JP3803248B2 - Bipolar ion exchange membrane electrolytic cell - Google Patents

Bipolar ion exchange membrane electrolytic cell Download PDF

Info

Publication number
JP3803248B2
JP3803248B2 JP2000401421A JP2000401421A JP3803248B2 JP 3803248 B2 JP3803248 B2 JP 3803248B2 JP 2000401421 A JP2000401421 A JP 2000401421A JP 2000401421 A JP2000401421 A JP 2000401421A JP 3803248 B2 JP3803248 B2 JP 3803248B2
Authority
JP
Japan
Prior art keywords
partition wall
electrolytic cell
circulation passage
cathode
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000401421A
Other languages
Japanese (ja)
Other versions
JP2002206185A (en
Inventor
眞二 片山
勝 森
雅和 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2000401421A priority Critical patent/JP3803248B2/en
Publication of JP2002206185A publication Critical patent/JP2002206185A/en
Application granted granted Critical
Publication of JP3803248B2 publication Critical patent/JP3803248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複極式イオン交換膜電解槽に関し、特に電気分解電圧が低く、運転時の変動等に対しても信頼性が高い複極式電解槽に関する。
【0002】
【従来の技術】
食塩水の電気分解に代表される水溶液の電気分解に用いられるイオン交換膜電解槽は、極めて大きな電流密度で運転されるので、電気分解電圧を低下させることが大きな課題である。
電気分解電圧は、電解槽の構造、電気分解用電極の特性など多数の要因によって決定されるが、なかでも陽極と陰極の間の電極間隔は、間隔が短いほど電気分解電圧が小さくなるために電極間隔を小さくすることが行われており、陽極室と陰極室を区画する陽イオン交換膜と電極との間隔を実質的になくして運転を行うことが行われている。
【0003】
食塩水の電気分解においては、陰極室の圧力を陽極室の圧力よりも高くして運転することによっても電気分解電圧を低下させることが可能であるので、陰極室の圧力を陽極室の圧力よりも高くし、陽極室と陰極室との間の圧力差で陽イオン交換膜を陽極に密着させて運転を行っている。
このような電解槽において、陽極と陰極との電極間距離を小さくするためには、陽極に密着した陽イオン交換膜に対して陰極を近づけることが必要となるが、電解槽の陰極室枠に固定して取り付けた陰極では、大面積の電解面全体に対して高精度に電極間隔を設定することは困難があるので、陰極をバネ状の部材に取り付けてバネによる付勢力によって陰極を陽イオン交換膜に密着させて電極間隔を小さくすることが提案されている。
【0004】
バネ状部材に陰極を取り付けた場合には陽イオン交換膜との密着性を高め、電極間隔を小さくすることが可能となるが、電解槽への電解液の供給装置の異常、あるいは電解槽の運転操作の誤り等によって、陽極室の圧力と陰極室の圧力が逆転すると、陽イオン交換膜は陰極に押し付けられる。陰極はバネ状の部材によって取り付けられているので、陰極は隔壁側へ押し付けられ、陽イオン交換膜は大きく延び、陽イオン交換膜に悪影響を及ぼしたり、あるいは陰極が隔壁側へ押し付けられる結果、バネ状の部材が回復不可能な変形を生じ、以後の正常な運転ができないという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、複極式フィルタープレス型イオン交換膜電解槽において、バネ状の部材によって保持した電極と、イオン交換膜の両面に作用する圧力の差との均衡が取れなくなった場合においてもイオン交換膜および電極に悪影響を及ぼすことがない電解槽を提供することを課題とするものである。
【0006】
本発明の課題は、複極式イオン交換膜電解槽において、単位電解槽の隔壁に電解液循環通路形成部材の中央部が隔壁側へ変形した状態で両端部が固定されて隔壁と反対方向へ付勢され、電解槽の隔壁を一つの面として電極室の垂直方向に伸びる電解液循環通路を形成し、電解液循環通路形成部材の隔壁と反対側の面に電極が取り付けられているとともに、電解液循環通路形成部材の隔壁側の面には、電解液循環通路が隔壁方向への押圧によって変形を回復しなくなる場合の隔壁との間隔よりも長さが長い間隔保持部材が設けられており、間隔保持部材を設けた台形状部の両側には、台形状部の頂点よりも高さが低い山状部を有し、間隔保持部材が隔壁に接した際に、間隔保持部材と山状部に電極が接し電極を保持する複極式イオン交換膜電解槽によって解決することができる。
【0007】
【発明の実施の形態】
