JPS5837181A - Electrolytic cell for electrolysis of aqueous alkali metal chloride solution - Google Patents

Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Info

Publication number
JPS5837181A
JPS5837181A JP56135396A JP13539681A JPS5837181A JP S5837181 A JPS5837181 A JP S5837181A JP 56135396 A JP56135396 A JP 56135396A JP 13539681 A JP13539681 A JP 13539681A JP S5837181 A JPS5837181 A JP S5837181A
Authority
JP
Japan
Prior art keywords
cathode
membrane
electrolytic cell
cation exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56135396A
Other languages
Japanese (ja)
Other versions
JPS6367558B2 (en
Inventor
Yosuke Kakihara
柿原 陽助
Makoto Takenaka
誠 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP56135396A priority Critical patent/JPS5837181A/en
Publication of JPS5837181A publication Critical patent/JPS5837181A/en
Publication of JPS6367558B2 publication Critical patent/JPS6367558B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide an electrolytic cell for electrolysis of aq. alkali metal chloride solns. which prevents damaging of cation exchange membranes and has improved electrolyzing efficiency by interposing a porous metallic membrane having hydrogen overvoltage larger than that of a porous cathode between the cation exchange membrane and the cathode. CONSTITUTION:In an electrolytic cell, a clearance of about 0.5-5mm. is provided between a cation exchange membrane 8 and a porous cathode 4, and a porous metallic membrane 8 having hydrogen overvoltage larger than that of the cathode 4 made of Fe, Ni or an alloy contg. these is interposed therein. By such interposition, the membrane 3 is pressed to the anode side and the pressure in the cathode chamber is maintained higher than the pressure in the anode chamber during operation. A sufficient clearance is provided between the membrane 3 and the cathode 4, and an aq. caustic alkali soln. is passed therein to conduct the gaseous hydrogen between the membrane 3 and the cathode 4 to the space behind the cathode 4. The electrolyzing effect of the aq. alkali metal chloride soln. is improved by such mechanism.

Description

【発明の詳細な説明】 液の電解槽、特にナトリウム、カリウムなどのアルカリ
金属塩化物水溶骸の電解に供する電解槽に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid electrolytic cell, particularly an electrolytic cell used for electrolyzing aqueous alkali metal chlorides such as sodium and potassium.

更に詳しくは、所謂二室式の竪型電解槽であって、陽イ
オン交換膜と陰極との間に金属の隔膜を有することを特
徴とするものである。
More specifically, it is a so-called two-chamber vertical electrolytic cell, and is characterized by having a metal diaphragm between the cation exchange membrane and the cathode.

従来、アルカリ金属塩水溶液の電解方法として付し交換
膜法が知られている.更に耐久性のある陽イオン交換膜
の開発により、所請二室式電解槽が提案された。この型
式の電解槽は一般に陽、陰両極を多孔体とし、且つ両者
を比較的近接して設け、その間に陽イオン交換膜を存在
させると共に、各電極の背後に夫々陽極室空間及び陰極
室空間を持つ構造を基本とし、これらに種々の設計費更
を加えたものである。
Conventionally, the exchange membrane method has been known as a method for electrolyzing aqueous solutions of alkali metal salts. Furthermore, with the development of a more durable cation exchange membrane, a two-chamber electrolyzer was proposed. This type of electrolytic cell generally has a porous anode and a cathode, and they are placed relatively close to each other, with a cation exchange membrane between them, and an anode chamber space and a cathode chamber space behind each electrode. It is based on a structure with , and various design cost changes have been added to these.

