JPS5896886A - Electrolyzing method for aqueous alkali metal salt solution - Google Patents

Electrolyzing method for aqueous alkali metal salt solution

Info

Publication number
JPS5896886A
JPS5896886A JP56194389A JP19438981A JPS5896886A JP S5896886 A JPS5896886 A JP S5896886A JP 56194389 A JP56194389 A JP 56194389A JP 19438981 A JP19438981 A JP 19438981A JP S5896886 A JPS5896886 A JP S5896886A
Authority
JP
Japan
Prior art keywords
cathode
exchange membrane
cation exchange
anode
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56194389A
Other languages
Japanese (ja)
Inventor
Eiji Itoi
糸井 永治
Takuo Kawahara
拓夫 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56194389A priority Critical patent/JPS5896886A/en
Publication of JPS5896886A publication Critical patent/JPS5896886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To decrease the voltage of an electrolytic cell without degrading electric current efficiency in an electrolytic cell for aq. alkali chloride solns. using a cation exchange membrane by bringing an anode into tight contact with one side of the exchange membrane and a cathode with the opposite side via a conductive member. CONSTITUTION:A diaphragm used for a diaphragm type electrolytic cell for aq. alkali chloride soln. of NaCl or the like is constituted of a porous cation exchange membrane 1 of metallic oxide or the like having no electrode activity on at least one side thereof, and an anode 2 of a perforated Ti plate, meshes, or the like is brought into tight contact with one surface thereof. Alloys or oxides of Ru, Pt, etc. are coated on the surface thereof. A cathode 3 consisting of a perforated plate of iron, stainless steel, etc. is brought into tight contact with the opposite side of the membrane 1 via an elastic non-metallic conductor 8 of a carbon fiber mat or the like. Since the spacing between the anode 2 and the cathode 3 is narrow and inter-electrode resistance is small, the lower cell voltage of the electrolytic cell is required and the electric power efficiency for electrolysis is improved.

Description

【発明の詳細な説明】 本発明は陽イオン交換膜を用いる新規々アルカリ′金属
塩水溶液の電解方法に関するものである。更に詳しくは
、陽イオン交侠膜で陽極室と陰椿室とに区分された電解
札でアルカリ全極塩水溶液を電解して、苛性アルカリを
製造するに際して、該陽イオン交換膜は少くとも表面の
−i’+’iに電極活性を有しない多孔質層を設けた陽
イオン交換膜で、該陽イオン交換膜を陰極に冗7.−さ
せるとともに、陰極に弾力性を有する導電性部材を介し
て密着させることを特徴とするアルカリ金属塩水溶液の
電解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for electrolyzing an aqueous alkali metal salt solution using a cation exchange membrane. More specifically, when producing caustic alkali by electrolyzing an alkaline all-polar salt aqueous solution with an electrolytic tag that is divided into an anode chamber and a negative chamber by a cation exchange membrane, the cation exchange membrane is used at least on the surface. -i'+'i is a cation exchange membrane with a porous layer having no electrode activity, and the cation exchange membrane is used as a cathode.7. The present invention relates to a method for electrolyzing an aqueous alkali metal salt solution, which is characterized in that the present invention is made in close contact with a cathode via an elastic conductive member.

従来、アルカリ金属塩水溶液の電解方法には陰極に水銀
・?:用いる水銀性電解方法と水銀を用いかい隔膜法(
アスベスト隔膜法)とがある。
Conventionally, the electrolysis method of aqueous alkali metal salt solutions uses mercury or ? :The mercury-based electrolysis method used and the diaphragm method using mercury (
Asbestos diaphragm method).

水銀法においては、陰極に水銀を用いるだめに裟品苛性
ンーダ及び水銀に接触した排水中に水銀が含有されるた
め、環境汚染の問題で世界的に非水銀法のプロセスが採
用される傾向にある。
In the mercury method, because mercury is used in the cathode, mercury is contained in the caustic powder and in the wastewater that comes into contact with mercury, so there is a tendency worldwide to adopt non-mercury methods due to environmental pollution issues. be.

