JP3110720B2 - Gas-liquid separation method in an ion exchange membrane electrolytic cell - Google Patents

Gas-liquid separation method in an ion exchange membrane electrolytic cell

Info

Publication number
JP3110720B2
JP3110720B2 JP10200729A JP20072998A JP3110720B2 JP 3110720 B2 JP3110720 B2 JP 3110720B2 JP 10200729 A JP10200729 A JP 10200729A JP 20072998 A JP20072998 A JP 20072998A JP 3110720 B2 JP3110720 B2 JP 3110720B2
Authority
JP
Japan
Prior art keywords
gas
electrolytic cell
electrode
exchange membrane
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10200729A
Other languages
Japanese (ja)
Other versions
JPH1171693A (en
Inventor
弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP10200729A priority Critical patent/JP3110720B2/en
Publication of JPH1171693A publication Critical patent/JPH1171693A/en
Application granted granted Critical
Publication of JP3110720B2 publication Critical patent/JP3110720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電解槽における気液
分離方法に関し、とくにイオン交換膜法塩化アルカリ電
解槽の如く電解反応によって発生した気泡を含む電解液
の電極室上部において気液分離を行う気液分離方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid separation method in an electrolytic cell, and more particularly to a method for performing gas-liquid separation at an upper portion of an electrode chamber of an electrolytic solution containing bubbles generated by an electrolytic reaction as in an ion-exchange membrane alkali chloride electrolytic cell. The present invention relates to a gas-liquid separation method.

【0002】[0002]

【従来の技術】イオン交換膜法フィルタープレス型電解
槽は食塩水の電気分解による塩素と苛性ソーダの製造を
始めとして、有機電解、海水電解等に広く用いられてい
る。フィルタープレス型電解槽は陽極室と陰極室の隔壁
を、導電部材を介して、あるいは圧接等の手段により電
気的及び機械的に結合した複極式電解槽ユニットを陽イ
オン交換膜を挟持して多数積層し、両端には陽極あるい
は陰極のいずれかを片面に有する端部電解槽ユニットを
積層して油圧式プレス等で固定した複極式フィルタープ
レス型電解槽があり、また額縁状の電極室枠の両面に陽
極もしくは陰極を有する陽極室ユニットと陰極室ユニッ
トを陽イオン交換膜を介して多数積層し、両端部には片
面のみ陽極または陰極を有する端部極室ユニットを積層
した単極式フィルタープレス型電解槽がある。
2. Description of the Related Art An ion exchange membrane filter press type electrolytic cell is widely used for the production of chlorine and caustic soda by electrolysis of saline solution, organic electrolysis, seawater electrolysis and the like. The filter press type electrolytic cell sandwiches a cation exchange membrane with a bipolar electrolytic cell unit in which the partition walls of the anode chamber and the cathode chamber are electrically and mechanically connected via a conductive member or by means such as pressure welding. There is a multi-pole filter press type electrolytic cell in which a large number of layers are laminated, and an end electrolytic cell unit having either an anode or a cathode on one side is fixed and fixed with a hydraulic press or the like. A monopolar type in which a large number of anode chamber units and cathode chamber units having an anode or a cathode on both sides of a frame are laminated via a cation exchange membrane, and an end pole chamber unit having an anode or a cathode on only one side is laminated on both ends. There is a filter press type electrolytic cell.

【0003】イオン交換膜法食塩電解槽においては陽極
では塩素ガスが発生し、陰極では高濃度の水酸化ナトリ
ウムと水素が生成するので陽極室には表面に安定な不働
態化被膜を形成する耐食性の優れたチタンあるいはその
合金を使用しており、陰極室には水素を吸収して脆化す
るチタンに代えて耐アルカリ性のニッケル、ステンレス
等の鉄系の金属あるいはその合金を使用している。ま
た、それぞれの電極室には隔壁に結合した導電リブに陽
極と陰極を取り付けており、側壁には電解液供給ノズル
と濃度が低下もしくは上昇した電解液、電解反応の生成
物である気体、気泡を混合した電解液の排出ノズルが設
けられている。
[0003] In an ion exchange membrane method salt electrolyzer, chlorine gas is generated at the anode, and high concentration sodium hydroxide and hydrogen are generated at the cathode, so that a stable passivation film is formed on the surface of the anode chamber in corrosion resistance. In the cathode chamber, an alkali-resistant iron-based metal such as nickel or stainless steel or an alloy thereof is used in place of titanium which absorbs hydrogen and becomes brittle. In each electrode chamber, an anode and a cathode are attached to a conductive rib connected to a partition, and an electrolyte supply nozzle and an electrolyte with a reduced or increased concentration, a gas as a product of an electrolytic reaction, and air bubbles are provided on a side wall. Is provided with a discharge nozzle for the electrolytic solution mixed with.

【0004】陽極にはチタン等の多孔板、エキスパンデ
ッドメタル等を基材としてその表面にルテニウム、イリ
ジウム、パラジウム等の白金族の金属の酸化物等を被覆
した陽極が用いられている。陰極には鉄、ステンレス又
はニッケル等の多孔板、エキスパンデッドメタル等を基
材として、その表面をニッケル系、白金族金属系等の陰
極触媒物質によって被覆した陰極が使用されている。ま
た、イオン交換膜には、スルホン酸基、カルボン酸基等
を有するフッ素樹脂系の陽イオン交換膜が使用されてい
る。
[0004] As the anode, a perforated plate such as titanium, an expanded metal or the like as a base material, the surface of which is coated with an oxide of a platinum group metal such as ruthenium, iridium or palladium is used. As the cathode, there is used a cathode whose base material is a porous plate of iron, stainless steel, nickel or the like, expanded metal, or the like, and whose surface is coated with a cathode catalyst material such as a nickel-based or platinum group metal-based. As the ion exchange membrane, a fluorinated resin-based cation exchange membrane having a sulfonic acid group, a carboxylic acid group and the like is used.

【0005】[0005]

【発明が解決しようとする課題】フィルタープレス式イ
オン交換膜法電解槽において、食塩の電気分解などのよ
うに気体が発生する電気分解反応を行うと、気泡を含む
陽極液又は陰極液を電極室から抜き出す時気泡に起因す
る電極室内圧力の変動が生じる。
In an electrolytic cell of a filter press type ion-exchange membrane method, when an electrolysis reaction such as electrolysis of salt is performed to generate a gas, an anolyte or a catholyte containing bubbles is converted into an electrode chamber. When the air is extracted from the electrode, the pressure in the electrode chamber fluctuates due to the bubbles.