本発明の複極式イオン交換膜電解槽は、バネ性を有する電解液循環通路形成部材に間隔保持部材を設けたので、電解槽の隔壁を一つの面として電解液循環通路を形成するとともに隔壁からの電極の位置を調整可能に保持したので、必要最小限の構成部材によって電解液循環通路の形成、および電極の保持と導電接続とを行うことを可能とし、安全性が大きく特性が優れた複極式イオン交換膜電解槽を提供するものである。
【0008】
以下に、図面を参照して本発明を説明する。
図1は、本発明の複極式イオン交換膜電解槽を説明する図であり、図1(A)は単位電解槽を陰極室側から見た陰極の一部を切り欠いた図である。図1(B)は、図1(A)において隣接する単位電解槽をA−A’線で示す断面で切断した斜視図である。
本発明の単位電解槽1は、一方の面に陰極室2を有し、他方の面に陽極室3を有している。各電極室は、皿状の陰極室隔壁4および陽極室隔壁5が相互に接合されて導電接続を形成しており、単位電解槽1の周囲に設けた構造部材となる電解槽枠体6の表面も陰極室隔壁4および陽極室隔壁5の延長部で覆われて、陰極側フランジ面7および陽極側フランジ面8を形成している。
【0009】
陰極室隔壁4には、バネ状の陰極液循環通路形成部材9が取り付けられており、陰極室隔壁を一面とした陰極液循環通路10が形成されている。陰極液循環通路形成部材9は、陰極液循環通路10の流通方向に直角の面で切断した断面図は、左右対称であって両側の端部11および12において陰極室隔壁4と接合されている。また、板状体を折り曲げて山状部13および14を形成したことにより、板状体はバネ性を有し、中央部15は常に陰極室隔壁4とは反対側へ付勢されるものとなる。また中央部15には頂部が陰極室隔壁に平行な面を有し、両側の山状部13および14よりも突出した台形状部16を有しており、台形状部16の隔壁に平行な頂部に陰極17が接合されており、陰極は隔壁とは反対側へ付勢されている。また、台形状部の陰極隔壁側には、間隔保持保持部材18が取り付けられており、陰極が押圧された場合であっても、陰極液循環通路形成部材5は、間隔保持部材18によって保持されるので、回復不可能な変形を生じることはない。
また、陰極室内には、陰極液流入管19が設けられており、陰極液流入口20から陰極液が陰極室へと供給されて電気分解を受ける。
【0010】
一方、陽極室3には、陽極室隔壁5を一つの面として陽極液を循環する陽極液循環通路21を形成するとともに、陽極22を保持し陽極室隔壁5と陽極22との間で導電接続を形成する陽極液循環路形成部材23が取り付けられている。陽極液循環路形成部材23は、両端部24および25を陽極室隔壁5に接合されており、陽極室隔壁5に対して垂直な部位26と陽極室隔壁5に平行な部位27から構成されており、凸条部28によって陽極22を保持している。
電解槽の運転時に陰極室の圧力を陽極室の圧力よりも高くする結果、陽極室と陰極室の間に配置された陽イオン交換膜29が陽極22面を押圧するので、陽極液循環通路形成部材23は、上記したように陽極室隔壁5に垂直な部位26によって取り付けられることが好ましく、陰極室側からの圧力に対して変形が生じないようにすることが好ましい。
【0011】
また、図1(B)に示すように、陽極室隔壁5に平行な部位27を陽極面から間隔を設けて配置することによって、電解液の上昇通路を電極の背面に形成することができる。さらに、陽極液循環通路形成部材22には、内部に少なくとも1個の陽極間隔保持部材30を設けても良い。陽極間隔保持部材30を設けることによって、陰極室側から陽極室側に加わる圧力による変形を小さくすることができる。
本発明の複極式イオン交換膜電解槽は、上記した単位電解槽の複数個を積層し、両端部には、陰極室のみを有する陰極側端部電解槽と陽極室のみを有する陽極側端部電解槽を積層して使用することができる。
【0012】
本発明において、陰極室隔壁には、ニッケル、ニッケル合金等を用いることができる。陰極には、ニッケル、ニッケル合金の多孔体、網状体、エキスパンデッドメタル、あるいはこれらを基体として、表面に白金族金属含有層、ラネーニッケル含有層、活性炭含有ニッケル層等の電極触媒物質の被覆を形成し、水素過電圧を低下させたものを用いることができる。また、陰極液循環通路形成部材は、陰極室隔壁と同一の材料を用いることができる。
一方、陽極室隔壁には、チタン、タンタル、ジルコニウム等の薄膜形成性金属あるいはこれらの合金を用いることができる。陽極には、チタン、タンタル、ジルコニウム等の薄膜形成性金属あるいはこれらの合金の表面に、白金族金属、白金族金属の酸化物を含有する電極触媒物質の被覆を形成した陽極を用いることができる。
【0013】
本発明の複極式イオン交換膜電解槽においては、陽極液循環通路形成部材は、両端部は50mm〜150mmとし、中央部に陽極間隔保持部材を設けることが好ましく、陰極液循環通路形成部材の両端部の間隔は同様の大きさとすることができ、陰極液循環通路形成部材としては、厚さ0.1mm〜0.5mmの部材を用いて折り曲げ加工してバネ状の部材を作製することができる。
本発明の電解槽をアルカリ金属ハロゲン化物の水溶液の電気分解、例えば食塩水の電気分解に用いる場合には、陽極室には、飽和食塩水を供給し、陰極室には水または希薄水酸化ナトリウム水溶液を供給し、所定の分解率で電気分解を行った後に電解槽から取り出される。
【0014】
図2は、本発明の複極式イオン交換膜電解槽の運転時の電解液の流れを説明する図であり、電解槽ユニットの隔壁を挟んで陰極室および陰極室側から見た斜視図である。