種々の改良提案の例として、イオン交換膜を陽極側に近
付けるか又は陽極面上に密着させることにより、電解電
圧を下げること、イオン交換膜と陽極及び/又は陰極と
の関に網又はス〆し状のスペーサーを介在させるととく
よシ、気泡の滞溜を防止すること、又は、陽極と陰極と
を陽イ芽ン交換jI![金倉して密着させることにょシ
ミ極間距離を中小くし溶液の電気抵抗を可及的に小さく
するなどの提案がある。
Examples of various improvement proposals include lowering the electrolytic voltage by bringing the ion exchange membrane closer to the anode side or bringing it into close contact with the anode surface, and adding a net or strip between the ion exchange membrane and the anode and/or cathode. By interposing a wedge-shaped spacer, it is possible to prevent the accumulation of air bubbles, or to exchange the anode and cathode. [There are proposals to make the distance between the stain electrodes medium or small to make the electrical resistance of the solution as small as possible, as well as to bring them into close contact.

本発明は、陽イオン交換膜と、陰極背後に気液の流路を
有する多孔性陰極との間に、該陰極よりも水素過電圧が
大きい金属多孔質膜を介在させることを特徴とすゐイオ
ン交換膜法塩化アルカリ金属水溶液電解用電解槽である
The present invention is characterized in that a metal porous membrane having a higher hydrogen overvoltage than the cathode is interposed between a cation exchange membrane and a porous cathode having a gas-liquid flow path behind the cathode. This is an electrolytic cell for exchange membrane method aqueous alkali metal chloride solution electrolysis.

本発明の最大の特徴社陽イオン交換膜と陰極との関に、
蚊陰極よ)も水素過電圧の大きい金属多孔質膜を介在さ
せるととにある。
The main feature of the present invention is the relationship between the cation exchange membrane and the cathode.
(Mosquito cathode) is also possible by interposing a metal porous membrane with a large hydrogen overvoltage.

前記の如く、陽イオン交換膜と陰極OMJKスイーナー
を介在させるという提案はある。この場合の目的#′i
…陽イオン交換膜が陰極と接触し、損傷することを防止
すること、陽イオン交換膜を陽極側に押し中って電解時
の電極間電圧を低昨嬢GA及び陽イオン交換膜と陰極と
の間に十分間隙を持たせ、その間に苛性アルカリ水浴液
が流入し得るようにし、陽イオン交換膜と陰極間の水素
ガスを陰極背後の空間に導く如くしたものと考えられる
As mentioned above, there have been proposals to interpose a cation exchange membrane and a cathode OMJK sweeper. Purpose #'i in this case
...To prevent the cation exchange membrane from coming into contact with the cathode and damage it, and by pushing the cation exchange membrane toward the anode side, the voltage between the electrodes during electrolysis can be reduced between the GA and the cation exchange membrane and the cathode. It is thought that a sufficient gap was provided between the membranes so that the caustic alkaline water bathing solution could flow into the gap, and hydrogen gas between the cation exchange membrane and the cathode was introduced into the space behind the cathode.

従って先行技術に使用されるスペーサーは悉く非電導性
の物質であり、且つ極めて孔径の大きい、例えば目開き
が701以上の網状のものである。
Therefore, the spacers used in the prior art are all made of non-conductive materials and have extremely large pore diameters, for example, mesh-like spacers with a mesh size of 701 or more.

ま九別の技術として、陽イオン交換膜と陰極との間に補
助電極ともいうべき金属網を存在させ、これに電位をか
けるととKより、陰極上で発生した水酸イオンが陽イオ
ン交換膜側へ拡散するのを電気的反撥力により抑止しよ
うというものもある。
Another technique is to create a metal mesh, also known as an auxiliary electrode, between the cation exchange membrane and the cathode, and when a potential is applied to it, the hydroxide ions generated on the cathode undergo cation exchange. Some methods use electrical repulsion to suppress diffusion toward the membrane side.

