for the outer wall of the hollow sphere. As the temperature rises, it rapidly expands to the magnification according to the temperature. FIG. 1 is a diagram showing the relationship between the heating temperature and the expansion ratio. The higher the temperature, the higher the expansion ratio, but beyond a certain temperature, the resin wall breaks down,
Thereafter, the calculated expansion ratio decreases. In the figure, the inflection point of the curve is the expansion limit. At this time, the hollow sphere has the maximum volume, and the contained gas is almost escaping to the outside.

このような低沸点炭化水素を内包した有機中空球体を
造孔剤に用いると、この中空球体は加熱することにより
膨張するため、スラリー乾燥時に中空球体が膨張してし
まい、前述したような問題が生じる。本発明ではこの有
機中空球体を予め加熱し膨張させておくことで、スラリ
ー乾燥時における中空球体の膨張を抑制し、この膨張に
起因する導電性芯体からのニッケル層のはがれや脱落を
防止することを可能としている。また、スラリー乾燥時
に基板内に温度分布のバラツキがあっても、中空球体は
予め膨張させているのでその影響を受け難く、スラリー
中で加熱膨張させた場合に比較して、中空球体の粒径は
遥かに均一となる。必要であれば、スラリー混合前に中
空球体を分級しておくことにより、尚一層、均一性を向
上させることが可能である。中空球体の除去について
も、同一の多孔度を最小量の樹脂の添加で達成できるの
で最も望ましいと考えられる。
When an organic hollow sphere containing such a low-boiling hydrocarbon is used as a pore-forming agent, the hollow sphere expands when heated, so that the hollow sphere expands when the slurry is dried. Occurs. In the present invention, the organic hollow spheres are heated and expanded in advance, thereby suppressing expansion of the hollow spheres during slurry drying, and preventing peeling and falling off of the nickel layer from the conductive core due to the expansion. It is possible. In addition, even if there is a variation in the temperature distribution in the substrate when the slurry is dried, the hollow spheres are pre-expanded and thus are not easily affected by the expansion. Is much more uniform. If necessary, the uniformity can be further improved by classifying the hollow spheres before mixing the slurry. The removal of hollow spheres is considered most desirable because the same porosity can be achieved with the addition of a minimal amount of resin.

本発明に用いる上述した有機中空球体は、できるだけ
大きく膨張させておくと効果的であり、中空度95%以上
になるまで膨張させておくと特に大きな効果が得られ
る。但し、実用面からみると膨張限界まで均一に膨張さ
せることは難しいため、加熱時の温度のバラツキ等を考
慮して、前記変曲点よりやや低い温度で加熱し、樹脂壁
の破壊が起こらないようにすべきである。
It is effective that the above-mentioned organic hollow sphere used in the present invention is expanded as much as possible, and a particularly great effect is obtained when expanded to a hollowness of 95% or more. However, from the practical point of view, it is difficult to uniformly expand to the expansion limit, so that the resin wall is heated at a temperature slightly lower than the inflection point in consideration of the temperature variation at the time of heating, and the resin wall does not break. Should be so.

(ヘ) 実施例 有機中空球体として、低沸点炭化水素を内包したメチ
ルメタアクリレート−アクリロニトリル共重合体を用
い、これを加熱膨張させ中空度が85%、90%、95%及び
97%のものを夫々作製した。次いで、ニッケル粉末100
重量部と、純水100重量部とメチルセルロース3重量部
と、ニッケル粉末に対し100vol%の前記加熱膨張させた
有機中空球体を混合してスラリーとし、このスラリーを
パンチングメタルからなる導電性芯体に塗着、乾燥した
後、900℃の還元性雰囲気中で焼結して焼結基板を得
た。こうして作製した焼結基板を、下表に示すように、
使用した有機中空球体の中空度により基板A〜Dとする
と共に、その焼結基板の多孔度を下表に示す。
(F) Example As an organic hollow sphere, a methyl methacrylate-acrylonitrile copolymer containing a low-boiling hydrocarbon was used, and this was heated and expanded to obtain hollowness of 85%, 90%, 95% and
97% of each were produced. Then, nickel powder 100
Parts by weight, 100 parts by weight of pure water, 3 parts by weight of methylcellulose, and 100 vol% of the heat-expanded organic hollow spheres with respect to nickel powder are mixed to form a slurry, and this slurry is formed into a conductive core made of punching metal. After coating and drying, sintering was performed in a reducing atmosphere at 900 ° C. to obtain a sintered substrate. As shown in the table below,
The substrates A to D were determined according to the hollowness of the used organic hollow spheres, and the porosity of the sintered substrate is shown in the table below.