電解槽ユニットの陰極室隔壁4に接合された陰極液循環通路形成部材9によって、陰極液隔壁4との間に陰極液循環通路10が形成される。陰極液流入管19の陰極液流入口20から陰極室内へ流入する陰極液の流れ、および電気分解によって生成する気泡の上昇によって生じる上昇流31により陰極液が陰極室内を上昇し、陰極室上部において陰極液と生成気体とを気液分離し、見かけ上の比重が大きくなった陰極液は、陰極液循環通路10を下降流32となって下降する。このように、陰極液が陰極室内部を循環する結果、陰極室内部では陰極液の濃度分布が小さくなる。
【0015】
また、陽極室3においては、陽極室隔壁5に接合された陽極液循環路形成部材23により、陽極室隔壁5を一つの面として陽極液循環通路21が形成される。陽極室内においても、陽極液流、および電気分解によって生成する気泡の上昇流によって生じる上昇流33により陽極液が陽極室内を上昇し、陽極室上部において陽極液と生成気体とを分離して、見かけ上の比重が大きくなった陽極液は、陽極液循環通路21を下降流34となって下降し、陽極室内において陽極液の循環が充分に行われ、循環陰極室内部では陰極液の濃度分布が小さくなり、大電流密度で運転を行った場合であっても効率的な電気分解を行うことができる。
【0016】
図3は、本発明の電解槽の陰極液循環通路形成部材の動作を説明する図である。
図3(A)は、電解槽の定常運転時を説明する図であり、陰極液循環通路形成部材5は、陰極室内の圧力が陽極室内の圧力よりも高いために、正常差圧Aによって陽イオン交換膜29は陽極22へ押し付けられ、さらに陰極17はバネ性の陰極液循環通路形成部材9によって付勢されて陽イオン交換膜29に密着される。
【0017】
図3(B)は、陰極室内の圧力よりも陽極室内の圧力が高くなった場合を説明する図である。
陰極室と陽極室の圧力の逆転が生じると、逆転差圧Bにより、陽イオン交換膜29は陽極室側から陰極17側へ押圧される。しかしながら、本発明の複極式イオン交換膜電解槽においては、バネ性の陰極液循環通路形成部材9は、間隔保持部材18を有している。その結果、陰極液循環通路形成部材9の台形状部16に接合した陰極17は、陰極液循環通路形成部材9を変形させるものの、間隔保持部材18によって制限を受けるので陰極と陰極隔壁との間隔は、間隔保持部材18の長さよりも短くなることはない。しかも、バネ性の陰極液循環通路形成部材5には、中央に対して対称な位置に山状部13および14を有しているので、押圧の際には山状部13および14の頂点は、陰極室隔壁から等しく陰極室隔壁4へと近づくこととなる。
したがって、陰極液循環通路形成部材を、陰極が押圧されて間隔保持部材18によって保持された場合に陰極が山状部13および14に接するように設計するならば、押圧による圧力は3個所によって保持されることとなり、陰極の変形は生じず、また陰極液循環通路形成部材が回復不可能な変形を生じることはなく、圧力異常時が生じても定常運転に回復すれば問題なく運転を行うことができる。
【0018】
【発明の効果】
本発明の複極式イオン交換膜電解槽によれば、バネ性を有する部材によって電解液循環通路を形成して電極の保持と導電接続を行った電解槽において、バネ性の部材からなる電解液循環通路形成用部材に間隔保持部材を設けたので、圧力異常時にも電解液循環通路形成用部材は回復不可能な変形して電解槽が事実上破壊することもなく、圧力異常が生じても運転性能を維持することが可能な複極式イオン交換膜電解槽を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の複極式イオン交換膜電解槽を説明する図である。
【図2】図2は、本発明の複極式イオン交換膜電解槽の運転時の電解液の流れを説明する図であり、電解槽ユニットの隔壁を挟んで陰極室および陰極室から見た斜視図である。
【図3】図3は、本発明の電解槽の陰極液循環通路形成部材の動作を説明する図である。
【符号の説明】
1…電解槽ユニット、2…陰極室、3…陽極室、4…陰極室隔壁、5…陽極室隔壁、6…電解槽枠体、7…陰極側フランジ面、8…陽極側フランジ面、9…陰極液循環通路形成部材、10…電解液循環通路、11,12…端部、13,14…山状部、15…中央部、16…台形状部、17…陰極、18…間隔保持保持部材、19…陰極液流入管、20…陰極液流入口、21…陽極液循環通路、22…陽極、23…陽極液循環路形成部材、24,25…両端部、26…垂直な部位、27…平行な部位、28…凸条部、29…陽イオン交換膜、30…陽極間隔保持部材、31…上昇流、32…下降流、33…上昇流、34…下降流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bipolar ion exchange membrane electrolytic cell, and particularly to a bipolar electrolytic cell having a low electrolysis voltage and high reliability against fluctuations during operation.
[0002]
[Prior art]
Since an ion exchange membrane electrolytic cell used for electrolysis of an aqueous solution represented by electrolysis of saline solution is operated at an extremely large current density, it is a big problem to reduce the electrolysis voltage.