この場合は陰極と該補助陰極との間に比較的大きい距離
、例えば!−10wm程度の間隔を必要とすること、及
び補助陰極は比較的大きい網目状金属で構成され、しか
もこれに陰極よりも、その絶対値において小さい電位が
別途付加されている。この形状社電極室の厚さの増大を
来たし、積層形などの集用電解槽とするには不向きでも
ある。
In this case there is a relatively large distance between the cathode and the auxiliary cathode, for example! The auxiliary cathode requires a spacing of about -10 wm, and the auxiliary cathode is made of a relatively large mesh metal, and furthermore, a potential smaller in absolute value than that of the cathode is separately added. This shape results in an increase in the thickness of the electrode chamber, and is not suitable for use as a multilayer electrolytic cell or the like.

本発明の好ましい態様は、陽極〜陰極間が0.5〜S■
更KFi−〜ダーの狭いものであることが特に1畳であ
り、陽イオン交換膜と、陰極との両方に接する如く、金
属膜を介在させる態様である。
In a preferred embodiment of the present invention, the distance between the anode and the cathode is 0.5 to S■
Furthermore, the narrow KFi is particularly one tatami mat size, and a metal membrane is interposed so as to be in contact with both the cation exchange membrane and the cathode.

本発明の蚊金属属は、陰極と接することにより陰′極と
同電位になる。しかるに、陰極よシも水素過電圧が大き
いため、それ自体陰極として機能することはない。
The mosquito metal of the present invention has the same potential as the cathode when it comes into contact with the cathode. However, since the cathode also has a large hydrogen overvoltage, it does not function as a cathode itself.

本発明にあっては、陰極面上で発生した水素ガスは、陰
極面から、極めて単時間のりちに離脱すること、これが
苛性アルカリ中では、比較的会合することなく、あたか
も乳化状態の如くなり、延いては陽イオン交換膜と水素
ガスとの染みの良さによって陽イオン交換膜面に付着し
、その通電面積を減するととになり:電解時の電圧の上
昇を来たすというメカニズムの解明により、陰極上で発
生した水素を可及的に陽イオン交換膜に接触させない手
段を検討した。その結果、従来の如く、非電導性物質の
スペーサ一様スリリーンにあっては、苛性アルカリ中で
陽イオン交換膜と同様これに水素気泡が着しるしく付着
することKより、結局陽イオン交換膜の場合と同様に1
有効通電面積を減するととKなることを知った。
In the present invention, the hydrogen gas generated on the cathode surface leaves the cathode surface very quickly, and in caustic alkali, it does not associate with each other relatively and becomes like an emulsified state. By elucidating the mechanism by which hydrogen gas adheres to the surface of the cation exchange membrane due to its good staining with hydrogen gas, reducing the current-carrying area causes an increase in voltage during electrolysis. We investigated ways to prevent the hydrogen generated on the cathode from coming into contact with the cation exchange membrane as much as possible. As a result, in the case of conventional non-conductive material spacers such as Thrilene, hydrogen bubbles tend to adhere to the cation exchange membrane in caustic alkali as well as the cation exchange membrane. 1 as in the case of
I learned that reducing the effective current-carrying area results in K.