ここにおいて、基板A、Bの多孔度が、基板C、Dに
比べて、高くなっているのは、スラリーの乾燥時に有機
中空球体が膨張したためである。これに対し、有機中空
球体の中空度が95%のものを用いた基板C及びDは、多
孔度はほとんど変わらず、膨張が起こっていないものと
考えられる。
Here, the reason why the porosity of the substrates A and B is higher than that of the substrates C and D is that the organic hollow spheres expand when the slurry is dried. On the other hand, it is considered that the porosity of the substrates C and D using the organic hollow spheres having a hollowness of 95% has almost no change and no expansion has occurred.

次に、焼結基板を硝酸ニッケル水溶液に浸漬後、アル
カリ処理を行なう通常の化学含浸法を用いて、上記基板
A〜Dに水酸化ニッケルを充填してニッケル極を作製し
た。
Next, the substrates A to D were filled with nickel hydroxide by using a normal chemical impregnation method in which the sintered substrate was immersed in an aqueous solution of nickel nitrate and then subjected to an alkali treatment, thereby producing a nickel electrode.

前記ニッケル極を、カドミウム極との間にセパレータ
を介在させて渦巻状に巻回した後巻回をほどき、このと
きの処理前後におけるニッケル極の重量差を測定した。
この結果を第2図に示す。
The nickel electrode was spirally wound with a separator interposed between the nickel electrode and a cadmium electrode and then unwound, and the weight difference between the nickel electrode before and after the treatment was measured.
The result is shown in FIG.

また、前記ニッケル極を巻回せずに用い、対極をニッ
ケル板として水酸化カリウム水溶液中で2Cの電流で3時
間充電するという過充電試験を行なった。このときの試
験前後におけるニッケル極の重量差を測定し、この結果
を第3図に示す。
Further, an overcharge test was performed in which the nickel electrode was used without being wound and the counter electrode was charged with a current of 2 C for 3 hours in a potassium hydroxide aqueous solution using a nickel plate as a counter electrode. The weight difference between the nickel electrodes before and after the test was measured, and the results are shown in FIG.

第2図及び第3図から明らかなように、有機中空球体
の中空度が高くなるにしたがって、ニッケル極の重量変
化率が小さくなり、中空度が95%以上になると重量変化
率が非常に小さく抑えられることがわかる。また、重量
の変化は主に活物質が充填されたニッケル焼結層、いわ
ゆる活物質層の導電性芯体からの剥離、脱落によるもの
であった。このように、有機中空球体の中空度が小さい
程、重量変化率が大きくなるのは、中空度が小さいもの
は加熱により更に膨張する余力があり、中空度が小さい
もの程膨張による体積の増加が大きくなることに起因す
ると考えられる。このため、中空度の小さいもの程、ス
ラリー乾燥時の膨張により導電性芯体からニッケル層を
引き離そうとする力が大きくかかり、この結果、完成基
板における導電性芯体とニッケル焼結体との密着性が低
下し、剥離、脱落が生じる。
As is clear from FIGS. 2 and 3, as the hollowness of the organic hollow sphere increases, the weight change rate of the nickel electrode decreases, and when the hollowness exceeds 95%, the weight change rate becomes very small. It can be seen that it can be suppressed. In addition, the change in weight was mainly due to peeling and falling off of the nickel sintered layer filled with the active material, that is, the so-called active material layer from the conductive core. As described above, the smaller the hollowness of the organic hollow sphere, the larger the weight change rate is.The smaller the hollowness, the more room for expansion by heating, and the smaller the hollowness, the larger the volume due to expansion. It is thought to be due to the increase. Therefore, the smaller the hollowness, the greater the force to separate the nickel layer from the conductive core due to expansion during slurry drying, and as a result, the adhesion between the conductive core and the nickel sintered body on the completed substrate Properties are reduced, and peeling and falling off occur.

また、中空度95%の有機中空球体を用いる場合と、中
空度90%の有機中空球体を用いる場合では、同等の多孔
度を得るための有機中空球体の樹脂量は、95%の場合の
方が90%の場合の2/3で良いことが、他の実験により確
認できた。これにより、中空度を95%以上の有機中空球
体を用いることにより、基板強度の向上と共に樹脂量の
削減効果もより大きなものとなることがわかる。
In addition, when an organic hollow sphere having a hollowness of 95% is used and when an organic hollow sphere having a hollowness of 90% is used, the resin amount of the organic hollow sphere for obtaining the same porosity is smaller than that in the case of using a hollow hollow sphere of 95% It was confirmed by other experiments that 2/3 of the case of 90% was good. This shows that the use of an organic hollow sphere having a hollowness of 95% or more increases the strength of the substrate and the effect of reducing the amount of resin.