又、水銀法は′I3解’i51.力原単位が平均3.2
00KWH/ t −NaOHと電力効率が悪い。
Also, the mercury method is 'I3 solution' i51. Average force intensity is 3.2
00KWH/t-NaOH and poor power efficiency.

アスベスト隔膜法においては、水銀を使用しないので、
水銀による環境汚染の問題は起らないが、アスベストに
よる環境汚染の問題は残っている。又、電解電力原単位
は平均2500KWH/ t −NaOHで重力効率は
高いが、生成される苛性ソーダの濃度が10〜]2%と
低濃度であるため、50%まで置網するのに約2.st
/1−NaOHの蒸少が必要とされ、総合エネルギー効
率で見た場合水銀法より悪い。一方、近年開発され企業
化されたに、イオン交?AMを隔IPとしたイオン交換
膜法においては、水砦もアスベストも使用しないので、
環境汚染の問題は全くなく、生成される苛性ソーダの濃
度も20〜40チと普く、電解電力原単位は平均2,5
00 KWH/1−NaOHで、50%まで濃縮するの
に約o4t/1−NaOHの蒸気が必要とされるが、総
合エネルギー効率は一番良い。
The asbestos diaphragm method does not use mercury, so
Although the problem of environmental pollution due to mercury does not occur, the problem of environmental pollution due to asbestos remains. In addition, although the electrolytic power unit is 2500 KWH/t-NaOH on average and the gravity efficiency is high, the concentration of the generated caustic soda is as low as 10 to 2%, so it takes about 2.5% to reach 50%. st
/1-NaOH evaporation is required and is worse than the mercury method in terms of overall energy efficiency. On the other hand, ion exchange, which has been developed and commercialized in recent years? In the ion exchange membrane method using AM as the separation IP, neither water fort nor asbestos is used.
There is no problem of environmental pollution, the concentration of caustic soda produced is generally 20-40%, and the average electrolytic power consumption is 2.5%.
At 00 KWH/1-NaOH, approximately o4t/1-NaOH of steam is required to concentrate to 50%, but the overall energy efficiency is the best.

本発明者は、イオン交換膜法において、四に電解〜力を
低減するために種々検討、実験の給米、少くとも一方の
面にvN極活性を有しない多孔質層を設けた陽イオン交
換膜を陽極と陰極との間に介在させた電解槽において、
陽イオン交換膜と陽極とを実質的に密着せしめ、陽イオ
ン交換膜と陰極との間に、弾力性を有する非金属導電体
を介在させて、陽イオン交換相4と51トカ性を有する
非金属導電体と陰極とが密着するようにして、アルカリ
金属塩水溶液を電解することにより電解摺電圧を、電流
効率をそこなわずに低減し得ることを見い出しだ。
In the ion exchange membrane method, the present inventor conducted various studies and experiments in order to reduce the electrolytic force, and developed a cation exchange method in which a porous layer having no vN electrode activity was provided on at least one surface. In an electrolytic cell with a membrane interposed between an anode and a cathode,
The cation exchange membrane and the anode are brought into substantially close contact with each other, and an elastic non-metallic conductor is interposed between the cation exchange membrane and the cathode, so that the cation exchange phase 4 and the non-metallic conductor having a tonality are formed. The inventors have discovered that by electrolyzing an aqueous alkali metal salt solution while bringing the metal conductor and cathode into close contact, the electrolytic sliding voltage can be reduced without impairing current efficiency.