しかるに金属にあっては、不思議なことに苛性アルカリ
水溶液中で水素との染が悪く、その表面に水素ガスが付
着する傾向が極めて少ないのである。更に陰極で発生し
た水素ガスが多孔性金属膜を通過して陽イオン交換膜に
達し、そこで膜面に付着するのを防止し得るに適した多
孔性金属の孔の状態を検討すると、一般に孔径が小さい
程良行表のは当然であるが、観察したとζろKよると孔
径が0.s■程度で十分であり、l■程度の孔径であっ
ても観察上十分効果が認められる。従って、一般に10
00μ以下の孔径が好ましい。またあま)に小さい孔径
を得るためには、通常これを構成する速蔽部分も一般に
増大するため、通常Sθ〜1000sの孔径のメツシュ
(金網)状膜を用いるのがよいであろう、ま九峡多孔性
金属膜の厚みは特に@定されないが一般にO,OS〜3
−程度で十分である。また骸膜が電解中に振動したり、
折れ曲ったシするおそれのある場合は、これを陰極上に
溶接その他の手段で固定することも場合によっては有効
である。
However, strangely, metals do not stain well with hydrogen in aqueous caustic alkali solutions, and there is very little tendency for hydrogen gas to adhere to their surfaces. Furthermore, when considering the state of the pores of a porous metal that is suitable for preventing hydrogen gas generated at the cathode from passing through the porous metal membrane, reaching the cation exchange membrane, and adhering to the membrane surface, it is generally found that the pore size It is natural that the smaller the pore size, the better the performance, but when observed, the pore diameter is 0. A pore diameter of approximately s■ is sufficient, and even a pore diameter of approximately 1■ is observed to be sufficiently effective. Therefore, generally 10
A pore size of 00 μm or less is preferred. In addition, in order to obtain a very small pore diameter, the fast shielding part that constitutes this usually increases, so it is usually better to use a mesh membrane with a pore diameter of Sθ ~ 1000 s. The thickness of the porous metal film is not particularly determined, but is generally O, OS ~ 3.
- degree is sufficient. Also, the skeleton membrane vibrates during electrolysis,
If there is a risk of bending, it may be effective to fix it on the cathode by welding or other means.

ま次本発明の多孔性金属膜の材質は、陰極との相対的関
係で決まり、陰極より水素過電圧が大きいものであるこ
とが必須であり、厳密には、陰極と陽イオン交換膜との
間に苛性アルカリ水4溶液中の電位差と陰極過電圧との
代数和よシも大きい水素過電圧を有する科質であるのが
好ましいが、一般に#水溶液の電位差は20〜μ(7m
V/1uに過ぎず、これを無視して、材質を選定しても
現実に重畳な支障を生じない。勿論、蚊多孔性金属膜の
厚みの大きい場合例えば2〜.7m1Kもなる場合は、
該厚みKよる溶液中の電位差を考慮するのが望ましい、
このような材質の例は軟鋼陰極にあっては二/ケル又は
ステンレス等のニッケル合金類s、アルミニウムなどが
、また軟鋼よシも水素過電圧を小さくシ次陰極例えば白
金、フジラム、タングステン、金、又はこれらを陰極と
しての基材金属上にメッキした陰極、又は硫黄分を含有
するニッケル層よりなるニッケルメッキした陰極などの
場合には、軟鋼又はニッケル等が多孔性金属膜として使
用される。
Second, the material of the porous metal membrane of the present invention is determined by its relative relationship with the cathode, and it is essential that the material has a larger hydrogen overvoltage than the cathode. It is preferable that the material has a hydrogen overvoltage that is larger than the algebraic sum of the potential difference in the caustic alkaline aqueous solution and the cathode overvoltage, but in general, the potential difference in the #aqueous solution is 20~μ (7 m
It is only V/1u, and even if this is ignored and the material is selected, no superimposed problems will actually occur. Of course, if the thickness of the mosquito porous metal membrane is large, for example 2~. If it is as much as 7m1K,
It is desirable to consider the potential difference in the solution depending on the thickness K.
Examples of such materials are nickel alloys such as 2/Kel or stainless steel for mild steel cathodes, aluminum, etc., and secondary cathodes such as platinum, Fujiram, tungsten, gold, Alternatively, in the case of a cathode in which these are plated on a base metal as a cathode, or a nickel-plated cathode consisting of a sulfur-containing nickel layer, mild steel, nickel, or the like is used as the porous metal film.