(ト) 発明の効果 本発明によれば、低沸点炭化水素を内包した有機中空
球体を造孔剤として用いた場合における、導電性芯体か
らのニッケル層のはがれ、脱落を防止でき、高多孔度の
アルカリ蓄電池用焼結基板を提供できると共に、造孔剤
として使用する樹脂量が少なくなり、焼結時に発生する
樹脂の分解生成物も少なく抑えることが可能となる。
(G) Effect of the Invention According to the present invention, when an organic hollow sphere containing a low-boiling hydrocarbon is used as a pore-forming agent, the nickel layer can be prevented from peeling and falling off from the conductive core, and can be highly porous. In addition to providing a sintered substrate for alkaline storage batteries, the amount of resin used as a pore-forming agent is reduced, and the decomposition products of the resin generated during sintering can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は加熱温度と有機中空球体の膨張倍率との関係を
示す図、第2図及び第3図は有機中空球体と極板の重量
変化率との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the heating temperature and the expansion ratio of the organic hollow sphere, and FIGS. 2 and 3 are diagrams showing the relationship between the organic hollow sphere and the weight change rate of the electrode plate.

フロントページの続き (56)参考文献 特開 昭63−114068(JP,A) 特開 昭61−34861(JP,A) 特開 昭60−65464(JP,A) 特開 昭61−34861(JP,A) 特開 昭58−66267(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/64 - 4/84 B22F 5/00,7/04Continuation of the front page (56) References JP-A-63-114068 (JP, A) JP-A-61-34861 (JP, A) JP-A-60-65464 (JP, A) JP-A-61-34861 (JP) , A) JP-A-58-66267 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/64-4/84 B22F 5/00, 7/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低沸点炭化水素を内包した有機中空球体を
予め加熱し膨張させた後、前記有機中空球体をニッケル
粉末及び増粘剤と共に混合してスラリーとなし、導電性
芯体に塗着し乾燥した後、焼結することを特徴とするア
ルカリ蓄電池用焼結基板の製造方法。
An organic hollow sphere containing a low-boiling hydrocarbon is heated and expanded in advance, and then the organic hollow sphere is mixed with a nickel powder and a thickener to form a slurry, which is applied to a conductive core. And drying and then sintering the sintered substrate for an alkaline storage battery.
【請求項2】前記予め膨張させた有機中空球体の中空度
が、95%以上であることを特徴とする請求項記載のア
ルカリ蓄電池用焼結基板の製造方法。
2. The method for producing a sintered substrate for an alkaline storage battery according to claim 1, wherein the hollowness of the previously expanded organic hollow sphere is 95% or more.
JP1096709A 1989-04-17 1989-04-17 Method for producing sintered substrate for alkaline storage battery Expired - Lifetime JP2798700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096709A JP2798700B2 (en) 1989-04-17 1989-04-17 Method for producing sintered substrate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096709A JP2798700B2 (en) 1989-04-17 1989-04-17 Method for producing sintered substrate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH02276160A JPH02276160A (en) 1990-11-13
JP2798700B2 true JP2798700B2 (en) 1998-09-17

Family

ID=14172276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096709A Expired - Lifetime JP2798700B2 (en) 1989-04-17 1989-04-17 Method for producing sintered substrate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2798700B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824925B2 (en) 2001-07-10 2004-11-30 Matsushita Electric Industrial Co., Ltd. Method for manufacturing base for electrode plate, method for manufacturing positive electrode plate and alkaline storage battery
JP5064792B2 (en) * 2006-12-30 2012-10-31 三洋電機株式会社 Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery
KR102063049B1 (en) * 2016-10-14 2020-01-07 주식회사 엘지화학 Preparation method for metal foam

Also Published As

Publication number Publication date
JPH02276160A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
JPH10284076A (en) Alkaline storage battery and manufacture of its electrode
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JP6385368B2 (en) Coated iron electrode and method for producing the iron electrode
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
US20030022066A1 (en) Method for manufacturing base for electrode plate, method for manufacturing positive electrode plate and alkaline storage battery
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
EP0448854B1 (en) Improved method of making a nickel hydroxide-containing cathode for alkaline batteries
JP2003017063A (en) Non-sintered nickel positive electrode for alkaline storage battery, and its manufacturing method
US3408231A (en) Method of making flexible electrodes
JP3454606B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3515251B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3276730B2 (en) Manufacturing method of alkaline storage battery
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP2000058048A (en) Manufacture of non-sintered cadmium negative electrode for alkaline storage battery
JP4588288B2 (en) Method for manufacturing substrate for electrode plate, method for manufacturing positive electrode plate, and alkaline storage battery
JP2951008B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPH08287906A (en) Hydrogen storage alloy electrode
EP2951871B1 (en) Iron electrode employing a polyvinyl alcohol binder
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPH10241678A (en) Manufacture of electrode hydrogen-storage alloy powder and hydrogen-storage alloy electrode
JPH10112326A (en) Electrode for alkaline secondary battery
JPH1154116A (en) Alkaline storage battery nickel sintered base plate, alkaline storage battery nickel electrode plate and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11