【0006】一般に用いられている縦型の塩化アルカリ
電解槽の電極室内における陽極液又は陰極液は電極で発
生した気泡によって上部ほど気泡の割合である気泡率が
増大し、電極室液の上層部近くになると気泡が集合して
泡沫層となり最上部に泡沫から分離した気体からなる気
相を形成している。その結果、電極室上部より電解液及
び発生気体を排出しようとすると流出状態は気液混相、
液相と気相が入り混じった気泡流、管路を閉塞するプラ
グ流、波状流などによる電極室内圧力を変動させる複雑
な流れを生じる。特に陽極室側で形成される塩素気泡
は、塩水粘度、表面張力などに起因して、陰極室側で苛
性ソーダと水素から形成される水素気泡に比べて気泡が
消えにくく、陽極室内の圧力変動を引き起こす。このた
め、陽極室内の圧力変動は、電解条件によって異なるが
50〜200mmH2O 、場合によっては300mmH
2O を超え、イオン交換膜を常時振動させて電極面と接
触したり離れることを繰り返し、陽イオン交換膜の表面
に摩擦による傷を生じ、また振動による疲労のために陽
イオン交換膜に亀裂が生じることが起こる。その結果、
陽イオン交換膜の特性が劣化するとともに、一般には電
極室内の圧力が高い陰極室内から陽極室内へ流入するア
ルカリによる電極の損傷を生じて電極の寿命に悪影響を
及ぼすこととなる。
[0006] The anolyte or catholyte in the electrode chamber of a generally used vertical alkaline chloride electrolyzer has a higher bubble ratio, which is the proportion of bubbles, toward the upper part due to bubbles generated at the electrode. As the air bubbles get closer, the air bubbles gather to form a foam layer, and a gas phase formed of gas separated from the foam is formed at the top. As a result, when trying to discharge the electrolyte and generated gas from the upper part of the electrode chamber, the outflow state is a gas-liquid mixed phase,
A complicated flow that fluctuates the pressure in the electrode chamber is generated by a bubble flow in which a liquid phase and a gas phase are mixed, a plug flow that blocks a pipe, and a wavy flow. In particular, chlorine bubbles formed on the anode chamber side are less likely to disappear than hydrogen bubbles formed from caustic soda and hydrogen on the cathode chamber side due to salt water viscosity, surface tension, etc. cause. Therefore, pressure fluctuation in the anode chamber, is different 50~200mmH 2 O, optionally by electrolysis conditions 300mmH
Over 2 O, the ion exchange membrane constantly vibrates and repeatedly comes into contact with and separates from the electrode surface, causing frictional damage on the surface of the cation exchange membrane, and cracking of the cation exchange membrane due to fatigue due to vibration. Occurs. as a result,
The characteristics of the cation exchange membrane are degraded, and the electrode is generally damaged by alkali flowing into the anode chamber from the cathode chamber where the pressure in the electrode chamber is high, which adversely affects the life of the electrode.

【0007】そこで、食塩水のイオン交換膜法電解槽に
おいては、陰極室の圧力を陽極室圧力の変動最大値より
大きく保って膜を常時陽極面に圧着して振動を防止する
方法、電極室上部に電解液面より高いチャンバーを設
け、チャンバー内に気液分離ゾーンを形成し、チャンバ
ー内において自然消泡して波状流、成層流として側壁の
排出ノズルより取り出す方法、実開平2−17013号
公報に示されている如き電極室上壁にその内面より30
mm以上内部に開口させ、ノズル内の液流速が0.5な
いし20m/秒となるノズルを設ける方法等が提案され
ている。
Therefore, in a saline ion-exchange membrane electrolytic cell, a method of keeping the pressure of the cathode chamber larger than the maximum fluctuation value of the anode chamber pressure and constantly pressing the membrane against the anode surface to prevent vibration is provided. A method in which a chamber higher than the level of the electrolyte is provided at the upper part, a gas-liquid separation zone is formed in the chamber, and the bubbles are spontaneously defoamed in the chamber and taken out as a wavy flow or a stratified flow from the discharge nozzle on the side wall. In the upper wall of the electrode chamber as shown in the publication,
There has been proposed a method of providing a nozzle which is opened to the inside by not less than mm and has a liquid flow rate in the nozzle of 0.5 to 20 m / sec.

【0008】しかしながら、陽極室圧力変動の最大値よ
り大きい圧力を陰極室に付加する方法は膜がエキスパン
デッドメタルもしくは多孔板からなる陽極表面を常に過
度に圧着し、陽極の開孔部に食い込むため塩素発生の陽
極過電圧を大きくし電解槽電圧を数〜10数mV高めて
電力の損失を招くだけでなく、長期的にみれば陰極側か
ら逆泳動するアルカリによる陽極の触媒活性被覆の浸食
も、陰極加圧の圧力が小さい場合に比して大きく電極の
寿命を短くする欠点がある。
However, in the method of applying a pressure larger than the maximum value of the pressure fluctuation of the anode chamber to the cathode chamber, the membrane always excessively presses the anode surface made of expanded metal or perforated plate, and cuts into the opening of the anode. Therefore, not only the anode overvoltage of chlorine generation is increased and the electrolytic cell voltage is increased by several to several tens of mV to cause power loss, but also in the long term, the erosion of the catalytically active coating of the anode due to alkali reversely migrating from the cathode side. However, there is a disadvantage that the life of the electrode is shortened largely as compared with the case where the pressure of the cathode pressurization is small.

【0009】電極室の上部を高くして気液分離ゾーンを
設ける方法は圧力変動防止に有効であるが、電極室の容
量の増加分の材料費、加工費が高価となるきらいがあ
る。さらに、電極室の上部の壁面より排出ノズルを差し
込む方法は、発生ガス量と電極室内での電解液の循環量
の比率によって、排出ノズルの大きさ等を定める必要が
あるために電解槽の運転の自由度が小さく、また複極式
電解槽ではとくに、排出ノズルを通して流れるリーク電
流による腐食防止の対策が必要となる。
Although a method of providing a gas-liquid separation zone by raising the upper part of the electrode chamber is effective for preventing pressure fluctuation, the material cost and the processing cost for the increase in the capacity of the electrode chamber are likely to be high. Furthermore, the method of inserting the discharge nozzle from the upper wall surface of the electrode chamber requires the operation of the electrolytic cell because it is necessary to determine the size of the discharge nozzle according to the ratio of the amount of generated gas and the circulation amount of the electrolyte in the electrode chamber. In the case of a bipolar electrolytic cell, it is necessary to take measures to prevent corrosion due to leak current flowing through the discharge nozzle.

【0010】さらに、排出ノズルによる方法では、電極
室の上部のイオン交換膜の表面が乾燥状態となり、陽イ
オン交換膜を透過する気体状の塩素によって陽イオン交
換膜が悪影響を受けるので、電極室の上部の隔壁面に陽
イオン交換膜表面を湿潤状態に保持するための電解液の
溢流する堰を溶接等によって設ける必要であることが明
らかにされている(「ソーダと塩素」第41巻第4号第
18ページ(1990年4月))。
Further, in the method using a discharge nozzle, the surface of the ion exchange membrane at the upper part of the electrode chamber is in a dry state, and the gaseous chlorine permeating the cation exchange membrane adversely affects the cation exchange membrane. It has been clarified that it is necessary to provide, by welding or the like, a weir for overflowing the electrolyte in order to keep the surface of the cation exchange membrane in a wet state on the upper partition wall surface (see "Soda and Chlorine" Vol. 41). No. 4, page 18 (April 1990)).