The electrolysis voltage is determined by a number of factors such as the structure of the electrolytic cell and the characteristics of the electrolysis electrode. In particular, the electrode spacing between the anode and the cathode decreases because the electrolysis voltage decreases as the interval decreases. The distance between the electrodes is reduced, and the operation is performed while substantially eliminating the distance between the cation exchange membrane and the electrodes that partition the anode chamber and the cathode chamber.
[0003]
In the electrolysis of saline solution, since the electrolysis voltage can be lowered by operating the cathode chamber at a pressure higher than that of the anode chamber, the cathode chamber pressure is set higher than the anode chamber pressure. The cation exchange membrane is brought into close contact with the anode by the pressure difference between the anode chamber and the cathode chamber.
In such an electrolytic cell, in order to reduce the distance between the anode and the cathode, it is necessary to bring the cathode closer to the cation exchange membrane in close contact with the anode. With a fixedly mounted cathode, it is difficult to set the electrode spacing with high accuracy over the entire electrolytic surface of a large area. Therefore, the cathode is attached to a spring-like member and the cathode is cationized by the urging force of the spring. It has been proposed to reduce the distance between the electrodes by closely contacting the exchange membrane.
[0004]
When the cathode is attached to the spring-like member, it is possible to improve the adhesion with the cation exchange membrane and reduce the electrode interval. However, an abnormality in the supply device of the electrolytic solution to the electrolytic cell, or the electrolytic cell When the pressure in the anode chamber and the pressure in the cathode chamber are reversed due to an operation error or the like, the cation exchange membrane is pressed against the cathode. Since the cathode is attached by a spring-like member, the cathode is pressed to the partition wall side, the cation exchange membrane extends greatly, adversely affects the cation exchange membrane, or the cathode is pressed to the partition wall side. There is a problem in that the shaped member deforms that cannot be recovered, and subsequent normal operation cannot be performed.