即ち、陽イオン交換膜の少くとも一方の面に電極活性を
有しない多孔qg4層を設けた陽イオン交換膜で陽極室
と陰極室とに区分された電解槽にυいて、陽極は導電リ
ブ及び/又は室枠に固定されており、前記多孔仙層が一
方の面にのみ設けられている場合には陽イオン交換膜は
電極活性を有しない多孔質層を設けた面を陰極側となる
ように配置にし、陽イオン交換膜と陰極との間に弾力性
を有する非金属導電体、例えば、カーボン繊維をマット
状にしたものを挿入して締め付けることにより、陽極と
陽イオン交換膜と弾力性を有する非金属導電体と陰極と
が完全に密着圧接するようにする。このとき、陽イオン
交換膜が損傷を受けないような接触圧力に保持しなけれ
ばならない。接触圧力を、例えば、締め付は圧力を有効
電解向・、−で除した値で示せば、接触圧力にi′0.
O]Kり/−〜1.0にり/−とすることが望ましい。
That is, in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane having a porous QG4 layer with no electrode activity on at least one surface of the cation exchange membrane, the anode is placed between a conductive rib and a cathode chamber. /or When the cation exchange membrane is fixed to the chamber frame and the porous layer is provided on only one side, the cation exchange membrane has the surface on which the porous layer having no electrode activity is provided as the cathode side. By inserting and tightening an elastic non-metallic conductor, such as carbon fiber mat, between the cation exchange membrane and the cathode, the anode, cation exchange membrane and elastic The nonmetallic conductor and the cathode are brought into complete contact and pressure contact. At this time, the contact pressure must be maintained at such a level that the cation exchange membrane is not damaged. For example, if the contact pressure is expressed as the value obtained by dividing the pressure by the effective electrolytic direction .
O] Kri/- to 1.0 Ni/- is desirable.

好ましくは0.05に97−〜0.60に9/dとする
ことができる。また、陽イオン交換膜の千−供を防止す
る更に好ましい形態は、陰極と陰極導電リブ(又は隔壁
)との間に導電性金属スプリングを介在させることが好
ましい。かようにすることにより、この雪%、: 槽を
用いてアルカリφ7域塩水浴#ケ筒%、、(すると、ト
、イオン交伊1と陰極の間にカーボンマーットのような
非金属導電体が存在するため、陰極と膜がほぼ均一な間
隔を保ち、陰極で発生したガスのうち、陰極裏面に抜け
きらないガスが、この非金属導電体の部分を抜けやすく
(即ち、カス滞留が起りに<〈)かつまた、電解電流(
1)1部が該導電体を流れるため、全体として電解電圧
を若干低下せしめることが可能となる。寸だ、陽イオン
交換膜の表面に設けられている電極活性を有しない多孔
質層の大きな親水性との相乗効果により陽イオン交換膜
と陰極の間に滞留するカスが非常に少なくなることも本
発明の目的をより一層好ましく達成せしめる。
Preferably, it can be set to 0.05 to 97-0.60 to 9/d. Furthermore, a more preferable form for preventing the cation exchange membrane from being damaged is to interpose a conductive metal spring between the cathode and the cathode conductive rib (or partition wall). By doing this, this snow%: Using an alkaline φ7 area salt water bath #tube%, (then, a non-metallic conductor such as a carbon mat is formed between the ion exchanger 1 and the cathode. As a result, the cathode and the film maintain a nearly uniform distance, and the gas generated at the cathode that cannot escape to the back surface of the cathode can easily escape through this non-metallic conductor (in other words, it prevents scum from accumulating). <〈) and also the electrolytic current (
1) Since a portion of the electrolyte flows through the conductor, it is possible to slightly lower the electrolytic voltage as a whole. In fact, due to the synergistic effect with the large hydrophilicity of the porous layer with no electrode activity provided on the surface of the cation exchange membrane, the amount of residue remaining between the cation exchange membrane and the cathode can be extremely reduced. The object of the present invention can be achieved even more preferably.

更に理解を深めるために、添付図面に゛より説明するが
、本発明はこの図面にテされる形態に限定されるもので
はない。
For a better understanding, the present invention will be described with reference to the accompanying drawings, but the invention is not limited to the form shown in the drawings.