【0011】一方、複極式電解槽の鍋状の電極室をチタ
ン、ニッケル、ステンレス等の薄板を使用して金型プレ
スにより製作する方法は、製造が容易であり量産性が大
であるため、電解槽のコスト低減に極めて有効であるの
で好ましい製作方法であるが、これに気液分離チャンバ
ーを継ぎ足したり、堰等を溶接によって取り付けること
はプレス成型の特徴を失うこととなる。
On the other hand, a method of manufacturing a pot-like electrode chamber of a bipolar electrolytic cell using a thin plate made of titanium, nickel, stainless steel or the like by a die press is easy to manufacture and has high mass productivity. This is a preferable manufacturing method because it is extremely effective in reducing the cost of the electrolytic cell. However, adding a gas-liquid separation chamber or attaching a weir or the like by welding loses the characteristics of press molding.

【0012】[0012]

【課題を解決するための手段】本発明は、イオン交換膜
電解槽における気液分離方法において、電極室内で発生
した気液混合物を、電解槽上部に形成した電極面に平行
で、断面積が小さな通路を上昇させた後に、間隙から放
出することによって、断面積が小さな通路への流入によ
る圧縮と間隙からの放出による減圧によって気液分離を
行うイオン交換膜電解槽における気液分離方法である。
また、電解槽上部に形成した通路の一方の面が上部が開
口したU型管路の側壁によって形成されるとともに、間
隙がU型管路の側壁とU型管路の上部に設けた壁面との
間に形成されたものであって、U型管路に放出される際
に気液分離されるイオン交換膜電解槽における気液分離
方法である。
According to the present invention, there is provided a gas-liquid separation method for an ion-exchange membrane electrolytic cell, wherein a gas-liquid mixture generated in an electrode chamber is parallel to an electrode surface formed on the upper part of the electrolytic cell and has a cross-sectional area. This is a gas-liquid separation method in an ion-exchange membrane electrolytic cell in which a small passage is discharged from a gap and then discharged from a gap, thereby performing gas-liquid separation by compression due to inflow into the passage having a small cross-sectional area and decompression due to discharge from the gap. .
In addition, one surface of the passage formed in the upper part of the electrolytic cell is formed by the side wall of the U-shaped pipe whose upper part is open, and the gap is formed by the side wall of the U-shaped pipe and the wall provided on the upper part of the U-shaped pipe. And a gas-liquid separation method in an ion-exchange membrane electrolytic cell that performs gas-liquid separation when discharged into a U-shaped conduit.

【0013】[0013]

【発明の実施の形態】本発明の気液分離方法は、電極室
内で発生した気液混合物を、電解槽上部に形成した電極
面に平行で、断面積が小さな通路を上昇させた後に、間
隙から放出することによって、断面積が小さな通路への
流入による圧縮と間隙からの放出による減圧によって気
液分離を行うイオン交換膜電解槽における気液分離方法
である。そして、電極室の上部に設けた断面がU字状の
上面が開口した管路により、電極室の上部空間が狭めら
れる結果、気泡を含む電解液の流路が狭くなり、気泡は
接触合一拡大して、電極室の上部の壁面と管路の側壁と
の間で形成された狭い間隙から圧縮されて管路中へ流入
する。流入の際拡大した気泡の多くは圧縮と圧力の変化
によって破裂して管路内を残留する泡沫を含む電解液と
気体が排出ノズルに向かって流れる。また、管路中にお
いて気泡が泡沫に閉塞された場合には管路の側壁に設け
た連通路によってU型管路と隔壁との間に形成された空
間へ気体を流入させ排出ノズルにバイパスさせることが
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The gas-liquid separation method according to the present invention is characterized in that a gas-liquid mixture generated in an electrode chamber is raised in a passage having a small cross-sectional area parallel to an electrode surface formed on the upper part of an electrolytic cell. Is a gas-liquid separation method in an ion-exchange membrane electrolytic cell in which gas-liquid separation is performed by compression due to inflow into a passage having a small cross-sectional area and pressure reduction due to discharge from a gap. Then, the upper space of the electrode chamber is narrowed by the conduit having a U-shaped cross section provided at the upper part of the electrode chamber, and as a result, the flow path of the electrolytic solution containing air bubbles is narrowed, and the air bubbles are brought into contact with each other. It expands and is compressed from a narrow gap formed between the upper wall surface of the electrode chamber and the side wall of the conduit and flows into the conduit. Many of the bubbles expanded during the inflow burst due to the change in compression and pressure, and the electrolyte and gas containing bubbles remaining in the pipe flow toward the discharge nozzle. Further, when air bubbles are clogged with foam in the pipeline, the gas flows into the space formed between the U-shaped pipeline and the partition wall by the communication passage provided on the side wall of the pipeline and is bypassed to the discharge nozzle. be able to.

【0014】以下に図面を参照して、本発明をさらに詳
細に説明する。図1は、本発明のイオン交換膜電解槽に
おける気液分離方法に使用する電解槽の一実施例を示す
図であり、複極式電解槽ユニットの一部を切り欠いた平
面図を示し、図2は図1をA−A線で切断した断面図を
示す。複極式の電解槽ユニット1は、炭素鋼等の剛体で
成形された額縁状フレーム2を骨格として左右に陽極室
3と陰極室4が形成されており、チタンまたはチタン合
金などの薄板を鍋状に加工した陽極室側の隔壁5と鉄、
ステンレス、ニッケル等の薄板を同様に鍋状に加工した
陰極室側の隔壁6を結合部7で電気的および機械的に結
合している。陽極室、陰極室には隔壁に結合した導電リ
ブ8、9に、それぞれ白金族の金属あるいは酸化物を含
有する被覆を形成した陽極10とニッケル系、白金族系
の陰極活性物質を被覆した陰極11が取り付けられてお
り、電極室の上部にはU型管路12、13が設けられて
いる。U型管路は、電極および隔壁と間隔を設けて取り
付けられており、U型管路の電極面側の側壁14と電極
室の上部壁15の間には、上昇した電解液および気泡が
流入する狭い間隙16が形成されており、U型管路の隔
壁側の壁面には連通路17が設けられている。
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a diagram showing one embodiment of an electrolytic cell used for a gas-liquid separation method in an ion exchange membrane electrolytic cell of the present invention, and shows a plan view in which a part of a bipolar electrolytic cell unit is cut away. FIG. 2 is a cross-sectional view of FIG. 1 taken along line AA. The bipolar cell unit 1 has an anode chamber 3 and a cathode chamber 4 formed on the left and right with a frame frame 2 formed of a rigid body such as carbon steel as a skeleton. The partition wall 5 on the side of the anode chamber and iron,
A partition 6 on the cathode chamber side, which is also made of a thin plate made of stainless steel, nickel or the like and processed into a pot shape, is electrically and mechanically connected by a connecting portion 7. In the anode chamber and the cathode chamber, an anode 10 having a coating containing a platinum group metal or oxide formed on conductive ribs 8 and 9 bonded to a partition wall respectively, and a cathode having a nickel or platinum group cathode active material coated thereon 11 is attached, and U-shaped conduits 12 and 13 are provided in the upper part of the electrode chamber. The U-shaped conduit is attached with an interval between the electrode and the partition wall, and between the side wall 14 on the electrode surface side of the U-shaped conduit and the upper wall 15 of the electrode chamber, the raised electrolytic solution and bubbles flow. A narrow gap 16 is formed, and a communication path 17 is provided on a wall surface on the partition wall side of the U-shaped pipe.