[0005]
[Problems to be solved by the invention]
The present invention provides ion exchange even when the electrode held by a spring-like member and the difference in pressure acting on both surfaces of the ion exchange membrane cannot be balanced in a bipolar filter press type ion exchange membrane electrolytic cell. An object of the present invention is to provide an electrolytic cell that does not adversely affect the membrane and the electrode.
[0006]
The problem of the present invention is that, in a bipolar ion exchange membrane electrolytic cell, both ends are fixed to the partition wall of the unit electrolytic cell in a state where the central portion of the electrolyte circulation passage forming member is deformed to the partition wall side, and in the opposite direction to the partition wall Energized, forming an electrolyte circulation passage extending in the vertical direction of the electrode chamber with the partition wall of the electrolytic cell as one surface, and an electrode is attached to the surface opposite to the partition wall of the electrolyte circulation passage forming member, The surface on the partition wall side of the electrolyte circulation passage forming member is provided with an interval holding member that is longer than the interval with the partition wall when the electrolyte circulation passage no longer recovers from deformation by pressing in the partition wall direction. The both sides of the trapezoidal portion provided with the interval holding member have mountain-like portions whose height is lower than the apex of the trapezoidal portion, and when the interval holding member contacts the partition wall, Electrode exchange membrane electrolysis with electrode in contact with electrode It can be solved by.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the bipolar ion exchange membrane electrolytic cell of the present invention, since the interval holding member is provided in the electrolytic solution circulation passage forming member having spring properties, the electrolytic solution circulation passage is formed with the partition wall of the electrolytic cell as one surface and the partition wall. Since the position of the electrode from the bottom is adjustable, it is possible to form the electrolyte circulation path with the minimum necessary components, and to hold the electrode and conduct the conductive connection. A bipolar ion exchange membrane electrolytic cell is provided.
[0008]
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining a bipolar ion exchange membrane electrolytic cell of the present invention, and FIG. 1 (A) is a diagram in which a part of a cathode is cut away when the unit electrolytic cell is viewed from the cathode chamber side. FIG. 1B is a perspective view of the adjacent unit electrolytic cell in FIG. 1A cut along a cross section indicated by the line AA ′.
The unit cell 1 of the present invention has a cathode chamber 2 on one surface and an anode chamber 3 on the other surface. In each electrode chamber, a dish-shaped cathode chamber partition wall 4 and an anode chamber partition wall 5 are joined together to form a conductive connection, and an electrolytic cell frame 6 serving as a structural member provided around the unit electrolytic cell 1 The surface is also covered with extensions of the cathode chamber partition wall 4 and the anode chamber partition wall 5 to form a cathode side flange surface 7 and an anode side flange surface 8.
[0009]
A spring-like catholyte circulation passage forming member 9 is attached to the cathode chamber partition wall 4 to form a catholyte circulation passage 10 having the cathode chamber partition wall as one surface. The cross section of the catholyte circulation passage forming member 9 taken along a plane perpendicular to the flow direction of the catholyte circulation passage 10 is symmetrical and joined to the cathode chamber partition 4 at both end portions 11 and 12. . Further, by bending the plate-like body to form the mountain-shaped portions 13 and 14, the plate-like body has a spring property, and the central portion 15 is always urged to the opposite side to the cathode chamber partition wall 4. Become. Further, the central portion 15 has a top portion having a plane parallel to the cathode chamber partition wall, and has a trapezoidal portion 16 protruding from the mountain-shaped portions 13 and 14 on both sides, and is parallel to the partition wall of the trapezoidal portion 16. A cathode 17 is joined to the top, and the cathode is biased to the opposite side of the partition. Further, a gap holding member 18 is attached to the cathode partition wall side of the trapezoidal portion, and the catholyte circulation path forming member 5 is held by the gap holding member 18 even when the cathode is pressed. Therefore, no unrecoverable deformation occurs.
Also, a catholyte inflow pipe 19 is provided in the cathode chamber, and the catholyte is supplied from the catholyte inlet 20 to the cathode chamber and undergoes electrolysis.
[0010]
On the other hand, in the anode chamber 3, an anolyte circulation passage 21 for circulating the anolyte is formed with the anode chamber partition wall 5 as one surface, and the anode 22 is held and electrically connected between the anode chamber partition wall 5 and the anode 22. An anolyte circulation path forming member 23 is attached. The anolyte circulation path forming member 23 has both end portions 24 and 25 joined to the anode chamber partition wall 5 and is composed of a portion 26 perpendicular to the anode chamber partition wall 5 and a portion 27 parallel to the anode chamber partition wall 5. The anode 22 is held by the ridge 28.