一般には、鉄、ニッケル、ステンレス鋼の金網を用い、
陰極とし、鉄よりも低い水素過電圧を有する陰極、例え
ば、鉄などの陰極基体上に銅メッキを施すか又は施すこ
となく、ロダンニッケルを含むメッキ浴により電気メッ
キしたものなどを用いるのが好ましい6゜ 図面を用いて、更に詳細に説明する、liK/図は従来
のイオン交換膜法堅型電解槽、例えばフィルターブレス
型バイポーラ電槽の一部の断面図である。電解槽枠1.
1′と隔壁!i、2’とによって構成される部分逅一つ
の巣位電槽であり陽イオン交換膜8を挾んで、4が陰極
、6が陽極である。また6、7は夫々陰極及び陽極へ電
気を供給するための電導リプであり、各隔壁と電極間の
空間が夫々各室液及びガスの流路となる陰極室及び陽極
室である。
Generally, iron, nickel, or stainless steel wire mesh is used.
As a cathode, it is preferable to use a cathode having a hydrogen overvoltage lower than that of iron, for example, a cathode substrate made of iron or the like, electroplated with or without copper plating in a plating bath containing rhodan nickel. This will be explained in more detail with reference to the drawings. Figure 1 is a sectional view of a part of a conventional ion-exchange membrane type rigid electrolytic cell, such as a filter breath type bipolar cell. Electrolytic tank frame 1.
1′ and bulkhead! 1 and 2', with a cation exchange membrane 8 sandwiched between them, 4 being a cathode and 6 being an anode. Further, 6 and 7 are conductive lips for supplying electricity to the cathode and the anode, respectively, and the spaces between the partition walls and the electrodes are a cathode chamber and an anode chamber, respectively, which serve as flow paths for the liquid and gas in the chambers.

勿論本発明はバイポーラ型電解槽に限定されるものでは
なく、原理的に第1図の単位電槽を構成するものであれ
ばよい。第二図は、本発明の電解槽の一例の一部断面図
であり、第1図に対応するものである0本図において、
8が多孔性金属膜である。この状態を一層明らかに示す
のが第3図である。第3図は第2図の断面とは直角方向
に切った断面の一部を示す図である。このように陽極と
陰極の狭い間隙に好ましくは005〜5m、特に/〜グ
簡の間に陽イオン交換膜と陰極との間に多孔性金属膜が
ほぼ−ばいの状態で存在する形態において本発明は著効
を示す。即ち、陽イオン交換膜を陽極側に押し付は固定
させる効果も付加される。更に本発明の電解槽はその運
転時に#1極室圧を陽極室圧よりもコOO〜400■水
柱更には3!5’0−1750■水柱高く保つのが一層
効果を上げる。
Of course, the present invention is not limited to bipolar electrolytic cells, but any electrolytic cell that can basically constitute the unit cell shown in FIG. 1 may be used. FIG. 2 is a partial cross-sectional view of an example of the electrolytic cell of the present invention, and in this figure, which corresponds to FIG.
8 is a porous metal film. FIG. 3 shows this state more clearly. FIG. 3 is a diagram showing a part of a cross section taken in a direction perpendicular to the cross section of FIG. 2. FIG. In this embodiment, the porous metal membrane is present between the cation exchange membrane and the cathode in a narrow gap between the anode and the cathode, preferably between 005 and 5 m, and especially between the cation exchange membrane and the cathode. The invention shows its effectiveness. That is, the effect of pressing and fixing the cation exchange membrane on the anode side is also added. Furthermore, the electrolytic cell of the present invention is more effective if the pressure in the #1 electrode chamber is kept higher than the pressure in the anode chamber by 00 to 400 μm water column, or even 35'0 to 1750 μm water column, during operation.

以下に本発明の電解槽の使用例を示す。Examples of use of the electrolytic cell of the present invention are shown below.