【0015】また、U型管路の一端は電解槽ユニットの
側壁部18に取り付けた電解液および気体を外部へ取り
出すための排出ノズル19に結合され、電解槽ユニット
の下部には電解液の供給ノズル20が取り付けられてお
り、電解槽ユニットの側壁には電解槽ユニットを架台に
取り付ける取り付けアームが設けられている。
One end of the U-shaped conduit is connected to a discharge nozzle 19 attached to the side wall 18 of the electrolytic cell unit for taking out the electrolytic solution and gas to the outside. The nozzle 20 is attached, and a mounting arm for attaching the electrolytic cell unit to the gantry is provided on a side wall of the electrolytic cell unit.

【0016】図3は、U型管路を電解液の排出ノズルか
ら電解槽内部へ取り付ける図を示している。電解槽ユニ
ットの側壁部18に設けた排出ノズル19にU型管路1
2、13を取り付けている。U型管路は電解槽中での電
蝕を防止するために、フッ素樹脂、ポリプロピレン等の
合成樹脂を用いることが好ましい。U型管路はガスケッ
ト21を介して排出ノズル19に取り付けられており、
電極を取り付ける導電リブ8にはU型管路のガイドとな
る切り欠き部22を形成している。また、U型管路の側
壁には連通路17が設けられている。
FIG. 3 shows a view in which a U-shaped pipe is attached from the electrolyte discharge nozzle to the inside of the electrolytic cell. The U-shaped pipe 1 is connected to the discharge nozzle 19 provided on the side wall 18 of the electrolytic cell unit.
2, 13 are attached. For the U-shaped conduit, it is preferable to use a synthetic resin such as a fluororesin or polypropylene in order to prevent electrolytic corrosion in the electrolytic cell. The U-shaped pipe is attached to the discharge nozzle 19 via a gasket 21,
A cut-out portion 22 serving as a guide for a U-shaped conduit is formed in the conductive rib 8 for attaching an electrode. A communication passage 17 is provided on a side wall of the U-shaped pipe.

【0017】図4は、複極式の電解槽を示す図であり、
5個の複極式の電解槽ユニット1と端部陽極ユニット2
3と端部陰極ユニット24から組み立てられており、各
電解槽ユニットの間には、陽イオン交換膜25を取り付
けて架台26に載置して油圧プレス、タイロッド等によ
って固定しており、電解槽ユニット側壁の排出ノズル1
9、供給ノズル20に管路を結合し、両端部の電解槽ユ
ニットに電解電流を供給している。
FIG. 4 is a diagram showing a bipolar electrolytic cell.
Five bipolar electrode unit 1 and end anode unit 2
3 and an end cathode unit 24. A cation exchange membrane 25 is attached between the electrolytic cell units, placed on a gantry 26, and fixed by a hydraulic press, a tie rod, or the like. Discharge nozzle 1 on unit side wall
9. A pipeline is connected to the supply nozzle 20 to supply an electrolytic current to the electrolytic cell units at both ends.

【0018】図5は、電解槽に設けたU型管路への電解
液の流れを説明する図である。U型管路は、電極室の全
体にわたり気液混相状態の電解液の上昇流を均整化する
とともに、電極室の隔壁側空間27に液面28を保持
し、気体のバイパス流路を形成するためには、電極室の
両側壁間の長さと相応する高さを必要とする。また、U
型の管路の側壁の高さは電極側の電解液の上昇路におい
て気泡の合一を促進する距離すなわち高さが必要であ
り、電流密度3kA/m2 、温度85℃、塩水濃度20
0g/lの標準的な電解条件のもとでの実験により求め
た結果では、電解槽の液面深さに対して4%以上好まし
くは5%以上必要であることがわかった。
FIG. 5 is a view for explaining the flow of the electrolytic solution to the U-shaped pipe provided in the electrolytic cell. The U-shaped conduit equalizes the upward flow of the electrolyte in a gas-liquid mixed phase over the entire electrode chamber, holds the liquid surface 28 in the partition-side space 27 of the electrode chamber, and forms a gas bypass flow path. For this purpose, a height corresponding to the length between both side walls of the electrode chamber is required. Also, U
The height of the side wall of the mold pipe must be a distance which promotes coalescence of bubbles in the rising path of the electrolyte on the electrode side, that is, the height, the current density is 3 kA / m 2 , the temperature is 85 ° C., and the salt water concentration is 20.
According to the results obtained by experiments under standard electrolysis conditions of 0 g / l, it was found that 4% or more, and preferably 5% or more, of the liquid surface depth of the electrolytic cell was required.

【0019】陽極室の電解空間部29は電解液の塩水中
を塩素気泡群が複雑な流体抵抗を受けつつも自由上昇し
ている領域であるが、上昇流がU型管路によって区切ら
れた部分に達すると気泡の大部分は電極側空間30の流
路に入って液と共に上昇するのに対し、隔壁側空間27
には気液の上昇はなく液面28が形成される。隔壁側空
間に液面28を形成し、電極側空間に上昇流を形成する
ためには、電極側の空間が隔壁側の空間より2倍以上大
きいことが必要であり、隔壁側空間の大きさは毛細管現
象を生じない範囲で狭い程好ましく、2〜4mmとする
ことが好ましい。 また、図5に示すように、U型管路
の両側の液面の高さには差が形成される。これは、電極
室内では電極側の方を主に発生気体の気泡が上昇するの
で、隔壁側の領域の電解液の密度と電極側の密度に差を
生じ、その結果U型管路と隔壁との間に形成した空間の
液面はU型管路の電極側に形成されるからである。
The electrolytic space 29 of the anode chamber is a region in which chlorine bubbles are freely rising in the salt solution of the electrolyte while receiving complicated fluid resistance, but the rising flow is separated by a U-shaped conduit. When reaching the portion, most of the bubbles enter the flow path of the electrode-side space 30 and rise together with the liquid, whereas the partition-side space 27
The liquid surface 28 is formed without any rise in gas-liquid. In order to form the liquid surface 28 in the partition-side space and to form an upward flow in the electrode-side space, it is necessary that the space on the electrode side be at least twice as large as the space on the partition-side. Is preferably as small as possible without causing capillary action, and more preferably 2 to 4 mm. Also, as shown in FIG. 5, a difference is formed between the liquid levels on both sides of the U-shaped conduit. This is because the generated gas bubbles rise mainly on the electrode side in the electrode chamber, so that a difference occurs between the density of the electrolyte in the region on the partition side and the density on the electrode side, and as a result, the U-shaped conduit and the partition This is because the liquid level of the space formed between them is formed on the electrode side of the U-shaped conduit.

【0020】U型管路の幅は電解液供給量と気体の発生
量に見合う気液を管路に流入させ、排出ノズルに混乱な
く移動させるのに必要な流路断面積を形成することが必
要であり、10mm以上とすることが好ましい。またU
型管路の高さは、大きいほど電解液の流れる流路面積が
大きくなるが、反面導電リブを通じての電極上端への電
流分配が不十分となる可能性があるので、U型管路の高
さは60〜100mmとすることが好ましい。とくに、
実施例に示した電解槽ではU型管路と隔壁の間に気相の
空間を設けて発生気体のバイパスを形成したので、U型
管路の幅を小さくすることが可能となる。
[0020] The width of the U-shaped conduit is such that the gas-liquid appropriate for the supply amount of the electrolyte and the amount of generated gas flows into the conduit and forms the cross-sectional area of the passage necessary for moving the discharge nozzle without confusion. It is necessary, and it is preferable that it is 10 mm or more. Also U
The larger the height of the U-shaped conduit is, the larger the flow area of the electrolyte flows as the height increases, but the current distribution to the upper end of the electrode through the conductive rib may be insufficient. The height is preferably set to 60 to 100 mm. In particular,
In the electrolytic cell shown in the embodiment, since the gas-phase space is provided between the U-shaped pipe and the partition wall to form a bypass for generated gas, the width of the U-shaped pipe can be reduced.

【0021】また、電極側空間を上昇した気液混相流は
電極室の上部の壁面に達し、電極室の上部の壁面とU型
管路の電極側の側壁の上部によって形成された間隙から
U型管路中へ流入し、間隙を通過の際に多くの気泡は破
裂し、泡末を含んだ電解液がU型管路中へ、U型管路か
ら排出ノズルを通じて外部へ取り出されるが、U型管路
の側壁と電極室の上部壁との間で形成される間隙は、3
〜6mmとすることが適当であり、さらに4〜5mmと
することが好ましく、3mm以下となると流路抵抗が大
きくなり、逆に圧力変動が大きくなるので好ましくな
く、間隙が大きいと電極室内の圧力変動が大きくなって
好ましくない。
Further, the gas-liquid multiphase flow that has risen in the electrode side space reaches the upper wall surface of the electrode chamber, and the gas flows from the gap formed by the upper wall surface of the electrode chamber and the upper side wall of the U-shaped conduit on the electrode side. While flowing into the type pipe and passing through the gap, many bubbles burst, and the electrolyte containing the foam is taken out into the U-type pipe and from the U-type pipe to the outside through the discharge nozzle. The gap formed between the side wall of the U-shaped conduit and the upper wall of the electrode chamber is 3
If the gap is large, it is not preferable because the flow path resistance increases, and conversely, the pressure fluctuation increases. The fluctuation is undesirably large.

【0022】本発明の電解方法は、電極室の上部に断面
積が小さな気液混合物が上昇する流路を設けるととも
に、流路の上部には間隙から放出されるようにしたの
で、気液混合物中の気泡は狭められた流路で、上昇しな
がら圧縮されて、近傍の気泡と合体化して拡大し、次い
で狭い間隙から管路中へ流入し、流入の際の圧縮と膨張
の圧力変化を受けてその多くは破裂して気液分離され
る。
According to the electrolysis method of the present invention, the gas-liquid mixture having a small cross-sectional area is provided at the upper part of the electrode chamber, and the gas-liquid mixture is discharged from the gap at the upper part of the flow path. The bubble inside is compressed while rising in the narrowed flow path, unites with the nearby bubble and expands, then flows into the pipeline from the narrow gap, and the pressure change of compression and expansion during inflow is Many of them rupture and undergo gas-liquid separation.

【0023】[0023]

【実施例】【Example】

実施例1 厚み1mmのチタン板とステンレス板をプレス金型によ
り縦140cm×横93.5cm×深さ3cmの陽極室
と陰極室を成型し、これにU型管路を固定するための切
り欠きを上端に設けた厚み4mm、幅3cm、長さ13
0cmのチタン及びステンレスの導電リブを電極室横幅
の中心から18cmの間隔で5本を溶接で取り付け、両
極室側壁の下部に電解液供給ノズルとして電極室と同材
質で内径13mm、外径17.3mm、長さ100mm
のフランジ付短管を取り付け、電解液と電解生成気体の
排出ノズルとして電極室と同材質の厚み1.5mm縦
6.5cm×横3cm×長さ10cmのフランジ付角型
パイプを溶接して取りつけた。 次いで、額縁状の枠体
と陽極室および陰極室を、陽極室側に取り付けたチタン
と銅とのクラッド体と陰極室側の隔壁を特開平3−24
0984号公報に記載されているように、半田を用いて
電気炉内でろう付けを行って両電極室の隔壁を結合する
とともに額縁状の枠体を一体化した。
Example 1 A titanium plate having a thickness of 1 mm and a stainless steel plate were formed into a 140 mm long × 93.5 cm wide × 3 cm deep anode chamber and a cathode chamber by a press die, and a notch for fixing a U-shaped conduit thereto. 4 mm thick, 3 cm wide, 13 long with
Five conductive ribs of 0 cm titanium and stainless steel were attached by welding at an interval of 18 cm from the center of the width of the electrode chamber, and an electrolyte supply nozzle was formed below the side walls of both electrode chambers as an electrolyte solution supply nozzle using the same material as the electrode chamber with an inner diameter of 13 mm and an outer diameter of 17. 3mm, length 100mm
A short pipe with a flange is attached, and a flanged square pipe of the same material as the electrode chamber and having a thickness of 1.5 mm, 6.5 cm x 3 cm x 10 cm, is attached as a discharge nozzle for the electrolytic solution and the gas produced by the electrolysis. Was. Next, a frame-like frame, an anode chamber and a cathode chamber were mounted on a cladding body of titanium and copper attached to the anode chamber side and a partition on the cathode chamber side as disclosed in JP-A-3-24.
As described in JP-A-0984, brazing was performed in an electric furnace using solder to join the partition walls of both electrode chambers and to integrate the frame-shaped frame.

【0024】しかる後、厚み1mmのチタン板から得ら
れた開口率が35%のエキスパンデッドメタルに貴金属
酸化物を含有する陽極活性被覆を施した縦1.399m
×横0.933m電解有効面積1.3m2 の陽極(ペル
メレック電極(株)製)と厚み1.5mmのステンレス
板から得られた開口率37%のエキスパンデッドメタル
にニッケル系の活性陰極被覆を施した、陽極と同寸法の
陰極を導電リブにスポット溶接して複極式電解槽ユニッ
トを製造した。
Thereafter, an expanded metal having an aperture ratio of 35% obtained from a titanium plate having a thickness of 1 mm and having an anode active coating containing a noble metal oxide, having a length of 1.399 m, was obtained.
× 0.933 m width Electrode effective area 1.3 m 2 anode (manufactured by Permelec Electrode Co., Ltd.) and expanded metal with a 37% aperture ratio obtained from a 1.5 mm thick stainless steel plate coated with a nickel-based active cathode And a cathode having the same dimensions as the anode was spot-welded to the conductive rib to produce a bipolar electrolytic cell unit.

【0025】また陽極室と陰極室がそれぞれ単独の端部
陽極ユニットと端部陰極ユニットを製作し、3個の複極
式電解槽ユニットをフランジ面に耐食性ガスケットを設
けて、両端部には端部陽極ユニットと端部陰極ユニット
を設けてイオン交換膜を挟持して積層した。電極間間隔
は2mmとし、陽イオン交換膜としてNafionN9
54(デュポン社商品名)を4枚有する複極式電解槽を
組み立てた。次いで、フッ素樹脂製の厚み1.5mm、
高さ57mm、幅18mm、全長1025mm、上部開
口部長さ93mmであり、隔壁側の側壁には5mmの孔
を3個有するU型管路を、電極室の上部壁面とU型管路
の側壁との間隔を5mmとし、電極面との間隔を8m
m、隔壁との間隔を4mmとなるように挿入し、排出用
ノズルと結合した。
The anode chamber and the cathode chamber each form a single end anode unit and a single end cathode unit. Three double-electrode type electrolytic cell units are provided with corrosion-resistant gaskets on the flange surface. An anode unit and an end cathode unit were provided, and an ion exchange membrane was sandwiched and laminated. The distance between the electrodes was 2 mm, and Nafion N9 was used as a cation exchange membrane.
A bipolar electrolytic cell having four 54 (trade name of DuPont) was assembled. Next, a fluororesin thickness 1.5 mm,
A U-shaped conduit having a height of 57 mm, a width of 18 mm, a total length of 1025 mm, an upper opening length of 93 mm, and having three 5 mm holes on the side wall of the partition wall, the upper wall surface of the electrode chamber and the side wall of the U-shaped conduit Is 5 mm, and the distance from the electrode surface is 8 m.
m, and the distance between the partition and the partition was 4 mm, and was connected to the discharge nozzle.

【0026】各ノズルには、電解液供給用主管と電解液
及び生成気体排出用主管にフッ素樹脂製フレキシブルチ
ューブを介して接続し、直流電源と電解槽の陽極端子、
陰極端子とを接続して電解槽を完成させた。陰極室には
純水を供給し、陽極室には300g/lの食塩水を供給
し、陰極室からは32%の苛性ソーダを、陽極室からは
食塩水濃度を200g/lの戻り食塩水を取り出し、電
解槽温度85℃、電解電流5.2kA、電流密度3kA
/m 2 で通電し30日間運転した。この間の苛性ソーダ
の生成電流効率は96.2%、4対の電解槽ユニットの
平均槽電圧3.05Vであり、陽極室内圧力変動は15
mmH2O 以内で極めて安定した状態であった。次いで
高負荷電解条件における圧力変動状況確認を目的として
電流密度4kA/m2 、塩水供給量を戻り塩水を循環さ
せることにより標準供給量の2〜4倍量に増加して陽極
室内圧力変動を測定し、結果を表1に示す。また、電解
槽の運転を停止して、陽イオン交換膜を点検したが変
色、変質などの異常は全く見られなかった。
Each nozzle has a main pipe for supplying electrolyte and an electrolyte.
And a flexible pipe made of fluororesin
Connected via a DC power supply and the anode terminal of the electrolytic cell,
The electrolytic cell was completed by connecting to a cathode terminal. In the cathode compartment
Supply pure water and supply 300g / l saline to anode chamber
And 32% caustic soda from the cathode compartment and from the anode compartment
Return the saline solution concentration to 200 g / l, take out the saline solution,
Dismantling temperature 85 ° C, electrolysis current 5.2kA, current density 3kA
/ M TwoFor 30 days. Caustic soda during this time
Current efficiency of 96.2% of 4 pairs of electrolyzer units
The average cell voltage was 3.05 V and the pressure fluctuation in the anode chamber was 15
mmHTwoThe state was extremely stable within O 2. Then
To confirm pressure fluctuation under high load electrolysis conditions
Current density 4 kA / mTwoReturn the brine supply and circulate the brine
To increase the anode to 2-4 times the standard supply
The indoor pressure fluctuation was measured, and the results are shown in Table 1. Also, electrolysis
The tank operation was stopped, and the cation exchange membrane was inspected.
No abnormalities such as color and deterioration were observed.

【0027】実施例2 実施例1のU型管路の電極側の側壁と陽極室の上部壁面
との間隔を10mmとしたU型管路を取り付けた点を除
いて、実施例1と同様の条件で15日間運転した結果電
流効率は95.6%、平均槽電圧は3.06Vであり、
初期電解性能は実施例1とほぼ同等であった。陽極室内
圧の変動を実施例1と同様に測定し、その結果を表1に
示す。また、運転停止後の陽イオン交換膜の上部には幅
約5mmの変色がみられた。 実施例3 実施例1のU型管路の電極側の側壁と陽極室の上部壁面
との間隔を15mmとしたU型管路を取り付けた点を除
いて、実施例1と同様の条件で15日間運転した結果電
流効率は95.2%、平均槽電圧は3.09Vであり、
初期電解性能は実施例1とほぼ同等であった。陽極室内
圧の変動を実施例1と同様に測定し、その結果を表1に
示す。また、運転停止後の陽イオン交換膜の上部には幅
約10mmの塩素によるとみられる変色が観察された。
Example 2 The same procedure as in Example 1 was carried out except that a U-shaped pipe having a distance of 10 mm between the electrode side wall of the U-shaped pipe of Example 1 and the upper wall of the anode chamber was attached. After operating for 15 days under the conditions, the current efficiency was 95.6%, the average cell voltage was 3.06 V,
The initial electrolysis performance was almost the same as in Example 1. The fluctuation of the anode chamber pressure was measured in the same manner as in Example 1, and the results are shown in Table 1. After the operation was stopped, discoloration with a width of about 5 mm was observed on the upper portion of the cation exchange membrane. Example 3 The same conditions as in Example 1 were adopted, except that a U-shaped conduit having a distance of 15 mm between the electrode side wall of the U-shaped conduit of Example 1 and the upper wall surface of the anode chamber was attached. As a result of operating for a day, the current efficiency was 95.2%, the average cell voltage was 3.09 V,
The initial electrolysis performance was almost the same as in Example 1. The fluctuation of the anode chamber pressure was measured in the same manner as in Example 1, and the results are shown in Table 1. Further, after the operation was stopped, the discoloration of the upper part of the cation exchange membrane which was considered to be caused by chlorine having a width of about 10 mm was observed.

【0028】[0028]

【表1】 圧力変動(mmH2O) 塩水流量 U型管路側壁と上部壁面との間隔 (リットル/分) 5mm 10mm 15mm ───────────────────────────── 2(1.5) 10 60 80 3(2.3) 20 140 160 4(3.1) 20 150 180 5(3.8) 30 180 190 [Table 1] Pressure fluctuation (mmH 2 O) Salt water flow rate Distance between U-shaped pipe side wall and upper wall (liter / min) 5 mm 10 mm 15 mm ────────────────── ─────────── 2 (1.5) 10 60 80 3 (2.3) 20 140 160 4 (3.1) 20 150 180 5 (3.8) 30 180 190

【0029】比較例1 実施例2の電解槽よりU型管路を取り除き、実施例2で
使用した陽イオン交換膜を使用して電解槽の再組立を行
い、実施例2と同様の条件で15日間運転した。電流効
率は94.8%、平均槽電圧は3.11Vで電解性能の
低下が認められた。 又、陽極室内圧力は−10〜12
0mmH2O の範囲で常時変動し実施例2より更に大き
く、排出ノズルにおいてプラグ流が生じ、間欠流出現象
が見られた。運転の停止後に陽イオン交換膜を点検した
ところ、陽イオン交換膜の上部には幅約100mmの茶
褐色の変色が見られ排出ノズルの下辺より35mm下ま
で変色と直径約2mmの小ブリスターが散在し、又やす
り状の活性陰極表面に触れたと見られる黒褐色の変色と
擦過傷が一部に見られた。
Comparative Example 1 The U-shaped conduit was removed from the electrolytic cell of Example 2, and the electrolytic cell was reassembled using the cation exchange membrane used in Example 2 under the same conditions as in Example 2. I drove for 15 days. The current efficiency was 94.8%, the average cell voltage was 3.11 V, and a decrease in electrolytic performance was observed. The pressure in the anode chamber is -10 to 12
The value constantly fluctuated in the range of 0 mmH 2 O and was larger than that in Example 2. A plug flow occurred in the discharge nozzle, and an intermittent outflow phenomenon was observed. After the operation was stopped, the cation exchange membrane was inspected. As a result, a brown discoloration of about 100 mm in width was seen at the top of the cation exchange membrane, and discoloration and small blisters of about 2 mm in diameter were scattered to 35 mm below the lower side of the discharge nozzle. In addition, black-brown discoloration and abrasions which appeared to have touched the file-like active cathode surface were partially observed.

【0030】比較例2 U型管路に代えて、高さ57mm、横幅18mmのL字
型の部材の上端と電極室上壁との間隔を5mm、電極と
の間隔を8mmとして電極室隔壁に溶接して取りつけた
上、電極室側壁の排出ノズルを改造して櫃底部の位置に
内径25mm×外径27.2mmの排出ノズルを設け電
極を修復して電解槽に組み込みその他は実施例1と同じ
標準電解条件のもとで15日間運転した。電流効率は9
5.8%、槽電圧は3.08Vであた。電極室内圧力は
−20〜180mmH2 Oの範囲で大きく変動し排出ノ
ズルからの気液の流出状態は典型的な間欠的プラグ流で
あった。電流密度および循環倍率を夫々4KA/m2
3倍に変えた条件での圧力変動は−40〜200mmH
2O に増加した。開槽した膜の上部には活性陰極に触れ
たと見られる黒褐色の変化が見られた。
COMPARATIVE EXAMPLE 2 Instead of a U-shaped conduit, the distance between the upper end of an L-shaped member having a height of 57 mm and a width of 18 mm and the upper wall of the electrode chamber was 5 mm, and the distance between the electrodes was 8 mm. After welding and mounting, the discharge nozzle on the side wall of the electrode chamber was modified, and a discharge nozzle with an inner diameter of 25 mm x an outer diameter of 27.2 mm was provided at the bottom of the cabinet to repair the electrode and incorporated into the electrolytic cell. It was operated for 15 days under the same standard electrolysis conditions. Current efficiency is 9
5.8% and the cell voltage was 3.08V. The electrode chamber pressure greatly fluctuated in the range of −20 to 180 mmH 2 O, and the outflow state of gas and liquid from the discharge nozzle was a typical intermittent plug flow. The current density and the circulation magnification were 4 KA / m 2 , respectively.
Pressure fluctuation under the condition changed to 3 times is -40 to 200 mmH
It was increased to 2 O. At the top of the opened membrane, a black-brown change was seen, which appeared to have touched the active cathode.

【0031】[0031]

【発明の効果】以上説明したように、本発明の電解方法
は、電極室内で発生した電解液と生成ガスの混合流体を
面積の小さな流路を上昇させた後に、間隙から放出する
ことによって気液分離した後に排出ノズルから放出する
ことによって、電極室内の圧力の変動とこれによるイオ
ン交換膜の振動を防止し、イオン交換膜および電極を長
寿命化することができる。
As described above, in the electrolysis method of the present invention, the mixed fluid of the electrolytic solution and the generated gas generated in the electrode chamber is raised through the small flow path and then discharged from the gap. By discharging the liquid from the discharge nozzle after liquid separation, fluctuation of the pressure in the electrode chamber and vibration of the ion exchange membrane due to the fluctuation can be prevented, and the life of the ion exchange membrane and the electrode can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のイオン交換電解槽における気
液分離方法に使用する電解槽の一実施例を示す図であ
る。
FIG. 1 is a view showing one embodiment of an electrolytic cell used for a gas-liquid separation method in an ion exchange electrolytic cell of the present invention.

【図2】図1におけるA−A線の断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】図3は、U型管路を電解槽ユニットの側壁から
電解槽内部への取り付けを説明する図である。
FIG. 3 is a diagram illustrating attachment of a U-shaped pipe from the side wall of the electrolytic cell unit to the inside of the electrolytic cell.

【図4】図4は、複極式の電解槽を示す図である。FIG. 4 is a view showing a bipolar electrolytic cell.

【図5】図5は、電解槽に設けたU型管路への電解液の
流れを説明する図である。
FIG. 5 is a diagram illustrating a flow of an electrolytic solution to a U-shaped pipe provided in an electrolytic cell.

【符号の説明】[Explanation of symbols]

1…電解槽ユニット、2…額縁状フレーム、3…陽極
室、4…陰極室、5…陽極室側の隔壁、6…陰極室側の
隔壁、7…結合部、8、9…導電リブ、10…陽極、1
1…陰極、12、13…U型管路、14…U型管路の電
極面側の側壁、15…電極室の上部壁、16…間隙、1
7…連通路、18…側壁部、19…排出ノズル、20…
供給ノズル、21…ガスケット、22…切り欠き部、2
3…端部陽極ユニット、24…端部陰極ユニット、25
…陽イオン交換膜、26…架台、27…隔壁側空間、2
8…液面、29…電解空間部、30…電極側空間
DESCRIPTION OF SYMBOLS 1 ... Electrolyzer unit, 2 ... Frame-shaped frame, 3 ... Anode room, 4 ... Cathode room, 5 ... Anode room side partition, 6 ... Cathode room side partition, 7 ... Connection part, 8, 9 ... Conductive rib, 10 ... Anode, 1
DESCRIPTION OF SYMBOLS 1 ... Cathode, 12, 13 ... U-shaped conduit, 14 ... Side wall on the electrode surface side of U-shaped conduit, 15 ... Upper wall of electrode chamber, 16 ... Gap, 1
7 ... communication passage, 18 ... side wall, 19 ... discharge nozzle, 20 ...
Supply nozzle, 21 gasket, 22 notch, 2
3 ... End anode unit, 24 ... End cathode unit, 25
... Cation exchange membrane, 26 ... Stand, 27 ... Partition side space, 2
8: liquid level, 29: electrolytic space part, 30: electrode side space

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン交換膜電解槽における気液分離方
法において、電極室内で発生した気液混合物を、電解槽
上部に形成した電極面に平行で、断面積が小さな通路を
上昇させた後に、間隙から放出することによって、断面
積が小さな通路への流入による圧縮と間隙からの放出に
よる減圧によって気液分離を行うことを特徴とするイオ
ン交換膜電解槽における気液分離方法。
In a gas-liquid separation method in an ion-exchange membrane electrolytic cell, a gas-liquid mixture generated in an electrode chamber is raised in a passage parallel to an electrode surface formed in an upper part of the electrolytic cell and having a small cross-sectional area. A gas-liquid separation method in an ion exchange membrane electrolytic cell, characterized in that gas-liquid separation is performed by compression by flowing into a passage having a small cross-sectional area by discharging from a gap and decompression by discharging from the gap.
【請求項2】 電解槽上部に形成した通路の一方の面が
上部が開口したU型管路の側壁によって形成されるとと
もに、間隙がU型管路の側壁とU型管路の上部に設けた
壁面との間に形成されたものであって、U型管路に放出
される際に気液分離されることを特徴とする請求項1記
載のイオン交換膜電解槽における気液分離方法。
2. One side of a passage formed in an upper part of an electrolytic cell is formed by a side wall of a U-shaped conduit whose upper part is open, and a gap is provided on a side wall of the U-shaped conduit and an upper part of the U-shaped conduit. The gas-liquid separation method for an ion-exchange membrane electrolytic cell according to claim 1, wherein the gas-liquid separation is formed between the wall and the wall, and the gas-liquid separation is performed when the gas is discharged to a U-shaped conduit.
JP10200729A 1998-07-15 1998-07-15 Gas-liquid separation method in an ion exchange membrane electrolytic cell Expired - Lifetime JP3110720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200729A JP3110720B2 (en) 1998-07-15 1998-07-15 Gas-liquid separation method in an ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200729A JP3110720B2 (en) 1998-07-15 1998-07-15 Gas-liquid separation method in an ion exchange membrane electrolytic cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04125883A Division JP3110555B2 (en) 1992-05-19 1992-05-19 Ion exchange membrane electrolyzer

Publications (2)

Publication Number Publication Date
JPH1171693A JPH1171693A (en) 1999-03-16
JP3110720B2 true JP3110720B2 (en) 2000-11-20

Family

ID=16429225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200729A Expired - Lifetime JP3110720B2 (en) 1998-07-15 1998-07-15 Gas-liquid separation method in an ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP3110720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106626U (en) * 1990-05-12 1991-11-05
JPH03110721U (en) * 1990-05-12 1991-11-13

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60045583D1 (en) * 1999-08-27 2011-03-10 Asahi Chemical Ind ELEMENTARY CELL FOR USE IN AN ELECTROLYTE CELL WITH AQUEOUS ALKALINE METAL CHLORIDE SOLUTION
US8337443B2 (en) 2007-05-11 2012-12-25 Masanori Harada Apparatus for correcting an ingrown nail
JP5341862B2 (en) * 2010-10-28 2013-11-13 本田技研工業株式会社 Water electrolysis system
ES2660840T3 (en) 2014-12-03 2018-03-26 Bluestar (Beijing) Chemical Machinery Co., Ltd. Electrolytic bath with ionic membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106626U (en) * 1990-05-12 1991-11-05
JPH03110721U (en) * 1990-05-12 1991-11-13

Also Published As

Publication number Publication date
JPH1171693A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JPS6315354B2 (en)
RU2709541C2 (en) Electrode device, electrode assemblies and electrolytic cells
US20160312370A1 (en) Electrochemical cell without an electrolyte-impermeable barrier
US4784735A (en) Concentric tube membrane electrolytic cell with an internal recycle device
JP2002502463A (en) Ion exchange membrane two-electrode cell
JPH08100286A (en) Double pole type electrolytic cell with ion exchange membrane
JPH0561356B2 (en)
KR100645463B1 (en) Electrode structure
US20010025798A1 (en) Synthesis of tetramethylammonium hydroxide
JP3110720B2 (en) Gas-liquid separation method in an ion exchange membrane electrolytic cell
KR100558405B1 (en) Ion exchange membrane electrolytic cell
HRP920972A2 (en) FEATURES FOR THE TYPE FILTER FILTER PRESS AND ONE-POLE FILTER TYPE FILTER PRESS
JPS59133384A (en) Electrolytic cell
JPS6254196B2 (en)
JP3110555B2 (en) Ion exchange membrane electrolyzer
US4790914A (en) Electrolysis process using concentric tube membrane electrolytic cell
JPH1081987A (en) Gas diffusion cathode and brine electrolyzing cell using this gas diffusion cathode
US4256562A (en) Unitary filter press cell circuit
JPS6342710B2 (en)
JP3229266B2 (en) Bipolar filter press type electrolytic cell
JP6499151B2 (en) Electrolytic cell
JP3204322B2 (en) Electrolysis method of alkali chloride
JPS5845388A (en) Electrolytic cell
JP2816029B2 (en) Bipolar filter press type electrolytic cell
JPS6119788A (en) High electric current density cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12