As a result of making the pressure in the cathode chamber higher than the pressure in the anode chamber during the operation of the electrolytic cell, the cation exchange membrane 29 disposed between the anode chamber and the cathode chamber presses the surface of the anode 22, so that an anolyte circulation passage is formed. The member 23 is preferably attached by the portion 26 perpendicular to the anode chamber partition wall 5 as described above, and it is preferable that deformation does not occur with respect to the pressure from the cathode chamber side.
[0011]
Further, as shown in FIG. 1 (B), by arranging a portion 27 parallel to the anode chamber partition wall 5 at a distance from the anode surface, an ascending passage for the electrolyte can be formed on the back surface of the electrode. Further, the anolyte circulation passage forming member 22 may be provided with at least one anode spacing member 30 therein. By providing the anode spacing member 30, deformation due to pressure applied from the cathode chamber side to the anode chamber side can be reduced.
The bipolar ion exchange membrane electrolytic cell of the present invention is formed by laminating a plurality of the unit electrolytic cells described above, and at both ends, a cathode side end electrolytic cell having only a cathode chamber and an anode side end having only an anode chamber A partial electrolytic cell can be laminated and used.
[0012]
In the present invention, nickel, a nickel alloy, or the like can be used for the cathode chamber partition. The cathode is made of nickel, a nickel alloy porous body, a net, an expanded metal, or a base thereof, and the surface is coated with an electrode catalyst material such as a platinum group metal-containing layer, a Raney nickel-containing layer, or an activated carbon-containing nickel layer. Those formed and reduced in hydrogen overvoltage can be used. Moreover, the same material as the cathode chamber partition can be used for the catholyte circulation passage forming member.
On the other hand, a thin film forming metal such as titanium, tantalum or zirconium or an alloy thereof can be used for the anode chamber partition. As the anode, an anode in which a coating of an electrocatalytic substance containing a platinum group metal or an oxide of a platinum group metal is formed on the surface of a thin film forming metal such as titanium, tantalum or zirconium or an alloy thereof can be used. .
[0013]
In the bipolar ion exchange membrane electrolytic cell of the present invention, the anolyte circulation passage forming member is preferably 50 mm to 150 mm at both ends, and an anode spacing holding member is provided at the center, The distance between both ends can be the same size, and the catholyte circulation passage forming member can be bent using a member having a thickness of 0.1 mm to 0.5 mm to produce a spring-like member. it can.
When the electrolytic cell of the present invention is used for electrolysis of an aqueous solution of an alkali metal halide, for example, electrolysis of saline, saturated saline is supplied to the anode chamber, and water or dilute sodium hydroxide is supplied to the cathode chamber. The aqueous solution is supplied, electrolyzed at a predetermined decomposition rate, and then taken out from the electrolytic cell.
[0014]
FIG. 2 is a diagram for explaining the flow of the electrolytic solution during operation of the bipolar ion exchange membrane electrolytic cell of the present invention, and is a perspective view seen from the cathode chamber and the cathode chamber side with the partition wall of the electrolytic cell unit interposed therebetween. is there.
A catholyte circulation passage 10 is formed between the catholyte partition 4 and the catholyte circulation passage forming member 9 joined to the cathode chamber partition 4 of the electrolytic cell unit. The catholyte rises in the cathode chamber due to the flow of the catholyte flowing into the cathode chamber from the catholyte inlet 20 of the catholyte inlet tube 19 and the upward flow 31 generated by the rise of bubbles generated by electrolysis. The catholyte, which has been subjected to gas-liquid separation of the catholyte and the generated gas and has an increased apparent specific gravity, descends in the catholyte circulation passage 10 as a downward flow 32. Thus, as a result of the catholyte circulating in the cathode chamber, the concentration distribution of the catholyte is reduced in the cathode chamber.
[0015]
Further, in the anode chamber 3, the anolyte circulation passage 21 is formed with the anode chamber partition 5 as one surface by the anolyte circulation path forming member 23 joined to the anode chamber partition 5. Also in the anode chamber, the anolyte rises in the anode chamber by the anolyte flow and the upward flow 33 generated by the upward flow of bubbles generated by the electrolysis, and the anolyte and the generated gas are separated in the upper part of the anode chamber, and apparent The anolyte having an increased specific gravity descends as a downward flow 34 in the anolyte circulation passage 21, and the anolyte is sufficiently circulated in the anode chamber. The concentration distribution of the catholyte is distributed in the circulation cathode chamber. Even when the operation is performed at a large current density, the electrolysis can be efficiently performed.