例/ 通電面積/ g dm の電解槽であって、陽極はチタ
ンラス上に酸化ルテニウムをコーティングしたものを、
を九陰極は軟鋼ラス止に常法により銅メーツキし、更に
この上にロダンニッケル浴による電気メッキを行ったも
のを用いた。(このメッキ層についてX線マイクロアナ
ライザーにより硫黄分が存することを確認した。)極間
距離3wa、各々電極の背後に各々ユ5−の空間を有す
る構造である。
Example: An electrolytic cell with current-carrying area/g dm, the anode is a titanium lath coated with ruthenium oxide,
The nine cathodes were made of mild steel lath plated with copper by a conventional method, and further electroplated using a Rodan nickel bath. (The presence of sulfur in this plating layer was confirmed using an X-ray microanalyzer.) The structure had a distance of 3 wa between the electrodes and a space of 5 wa behind each electrode.

陽イオン交換膜として、7147社製すフイオン(商品
名)のスルホン酸基を、該膜の一方の表面のみ、五酸化
りん処理によりスルホニルクロリドとし、これを酸化し
て、カルゲン酸基に交換したもの(EW=/10O)を
用いた。
As a cation exchange membrane, the sulfonic acid group of Fion (trade name) manufactured by 7147 was converted to sulfonyl chloride by treating only one surface of the membrane with phosphorus pentoxide, and this was oxidized to exchange it with calgenic acid group. (EW=/10O) was used.

陰極2陽イオン交換膜との間にステンレス製のざOメツ
シュ平織網(線径0./Sum)の多孔性金属膜を存在
させた場合とこれを除い一#:、場合との食塩電解にお
ける各デ′−夕及び電解条件を表/に示す。
In salt electrolysis in the case where a porous metal membrane of stainless steel O-mesh plain woven mesh (wire diameter 0./Sum) was present between the cathode 2 cation exchange membrane and the case in which it was excluded. The respective data and electrolytic conditions are shown in Table/.

表   / 例コ 例1の電解槽を用い、種々の目開きの軟鋼製平織金網を
用いて同様の実験を行った。結果を表2に示す。
Table/Example Using the electrolytic cell of Example 1, similar experiments were conducted using mild steel plain-woven wire meshes with various openings. The results are shown in Table 2.

表   コ 第1図は従来の竪型イオン交換膜電解槽の一単位電槽の
断面図であり、第2図は本発明の電解槽の第1図に対応
する部分の断面図であり、第3図は第2図における断面
と直角方向に切った一部の断面図である。
Figure 1 is a cross-sectional view of a conventional vertical ion exchange membrane electrolyzer, and Figure 2 is a cross-sectional view of a portion of the electrolytic cell of the present invention corresponding to Figure 1. FIG. 3 is a partial sectional view taken perpendicular to the cross section in FIG. 2.

′  図中、1.1′は電解槽枠、z、2′は隔壁、3
は陽イオン交換膜、令は陰極、5は陽極、6.7は夫々
リブを表す。
' In the figure, 1.1' is the electrolytic cell frame, z, 2' are the partition walls, and 3
is a cation exchange membrane, 5 is a cathode, 5 is an anode, and 6 and 7 are ribs, respectively.

特許出願人 徳山曹達株式会社 岸2a 才312 片/昭patent applicant Tokuyama Soda Co., Ltd. Shore 2a 312 years old Kata/Akira

Claims (1)

【特許請求の範囲】 11+  陽イオン交換膜と陰極背後に気、液の流路を
有する多孔性陰極との間に、#陰極よりも水素過電圧が
大きい金属多孔質膜を介在させゐことを特徴とするイオ
ン交換膜法塩化アルカリ金属水溶液電解用電解槽 4り  金属多孔質膜が鉄、ニッケ°ル又はこれらを含
む合金のうちから選ばれた1種の金属で構成され、陰極
が鉄よりも、低い水素過電圧を有することを特徴とする
特許請求01!@I第(1)項記載の電解槽 +3)  金属多孔質膜が鉄、ニッケル又はヒれらを含
む合金のうちから選ばれたlsの金属で構球され、陰極
が基体上に會硫ニッケル化合物を用いてメッキされ九表
面を有することを特徴とする特許請求OI1m!第(2
)項記載の電解槽(41陽極と陰極との間隙はQ、j〜
5−である特許請求の範囲第(1)項記載の電解槽
[Claims] 11+ A metal porous membrane having a higher hydrogen overvoltage than the cathode is interposed between the cation exchange membrane and the porous cathode having air and liquid flow paths behind the cathode. 4 electrolytic cells for aqueous electrolysis of alkali metal chloride using the ion-exchange membrane method.The metal porous membrane is made of one metal selected from iron, nickel, or an alloy containing these, and the cathode is made of iron, nickel, or an alloy containing these metals. , Claim 01 is characterized in that it has a low hydrogen overvoltage! Electrolytic cell described in @I, item (1) Patent claim OI1m, characterized in that it is plated with a compound and has nine surfaces! No. (2nd
) The gap between the anode and cathode is Q, j~
5- The electrolytic cell according to claim (1)
JP56135396A 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution Granted JPS5837181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135396A JPS5837181A (en) 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135396A JPS5837181A (en) 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Publications (2)

Publication Number Publication Date
JPS5837181A true JPS5837181A (en) 1983-03-04
JPS6367558B2 JPS6367558B2 (en) 1988-12-26

Family

ID=15150730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135396A Granted JPS5837181A (en) 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Country Status (1)

Country Link
JP (1) JPS5837181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124125A2 (en) * 1983-05-02 1984-11-07 De Nora Permelec S.P.A. Electrolysis cell and method of generating halogen
JPH07173663A (en) * 1991-02-20 1995-07-11 O D S:Kk Electrolytic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124125A2 (en) * 1983-05-02 1984-11-07 De Nora Permelec S.P.A. Electrolysis cell and method of generating halogen
EP0124125A3 (en) * 1983-05-02 1985-05-15 Oronzio De Nora Impianti Elettrochimici S.P.A. Electrolysis cell and method of generating halogen
JPH07173663A (en) * 1991-02-20 1995-07-11 O D S:Kk Electrolytic device

Also Published As

Publication number Publication date
JPS6367558B2 (en) 1988-12-26

Similar Documents

Publication Publication Date Title
US4381979A (en) Electrolysis cell and method of generating halogen
JPS6315354B2 (en)
JPS61166990A (en) Electrolytic apparatus
JPS629674B2 (en)
EP0050373B1 (en) Electrolysis cell and method of generating halogen
JPS59133384A (en) Electrolytic cell
JPH1081987A (en) Gas diffusion cathode and brine electrolyzing cell using this gas diffusion cathode
US4936972A (en) Membrane electrolyzer
NL8205018A (en) MULTIPLE LAYER STRUCTURE FOR ELECTRODE AND MEMBRANE ASSEMBLY AND ELECTROLYSIS METHOD USING THE SAME.
JPH11106977A (en) Bipolar type ion exchange membrane electrolytic cell
JPS5837181A (en) Electrolytic cell for electrolysis of aqueous alkali metal chloride solution
US3849280A (en) Electrolytic cell including means for preventing atomic hydrogen attack of the titanium backplate member
US3945907A (en) Electrolytic cell having rhenium coated cathodes
JP2002273428A (en) Electrolytic water generator
US4339323A (en) Bipolar electrolyzer element
JP3110720B2 (en) Gas-liquid separation method in an ion exchange membrane electrolytic cell
US4177118A (en) Process for electrolyzing water
JPH05320970A (en) Ion exchange membrane electrolyzer
US6165333A (en) Cathode assembly and method of reactivation
JP2020007607A (en) Electrode structure, electrolytic cell and electrolytic bath
JPS5896886A (en) Electrolyzing method for aqueous alkali metal salt solution
JPH06192869A (en) Electrolytic cell
JP3008953B2 (en) Ion-exchange membrane electrolytic cell
US10815578B2 (en) Catalyzed cushion layer in a multi-layer electrode
JP3803248B2 (en) Bipolar ion exchange membrane electrolytic cell