鵠】図は、本発明に用いる電解槽の一形郭を示したもの
である。1は陽イオン交換膜で、少くとも一方の面に電
極活性を崩しない多孔質層を設けた陽イオン交換膜であ
る。陽イオン交換膜はカルボン酸基、スルホン酸基、ホ
スホン酸基をイオン交換基とするフッ素系陽イオン交換
膜を使用することができ、この陽イオン交換膜の表面に
設けられる電極活性を有しない多孔質層に用いられる材
質は、例えば、チタン、ジルコニウム、ニオブ、タンタ
ル、バナジウム、マンガン、モリブテン、スズ、アンチ
モン、タングステン、ヒスマス、インジウム、コバルト
、ニッケル、ベリリウム、アルミニウム、クロム、鉄、
カリウム、ケルマニウム、セレン、イツトリウム、銀、
ランタン、セリウム、ノ・フニウム、鉛、トリウム、布
上類元素等の酸化物、窒化物、炭化物の学独、これらの
固溶体又は混合物等が使用される。このうち、開極側に
は、チタン、ジルコニウム、ニオブ、タンタル、バナジ
ウム、マンガン、モリブデン、スズ、アンチモン、タン
グステン、ビスマス等の酸化物、窒化物、炭化物の単独
、これら固溶体又は混百物が使用される。これらの材質
から多孔質層を形成するには、上記材料を粉末乃至粒子
状で使用し、好ましくはホリテトラフルオロエチレンな
どの含フツ素重合体の懸濁液で結合させて、適宜層状に
成形した後、イオン交換膜表面に圧力及び熱を作用させ
ることにより、結合させ、好ましくは埋込まれる。
The figure shows the outline of an electrolytic cell used in the present invention. Reference numeral 1 denotes a cation exchange membrane, which is provided with a porous layer on at least one surface that does not impair electrode activity. As the cation exchange membrane, a fluorine-based cation exchange membrane having a carboxylic acid group, a sulfonic acid group, or a phosphonic acid group as an ion exchange group can be used, and there is no electrode activity provided on the surface of this cation exchange membrane. Materials used for the porous layer include, for example, titanium, zirconium, niobium, tantalum, vanadium, manganese, molybdenum, tin, antimony, tungsten, hismuth, indium, cobalt, nickel, beryllium, aluminum, chromium, iron,
potassium, kermanium, selenium, yztrium, silver,
Oxides, nitrides, and carbides of lanthanum, cerium, nitrogen, lead, thorium, and metal elements, as well as solid solutions or mixtures thereof, are used. Among these, on the opening side, oxides, nitrides, and carbides of titanium, zirconium, niobium, tantalum, vanadium, manganese, molybdenum, tin, antimony, tungsten, bismuth, etc. alone, solid solutions, or mixtures thereof are used. be done. To form a porous layer from these materials, the above materials are used in powder or particulate form, preferably bonded with a suspension of a fluorine-containing polymer such as pholytetrafluoroethylene, and formed into a layer as appropriate. After that, by applying pressure and heat to the surface of the ion exchange membrane, it is bonded and preferably embedded.

2は陽極で、例えば、チタン製の多孔板状、メツシュ状
、網状、ロット状の陽極で、その表面にルテニウム、白
金、イリジューム、ノくラジューム等の貴金属の内、1
種又は2S以上の合金、又はその酸化物ケコーティング
したものが用いられる。陽極2はチタン製導電リプ4に
電。
2 is an anode, for example, a perforated plate-shaped, mesh-shaped, net-shaped, or rod-shaped anode made of titanium, and the surface thereof is coated with one of precious metals such as ruthenium, platinum, iridium, and rhodium.
A seed, an alloy of 2S or higher, or an oxide thereof coated is used. The anode 2 is electrically connected to the titanium conductive lip 4.

気的、機械的に固定され、更にチタン製導電リプ4は陽
極室枠6に電気的、枯械的に固定されている。
The titanium conductive lip 4 is electrically and mechanically fixed to the anode chamber frame 6.