[0016]
FIG. 3 is a diagram for explaining the operation of the catholyte circulation passage forming member of the electrolytic cell of the present invention.
FIG. 3A is a diagram for explaining the steady operation of the electrolytic cell. The catholyte circulation passage forming member 5 is positively charged by the normal differential pressure A because the pressure in the cathode chamber is higher than the pressure in the anode chamber. The ion exchange membrane 29 is pressed against the anode 22, and the cathode 17 is further urged by the spring-like catholyte circulation path forming member 9 and is brought into close contact with the cation exchange membrane 29.
[0017]
FIG. 3B is a diagram illustrating a case where the pressure in the anode chamber is higher than the pressure in the cathode chamber.
When the pressure in the cathode chamber and the anode chamber is reversed, the cation exchange membrane 29 is pressed from the anode chamber side to the cathode 17 side by the reverse pressure difference B. However, in the bipolar ion exchange membrane electrolytic cell of the present invention, the spring-like catholyte circulation passage forming member 9 has a spacing member 18. As a result, the cathode 17 joined to the trapezoidal portion 16 of the catholyte circulation passage forming member 9 deforms the catholyte circulation passage forming member 9, but is limited by the spacing holding member 18, so that the distance between the cathode and the cathode partition wall is reduced. Will not be shorter than the length of the spacing member 18. Moreover, since the spring-like catholyte circulation passage forming member 5 has the mountain-shaped portions 13 and 14 at positions symmetrical with respect to the center, the peaks of the mountain-shaped portions 13 and 14 are pressed when pressed. Thus, the cathode chamber partition wall is equally approached to the cathode chamber partition wall 4.
Therefore, if the catholyte circulation passage forming member is designed so that the cathode is in contact with the ridges 13 and 14 when the cathode is pressed and held by the spacing member 18, the pressure due to pressing is held at three places. The cathode does not deform, the catholyte circulation passage forming member does not deform irrecoverably, and even if a pressure abnormality occurs, it can be operated without problems if it recovers to steady operation. Can do.
[0018]
【The invention's effect】
According to the bipolar ion exchange membrane electrolytic cell of the present invention, in the electrolytic cell in which the electrolytic solution circulation path is formed by the springy member to hold the electrode and conduct conductive connection, the electrolytic solution made of the springy member Since the interval holding member is provided in the circulation path forming member, the electrolyte circulation path forming member is deformed in an irrecoverable manner even when the pressure is abnormal, and the electrolytic cell is not practically destroyed, and even if a pressure abnormality occurs. A bipolar ion exchange membrane electrolytic cell capable of maintaining the operating performance can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a bipolar ion exchange membrane electrolytic cell of the present invention.
FIG. 2 is a diagram for explaining the flow of the electrolytic solution during operation of the bipolar ion exchange membrane electrolytic cell of the present invention, as viewed from the cathode chamber and the cathode chamber with the partition wall of the electrolytic cell unit interposed therebetween. It is a perspective view.