3は陰極で、鉄、ステンレス製の多孔板状、メツシュ状
、網状、ロッド状のものが使用され、ロダンニッケルを
メッキしたもの、又はラネーニッケルとニッケルを共電
着したものを使用することができる。陰極3は鉄又はス
テンレス製の導電リブ5に電気的、機械的に固定され、
更に鉄又はステンレス製導電リプ5は陰極室枠7に電気
的、H4的に固定されている。
3 is the cathode, which is made of iron or stainless steel in the shape of a porous plate, mesh, net, or rod, and can be plated with Rodan nickel or co-electrodeposited with Raney nickel and nickel. . The cathode 3 is electrically and mechanically fixed to a conductive rib 5 made of iron or stainless steel,
Further, a conductive lip 5 made of iron or stainless steel is electrically and H4 fixed to the cathode chamber frame 7.

8は陽イオン交換膜1と陰極3との間に挿入される弾力
性を有する非金属ψ電体であり、例えば7J−ボン繊維
のマット状体、布の積層体又はメツシュ状体を使用する
ことができる。
8 is a non-metallic ψ electric body having elasticity inserted between the cation exchange membrane 1 and the cathode 3; for example, a mat-like body of 7J-bon fiber, a laminate of cloth, or a mesh-like body is used. be able to.

9及び10は電極室内の濃度分布を均一にするための開
孔部であり、11及び12は陽極液及び陰極液の供給ノ
ズルであり、13及び14は卜極液・ガス及び陰極液・
ガスの排出ノズルである。15及び16はガスケットで
あり、本発明の市・解槽はこれ等の各部材により構成さ
れ、陽極と隔イオン交換膜と弾性を有する非金属導電体
と陰極とがほぼ完全に密着し圧接される。
9 and 10 are openings for making the concentration distribution in the electrode chamber uniform, 11 and 12 are anolyte and catholyte supply nozzles, and 13 and 14 are anolyte and catholyte supply nozzles.
This is a gas discharge nozzle. Reference numerals 15 and 16 are gaskets, and the tank opening/disassembly of the present invention is constructed of these members, and the anode, the partition ion exchange membrane, the elastic nonmetallic conductor, and the cathode are almost completely in close contact and pressure-welded. Ru.

第2図は、本発明に用いる霜1解檜のもう1つの形態を
示したものでりり、陰極3と陰極導電リブ5との間に鋼
製、ステンレス製、ニッケル製又はそれらの表面にニッ
ケルメッキを施しだスプリングを配置した電解槽である
。かくすることにより、陽イオン交換膜の損傷を完全に
防止することができる。
Fig. 2 shows another form of the frost 1 melting cypress used in the present invention, in which the cathode 3 and the cathode conductive rib 5 are made of steel, stainless steel, nickel, or nickel on their surface. This is an electrolytic cell equipped with a plated spring. By doing so, damage to the cation exchange membrane can be completely prevented.

本発明の電解槽の特徴を要約すると、陽イオン交換膜と
陰極との間に弾性を有する非金属導電体、例えば、カー
ボン繊維を介在させ、陽極と陽イオン交換膜と弾性を有
する非金属導電体と陰極とをほぼ完全に密着、圧接する
ことにより、陽イオン交換膜に損傷を与えることなく、
かつ電流効率をそこなわず、低い電抄、摺電圧で安定し
た運転が継続できることである。それはカーボン線維に
は、(1)電気伝導性ぞ優れている・(2)耐食性が優
れている、(8)犀擦係数カー低い、(4)発生した気
泡が抜けやすい、また(5)膜面を傷つけにくい等の特
徴が翁るためである0 実施例1 通電面が10crnW×15crnHの第1図の電解情
を組み立てた。陽イオン交換膜にはカルシボン酸基電イ
オン交換基としがフッ累系樹脂の隣イオン交換膜を用い
、その両表面に酸化チタンをホリテトラフルオロエチレ
ンの岡濁液で結合させて、層状に成形処理したものを用
いた。
To summarize the features of the electrolytic cell of the present invention, an elastic non-metallic conductor such as carbon fiber is interposed between the cation exchange membrane and the cathode, and the elastic non-metal conductor is connected to the anode and the cation exchange membrane. By bringing the body and cathode into almost complete contact and pressure contact, the cation exchange membrane is not damaged.
In addition, stable operation can be continued with low electric current efficiency and low sliding voltage without impairing current efficiency. Carbon fiber has (1) excellent electrical conductivity, (2) excellent corrosion resistance, (8) low friction coefficient, (4) easy release of air bubbles, and (5) film This is because it has characteristics such as being hard to damage the surface.Example 1 The electrolytic structure shown in FIG. 1 with a current-carrying surface of 10 crnW x 15 crnH was assembled. The cation exchange membrane uses an ion exchange membrane with a carboxylic acid group and a fluorocarbon resin, and titanium oxide is bonded to both surfaces with an Oka suspension of phoritetrafluoroethylene, forming a layered structure. The treated one was used.

陽極には目開きの長手方向寸法(LW) 12.7讃、
短手方向寸法(SW)が6.3調で厚さ157−のチタ
ン製メツシュの光面に酸化ルテニウム全コーティングし
たものを使用し、陰極には目開きの長手°方向寸法(L
W) 20 m、短手方向寸法(6tW) ] Omで
厚さが1,8簡のステンレス製メツシュを使用し、陰極
と陽イオン交換膜との間に弾力性を有する厚み約0.7
 mmの炭素繊維の布を挿入した。67f液3.5 N
 Na(1!1、陰極液35% NaOH、温度90℃
20A/dyy/で電解した結果、摺電圧303V、電
流効率95チ、電力原単位2137 KWH/ t−N
aOHであった。
The anode has a longitudinal dimension (LW) of 12.7 mm,
A titanium mesh with a width of 6.3 mm and a thickness of 157 mm, whose optical surface is completely coated with ruthenium oxide, is used for the cathode.
W) 20 m, transversal dimension (6 tW)] A stainless steel mesh with a thickness of 1.8 mm is used, and a thickness of approximately 0.7 mm with elasticity is used between the cathode and the cation exchange membrane.
A carbon fiber cloth of mm was inserted. 67f liquid 3.5N
Na (1!1, catholyte 35% NaOH, temperature 90°C
As a result of electrolysis at 20A/dyy/, the sliding voltage was 303V, the current efficiency was 95chi, and the power consumption was 2137 KWH/t-N.
It was aOH.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる電解槽の断面図である。第
2図は本発明に用いられる電解槽の他の例についての断
面図である。 1:電極活性を有しない多孔質層を設けた陽イオン交換
膜2:陽極 3:陰極 8:弾性を有する非金属導電体
FIG. 1 is a sectional view of an electrolytic cell used in the present invention. FIG. 2 is a sectional view of another example of the electrolytic cell used in the present invention. 1: Cation exchange membrane provided with a porous layer that does not have electrode activity 2: Anode 3: Cathode 8: Elastic nonmetallic conductor

Claims (1)

【特許請求の範囲】 (1)  少くとも表面の一面に電接活性を有しない多
孔質層を設けた陽イオン交換膜で、実罹的に少くとも1
つの陽極を持つ陽極室と、実質的に少くとも1つの陰極
を持つ陰極室とに区分された塩化アルカリ塩水溶液のイ
オン交排膜法電穣トにおいて、該陽イオン交換膜と陽極
とを実質的に密かせしめ、該陽イオン交換膜と陰極との
間に弾力性を有する非金属導電体を介在させて該陽イオ
ン交換膜と弾力性を有すと非金に導電体と陰極とが密着
するようにしたことを特徴とするアルカリ金ド塩水溶液
の電解方法。 (2)  非金属導電体がカーボンを主体とすることを
特徴とする特許請求の範囲(1)記載・・の電解方法。 (8)  陽イオン交換膜と弾力性を有する非金属導電
体と陰極とを密着させる手段が陰極裏面に配置された導
電性の金属スプリングであることを特徴とする特許請求
の範囲(1) 、 (2j及び(8)記載の電解方法。
[Scope of Claims] (1) A cation exchange membrane provided with a porous layer having no electrical contact activity on at least one surface, which in practice has at least one
In the ion exchange membrane method electrolysis of an aqueous alkali chloride salt solution divided into an anode chamber having two anodes and a cathode chamber having substantially at least one cathode, the cation exchange membrane and the anode are substantially separated. A non-metallic conductor having elasticity is interposed between the cation exchange membrane and the cathode, and the conductor and the cathode are closely attached to the cation exchange membrane and the elastic non-metallic conductor. A method for electrolyzing an aqueous alkali gold salt solution. (2) The electrolysis method according to claim (1), wherein the nonmetallic conductor is mainly carbon. (8) Claim (1) characterized in that the means for bringing the cation exchange membrane, the elastic nonmetallic conductor, and the cathode into close contact is a conductive metal spring disposed on the back surface of the cathode, (2j and the electrolytic method described in (8).
JP56194389A 1981-12-04 1981-12-04 Electrolyzing method for aqueous alkali metal salt solution Pending JPS5896886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194389A JPS5896886A (en) 1981-12-04 1981-12-04 Electrolyzing method for aqueous alkali metal salt solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194389A JPS5896886A (en) 1981-12-04 1981-12-04 Electrolyzing method for aqueous alkali metal salt solution

Publications (1)

Publication Number Publication Date
JPS5896886A true JPS5896886A (en) 1983-06-09

Family

ID=16323779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194389A Pending JPS5896886A (en) 1981-12-04 1981-12-04 Electrolyzing method for aqueous alkali metal salt solution

Country Status (1)

Country Link
JP (1) JPS5896886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124125A2 (en) * 1983-05-02 1984-11-07 De Nora Permelec S.P.A. Electrolysis cell and method of generating halogen
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas
US10916789B2 (en) 2016-03-21 2021-02-09 Hydrolite Ltd Alkaline exchange membrane fuel cells system having a bi-polar plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124125A2 (en) * 1983-05-02 1984-11-07 De Nora Permelec S.P.A. Electrolysis cell and method of generating halogen
EP0124125A3 (en) * 1983-05-02 1985-05-15 Oronzio De Nora Impianti Elettrochimici S.P.A. Electrolysis cell and method of generating halogen
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas
US10916789B2 (en) 2016-03-21 2021-02-09 Hydrolite Ltd Alkaline exchange membrane fuel cells system having a bi-polar plate

Similar Documents

Publication Publication Date Title
JPS59190379A (en) Vertical type electrolytic cell and electrolyzing method using said cell
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
JP5632780B2 (en) Electrolytic cell manufacturing method
JP5632773B2 (en) Electrolytic cell manufacturing method
US5221452A (en) Monopolar ion exchange membrane electrolytic cell assembly
JPS59133384A (en) Electrolytic cell
CA1123376A (en) Electrolysis bath assembly
KR860001501B1 (en) Double l-shaped electrode for brine electrolysis cell
JPS5896886A (en) Electrolyzing method for aqueous alkali metal salt solution
JP2004002993A (en) Ion exchange membrane electrolytic cell
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
CN216473508U (en) Electrolysis chamber structure with scale removal function
JPS6327432B2 (en)
JP2020007607A (en) Electrode structure, electrolytic cell and electrolytic bath
CN111058055B (en) Cathode structure of ion membrane electrolytic cell
JPS5837181A (en) Electrolytic cell for electrolysis of aqueous alkali metal chloride solution
JP3069370B2 (en) Electrolytic cell
JPS6041716B2 (en) Multipolar filter press type electrolytic cell
JP2010037619A (en) Ion exchange membrane system electrolytic cell and method of recovering performance of cathode
JPS5929114B2 (en) Corrosion prevention method for nozzles
JPS5920757B2 (en) Multipolar electrolyzer
JPS5928583A (en) Electrolytic tank
JP3803248B2 (en) Bipolar ion exchange membrane electrolytic cell