FIG. 3 is a view for explaining the operation of the catholyte circulation passage forming member of the electrolytic cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell unit, 2 ... Cathode chamber, 3 ... Anode chamber, 4 ... Cathode chamber partition, 5 ... Anode chamber partition, 6 ... Electrolyzer frame, 7 ... Cathode side flange surface, 8 ... Anode side flange surface, 9 ... Catholyte circulation passage forming member, 10... Electrolyte circulation passage, 11, 12... End portion, 13, 14 ... Mountain portion, 15 ... Center portion, 16 ... Trapezoid portion, 17 ... Cathode, 18. Members 19, catholyte inflow pipes 20, catholyte inflow ports 21, anolyte circulation passages 22, anodes 23, anolyte circulation passage forming members 24, 25, both ends 26, vertical parts 27 ... Parallel part, 28 ... Projection strip, 29 ... Cation exchange membrane, 30 ... Anode spacing holding member, 31 ... Upflow, 32 ... Downflow, 33 ... Upflow, 34 ... Downflow

Claims (1)

複極式イオン交換膜電解槽において、単位電解槽の隔壁に電解液循環通路形成部材の中央部が隔壁側へ変形した状態で両端部が固定されて隔壁と反対方向へ付勢され、電解槽の隔壁を一つの面として電極室の垂直方向に伸びる電解液循環通路を形成し、電解液循環通路形成部材の隔壁と反対側の面に電極が取り付けられているとともに、電解液循環通路形成部材の隔壁側の面には、電解液循環通路が隔壁方向への押圧によって変形を回復しなくなる場合の隔壁との間隔よりも長さが長い間隔保持部材が設けられており、間隔保持部材を設けた台形状部の両側には、台形状部の頂点よりも高さが低い山状部を有し、間隔保持部材が隔壁に接した際に、間隔保持部材と山状部に電極が接し電極を保持することを特徴とする複極式イオン交換膜電解槽。  In a bipolar ion exchange membrane electrolytic cell, both ends are fixed to the partition wall of the unit electrolytic cell with the central part of the electrolyte circulation passage forming member deformed to the partition wall side, and are energized in the direction opposite to the partition wall. An electrolyte circulation passage extending in the vertical direction of the electrode chamber is formed with one partition wall as a surface, and an electrode is attached to the surface of the electrolyte circulation passage forming member opposite to the partition wall, and the electrolyte circulation passage forming member On the surface of the partition wall, there is provided a spacing member that is longer than the spacing with the partition wall when the electrolyte circulation passage does not recover deformation by pressing in the partition direction. On both sides of the trapezoidal portion, there are mountain-shaped portions whose height is lower than the apex of the trapezoidal portion, and when the spacing member contacts the partition wall, the electrode is in contact with the spacing member and the mountain-shaped portion. Bipolar ion exchange membrane electrolysis characterized by retention .
JP2000401421A 2000-12-28 2000-12-28 Bipolar ion exchange membrane electrolytic cell Expired - Fee Related JP3803248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401421A JP3803248B2 (en) 2000-12-28 2000-12-28 Bipolar ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401421A JP3803248B2 (en) 2000-12-28 2000-12-28 Bipolar ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JP2002206185A JP2002206185A (en) 2002-07-26
JP3803248B2 true JP3803248B2 (en) 2006-08-02

Family

ID=18865854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401421A Expired - Fee Related JP3803248B2 (en) 2000-12-28 2000-12-28 Bipolar ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP3803248B2 (en)

Also Published As

Publication number Publication date
JP2002206185A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
FI68429B (en) FOERFARANDE FOER FOERDELNING AV ELSTROEM I EN ELEKTROLYSANORDNING OCH ELEKTROLYSANORDNING
JP4453973B2 (en) Bipolar zero-gap electrolysis cell
JP4305929B2 (en) Ion exchange membrane electrolytic cell
JP4121137B2 (en) Ion exchange membrane electrolytic cell
KR100509300B1 (en) Ion exchange membrane electrolytic cell
JPS6353272B2 (en)
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
US6495006B1 (en) Bipolar ion exchange membrane electrolytic cell
JP5819790B2 (en) Electrolytic cell and electrolytic cell
US5221452A (en) Monopolar ion exchange membrane electrolytic cell assembly
US4608144A (en) Electrode and electrolytic cell
JP3501453B2 (en) Ion exchange membrane electrolytic cell
KR20030069871A (en) Ion exchange membrane electrolytic cell
JPS59133384A (en) Electrolytic cell
JP2020007607A (en) Electrode structure, electrolytic cell and electrolytic bath
JP3803248B2 (en) Bipolar ion exchange membrane electrolytic cell
TW531568B (en) Electrode structure
JP3807676B2 (en) Ion exchange membrane electrolytic cell
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JP6306879B2 (en) Manifold unit and electrolytic cell
JP3086854B1 (en) Gas diffusion electrode integrated with gas chamber
JPH05320970A (en) Ion exchange membrane electrolyzer
EP4446466A1 (en) Electrochemical electrode structure, electrochemical cell, and method of retrofitting a finite-gap electrochemical cell into a zero-gap type electrochemical cell
EP4446467A1 (en) Electrochemical electrode structure, electrochemical cell, bipolar electrode assembly, electrochemical cell arrangement, and method of attaching an electrode element to a supportive element of an electrochemical electrode structure for an electrochemical cell
CA1236424A (en) Foraminous anode and electrolysis cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees