JP3110555B2 - Ion exchange membrane electrolyzer - Google Patents

Ion exchange membrane electrolyzer

Info

Publication number
JP3110555B2
JP3110555B2 JP04125883A JP12588392A JP3110555B2 JP 3110555 B2 JP3110555 B2 JP 3110555B2 JP 04125883 A JP04125883 A JP 04125883A JP 12588392 A JP12588392 A JP 12588392A JP 3110555 B2 JP3110555 B2 JP 3110555B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic cell
chamber
exchange membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04125883A
Other languages
Japanese (ja)
Other versions
JPH05320970A (en
Inventor
弘 後藤
Original Assignee
クロリンエンジニアズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロリンエンジニアズ株式会社 filed Critical クロリンエンジニアズ株式会社
Priority to JP04125883A priority Critical patent/JP3110555B2/en
Publication of JPH05320970A publication Critical patent/JPH05320970A/en
Application granted granted Critical
Publication of JP3110555B2 publication Critical patent/JP3110555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電解槽に関し、とくにイ
オン交換膜法塩化アルカリ電解槽の如く電解反応によっ
て発生した気泡を含む電解液の電極室上部における気液
分離に特徴を有する電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell, and more particularly to an electrolytic cell characterized by gas-liquid separation at an upper portion of an electrode chamber of an electrolytic solution containing bubbles generated by an electrolytic reaction, such as an ion-exchange membrane alkali chloride electrolytic cell. .

【0002】[0002]

【従来の技術】イオン交換膜法フィルタープレス型電解
槽は食塩水の電気分解による塩素と苛性ソーダの製造を
始めとして、有機電解、海水電解等に広く用いられてい
る。フィルタープレス型電解槽は陽極室と陰極室の隔壁
を、導電部材を介してあるいは圧接等の手段により電気
的及び機械的に結合した複極式電解槽ユニットを陽イオ
ン交換膜を挟持して多数積層し、両端には陽極あるいは
陰極のいずれかを片面に有する端部電解槽ユニットを積
層して油圧式プレス等で固定した複極式フィルタープレ
ス型電解槽があり、また額縁状の電極室枠の両面に陽極
もしくは陰極を有する陽極室ユニットと陰極室ユニット
を陽イオン交換膜を介して多数積層し、両端部には片面
のみ陽極または陰極を有する端部極室ユニットを積層し
た単極式フィルタープレス型電解槽がある。
2. Description of the Related Art An ion exchange membrane filter press type electrolytic cell is widely used for the production of chlorine and caustic soda by electrolysis of saline solution, organic electrolysis, seawater electrolysis and the like. The filter press type electrolytic cell is composed of a large number of bipolar electrolytic cell units in which the partition walls of the anode chamber and the cathode chamber are electrically and mechanically connected via a conductive member or by means such as pressure welding, with a cation exchange membrane interposed therebetween. There is a bipolar filter press type electrolytic cell which is laminated and has an end electrolytic cell unit having either an anode or a cathode on one side and fixed by a hydraulic press or the like, and a frame-shaped electrode chamber frame A single-pole filter in which a large number of anode chamber units and cathode chamber units having an anode or a cathode on both surfaces are laminated via a cation exchange membrane, and an end electrode chamber unit having an anode or a cathode on only one side is laminated on both ends. There is a press type electrolytic cell.

【0003】イオン交換膜法食塩電解槽においては陽極
では塩素ガスが発生し、陰極では高濃度の水酸化ナトリ
ウムと水素が生成するので陽極室には表面に安定な不働
態化被膜を形成する耐食性の優れたチタンあるいはその
合金を使用しており、陰極室には水素を吸収して脆化す
るチタンに代えて耐アルカリ性のニッケル、ステンレス
等の鉄系の金属あるいはその合金を使用している。ま
た、それぞれの電極室には隔壁に結合した導電リブに陽
極と陰極を取り付けており、側壁には電解液供給ノズル
と濃度が低下もしくは上昇した電解液、電解反応の生成
物である気体、気泡を混合した電解液の排出ノズルが設
けられている。
[0003] In an ion exchange membrane method salt electrolyzer, chlorine gas is generated at the anode, and high concentration sodium hydroxide and hydrogen are generated at the cathode, so that a stable passivation film is formed on the surface of the anode chamber in corrosion resistance. In the cathode chamber, an alkali-resistant iron-based metal such as nickel or stainless steel or an alloy thereof is used in place of titanium which absorbs hydrogen and becomes brittle. In each electrode chamber, an anode and a cathode are attached to a conductive rib connected to a partition, and an electrolyte supply nozzle and an electrolyte with a reduced or increased concentration, a gas as a product of an electrolytic reaction, and air bubbles are provided on a side wall. Is provided with a discharge nozzle for the electrolytic solution mixed with.

【0004】陽極にはチタン等の多孔板、エキスパンデ
ッドメタル等を基材としてその表面にルテニウム、イリ
ジウム、パラジウム等の白金族の金属の酸化物等を被覆
した陽極が用いられている。陰極には鉄、ステンレス又
はニッケル等の多孔板、エキスパンデッドメタル等を基
材として、その表面をニッケル系、白金族金属系等の陰
極触媒物質によって被覆した陰極が使用されている。ま
た、イオン交換膜には、スルホン酸基、カルボン酸基等
を有するフッ素樹脂系の陽イオン交換膜が使用されてい
る。
[0004] As the anode, a perforated plate such as titanium, an expanded metal or the like as a base material, the surface of which is coated with an oxide of a platinum group metal such as ruthenium, iridium or palladium is used. As the cathode, there is used a cathode whose base material is a porous plate of iron, stainless steel, nickel or the like, expanded metal, or the like, and whose surface is coated with a cathode catalyst material such as a nickel-based or platinum group metal-based. As the ion exchange membrane, a fluorinated resin-based cation exchange membrane having a sulfonic acid group, a carboxylic acid group and the like is used.

【0005】[0005]

【発明が解決しようとする課題】フィルタープレス式イ
オン交換膜法電解槽において、食塩の電気分解などのよ
うに気体が発生する電気分解反応を行うと、気泡を含む
陽極液又は陰極液を電極室から抜き出す時気泡に起因す
る電極室内圧力の変動が生じる。一般に用いられている
縦型の塩化アルカリ電解槽の電極室内における陽極液又
は陰極液は電極で発生した気泡によって上部ほど気泡の
割合である気泡率が増大し、電極室液の上層部近くにな
ると気泡が集合して泡沫層となり最上部に泡沫から分離
した気体からなる気相を形成している。その結果、電極
室上部より電解液及び発生気体を排出しようとすると流
出状態は気液混相、液相と気相が入り混じった気泡流、
管路を閉塞するプラグ流、波状流などによる電極室内圧
力を変動させる複雑な流れを生じる。特に陽極室側で形
成される塩素気泡は、塩水粘度、表面張力などに起因し
て、陰極室側で苛性ソーダと水素から形成される水素気
泡に比べて気泡が消えにくく、陽極室内の圧力変動を引
き起こす。このため、陽極室内の圧力変動は、電解条件
によって異なるが50〜200mmH2 O、場合によっ
ては300mmH2 Oを超え、イオン交換膜を常時振動
させて電極面と接触したり離れることを繰り返し、陽イ
オン交換膜の表面に摩擦による傷を生じ、また振動によ
る疲労のために陽イオン交換膜に亀裂が生じることが起
こる。その結果、陽イオン交換膜の特性が劣化するとと
もに、一般には電極室内の圧力が高い陰極室内から陽極
室内へ流入するアルカリによる電極の損傷を生じて電極
の寿命に悪影響を及ぼすこととなる。
In an electrolytic cell of a filter press type ion-exchange membrane method, when an electrolysis reaction such as electrolysis of salt is performed to generate a gas, an anolyte or a catholyte containing bubbles is converted into an electrode chamber. When the air is extracted from the electrode, the pressure in the electrode chamber fluctuates due to the bubbles. The anolyte or catholyte in the electrode chamber of a commonly used vertical alkaline chloride electrolyzer increases the bubble rate, which is the proportion of bubbles toward the top, due to bubbles generated at the electrode, and becomes closer to the upper layer of the electrode chamber liquid. The bubbles are aggregated to form a foam layer, and a gas phase is formed at the uppermost portion from the gas separated from the foam. As a result, when trying to discharge the electrolyte and generated gas from the upper part of the electrode chamber, the outflow state is a gas-liquid mixed phase, a bubble flow in which the liquid phase and the gas phase are mixed,
A complicated flow that fluctuates the pressure in the electrode chamber due to a plug flow, a wavy flow, or the like that closes the conduit is generated. In particular, chlorine bubbles formed on the anode chamber side are less likely to disappear than hydrogen bubbles formed from caustic soda and hydrogen on the cathode chamber side due to salt water viscosity, surface tension, etc. cause. Therefore, pressure fluctuation in the anode compartment may vary depending electrolysis conditions 50~200mmH 2 O, exceed 300mmH 2 O is optionally repeated to leave out of contact with the electrode surface by constantly vibrate the ion exchange membrane, cation The surface of the ion exchange membrane is scratched by friction, and the cation exchange membrane is cracked due to fatigue due to vibration. As a result, the characteristics of the cation exchange membrane are degraded, and the electrode is generally damaged by alkali flowing into the anode chamber from the cathode chamber where the pressure in the electrode chamber is high, which adversely affects the life of the electrode.

【0006】そこで、食塩水のイオン交換膜法電解槽に
おいては、陰極室の圧力を陽極室圧力の変動最大値より
大きく保って膜を常時陽極面に圧着して振動を防止する
方法、電極室上部に電解液面より高いチャンバーを設
け、チャンバー内に気液分離ゾーンを形成し、チャンバ
ー内において自然消泡して波状流、成層流として側壁の
排出ノズルより取り出す方法、実開平2−17013号
に示されている如き電極室上壁にその内面より30mm
以上内部に開口させ、ノズル内の液流速が0.5乃至2
0m/secとなるノズルを設ける方法等が提案されて
いる。
Therefore, in a saline ion-exchange membrane electrolytic cell, a method for keeping the pressure of the cathode chamber larger than the maximum fluctuation of the anode chamber pressure and constantly pressing the membrane against the anode surface to prevent vibration is provided. A method in which a chamber higher than the level of the electrolyte is provided at the upper part, a gas-liquid separation zone is formed in the chamber, and the bubbles are spontaneously defoamed in the chamber and taken out as a wavy flow or a stratified flow from the discharge nozzle on the side wall. 30 mm from the inner surface of the electrode chamber upper wall as shown in
When the liquid flow rate in the nozzle is 0.5 to 2
A method of providing a nozzle having a speed of 0 m / sec has been proposed.

【0007】しかしながら、陽極室圧力変動の最大値よ
り大きい圧力を陰極室に付加する方法は膜がエキスパン
デッドメタルもしくは多孔板からなる陽極表面を常に過
度に圧着し、陽極の開孔部に食い込むため塩素発生の陽
極過電圧を大きくし電解槽電圧を数〜10数mV高めて
電力の損失を招くだけでなく、長期的にみれば陰極側か
ら逆泳動するアルカリによる陽極の触媒活性被覆の浸食
も、陰極加圧の圧力が小さい場合に比して大きく電極の
寿命を短くする欠点がある。
However, in the method of applying a pressure larger than the maximum value of the pressure fluctuation of the anode chamber to the cathode chamber, the membrane always excessively presses the anode surface made of expanded metal or a perforated plate and cuts into the opening of the anode. Therefore, not only the anode overvoltage of chlorine generation is increased and the electrolytic cell voltage is increased by several to several tens of mV to cause power loss, but also in the long term, the erosion of the catalytically active coating of the anode due to alkali reversely migrating from the cathode side. However, there is a disadvantage that the life of the electrode is shortened largely as compared with the case where the pressure of the cathode pressurization is small.

【0008】電極室の上部を高くして気液分離ゾーンを
設ける方法は圧力変動防止に有効であるが、電極室の容
量の増加分の材料費、加工費が高価となるきらいがあ
る。さらに、電極室の上部の壁面より排出ノズルを差し
込む方法は、発生ガス量と電極室内での電解液の循環量
の比率によって、排出ノズルの大きさ等を定める必要が
あるために電解槽の運転の自由度が小さく、また複極式
電解槽ではとくに、排出ノズルを通して流れるリーク電
流による腐食防止の対策が必要となる。
A method of providing a gas-liquid separation zone by raising the upper part of the electrode chamber is effective in preventing pressure fluctuation, but may increase the material cost and the processing cost due to the increase in the capacity of the electrode chamber. Furthermore, the method of inserting the discharge nozzle from the upper wall surface of the electrode chamber requires the operation of the electrolytic cell because it is necessary to determine the size of the discharge nozzle according to the ratio of the amount of generated gas and the circulation amount of the electrolyte in the electrode chamber. In the case of a bipolar electrolytic cell, it is necessary to take measures to prevent corrosion due to leak current flowing through the discharge nozzle.

【0009】さらに、排出ノズルによる方法では、電極
室の上部のイオン交換膜の表面が乾燥状態となり、陽イ
オン交換膜を透過する気体状の塩素によって陽イオン交
換膜が悪影響を受けるので、電極室の上部の隔壁面に陽
イオン交換膜表面を湿潤状態に保持するための電解液の
溢流する堰を溶接等によって設ける必要であることが明
らかにされている(「ソーダと塩素」第41巻第4号第
18ページ(1990年4月))。
Further, in the method using the discharge nozzle, the surface of the ion exchange membrane above the electrode chamber is in a dry state, and the gaseous chlorine permeating the cation exchange membrane adversely affects the cation exchange membrane. It has been clarified that it is necessary to provide, by welding or the like, a weir for overflowing the electrolyte in order to keep the surface of the cation exchange membrane in a wet state on the upper partition wall surface (see "Soda and Chlorine" Vol. 41). No. 4, page 18 (April 1990)).

【0010】一方、複極式電解槽の鍋状の電極室をチタ
ン、ニッケル、ステンレス等の薄板を使用して金型プレ
スにより製作する方法は、製造が容易であり量産性が大
であるため、電解槽のコスト低減に極めて有効であるの
で好ましい製作方法であるが、これに気液分離チャンバ
ーを継ぎ足したり、堰等を溶接によって取り付けること
はプレス成型の特徴を失うこととなる。
On the other hand, a method of manufacturing a pot-shaped electrode chamber of a bipolar electrolytic cell by using a thin plate made of titanium, nickel, stainless steel or the like by a die press is easy to manufacture and has high mass productivity. This is a preferable manufacturing method because it is extremely effective in reducing the cost of the electrolytic cell. However, adding a gas-liquid separation chamber or attaching a weir or the like by welding loses the characteristics of press molding.

【0011】[0011]

【課題を解決するための手段】本発明者は、構造が簡単
で製作費用を低減出来るチタン、ニッケル、ステンレス
等の薄板を使用して金型プレスにより成形した電極室隔
壁に溶接加工を施さずに電極室上部の電解反応領域にお
いて気液分離し電極室内での圧力変動を減少させ、陽イ
オン交換膜の振動を防止する手段を鋭意追求した結果本
発明に至ったものである。
SUMMARY OF THE INVENTION The inventor of the present invention does not apply welding work to an electrode chamber partition formed by a die press using a thin plate made of titanium, nickel, stainless steel or the like, which has a simple structure and can reduce the manufacturing cost. The present invention has been made as a result of intensive pursuit of means for separating gas and liquid in the electrolytic reaction region above the electrode chamber to reduce pressure fluctuation in the electrode chamber and to prevent vibration of the cation exchange membrane.

【0012】本発明の電解槽は電極室の上部に、一端が
閉鎖された断面がU字状の上面が開口した管路を有し、
管路の電極側には上部の壁面との間に方形オリフィス状
の間隙を形成し、管路の電極室の隔壁側の上部の側面に
は隔壁と管路との間に形成される空間との連通路を設け
るとともに、管路の他端は電解槽の側壁部に設けたノズ
ルに結合した電解槽である。
The electrolytic cell of the present invention has, at the upper part of the electrode chamber, a conduit whose one end is closed and whose upper surface is open in a U-shaped cross section.
A rectangular orifice-shaped gap is formed between the electrode side of the conduit and the upper wall surface, and a space formed between the partition and the conduit is formed on the upper side surface of the electrode chamber of the conduit on the partition side. The other end of the conduit is an electrolytic cell connected to a nozzle provided on the side wall of the electrolytic cell.

【0013】すなわち、電極室の上部に一端が閉鎖され
た断面がU字状の上面が開口した管路を設けているの
で、電極室の上部空間が狭められる結果、気泡を含む電
解液の流路が狭くなり、気泡は接触合一拡大して、電極
室の上部の壁面と管路の側壁との間で形成された狭い間
隙から圧縮されて管路中へ流入する。流入の際気泡の多
くは圧縮と圧力の変化によって破裂して管路内を残留す
る泡沫を含む電解液と気体が排出ノズルに向かって流れ
る。また、管路中において気泡が泡沫に閉塞された場合
には管路の側壁に設けた連通路によってU型管路と隔壁
との間に形成された空間へ気体を流入させ排出ノズルに
バイパスさせるようにしたものである。
That is, since the upper end of the electrode chamber is provided with a conduit whose one end is closed and has a U-shaped cross section and the upper surface is open, the upper space of the electrode chamber is narrowed. The passage narrows, and the air bubbles contact and expand, and are compressed from a narrow gap formed between the upper wall surface of the electrode chamber and the side wall of the conduit and flow into the conduit. During the inflow, many of the bubbles burst due to the change in compression and pressure, and the electrolyte and gas containing bubbles remaining in the pipe flow toward the discharge nozzle. Further, when air bubbles are clogged with foam in the pipeline, the gas flows into the space formed between the U-shaped pipeline and the partition wall by the communication passage provided on the side wall of the pipeline and is bypassed to the discharge nozzle. It is like that.

【0014】以下に図面を参照して、本発明をさらに詳
細に説明する。図1は、複極式電解槽ユニットの一部を
切り欠いた平面図を示し、図2は図1をA−A線で切断
した断面図を示す。複極式の電解槽ユニット1は、炭素
鋼等の剛体で成形された額縁状フレーム2を骨格として
左右に陽極室3と陰極室4が形成されており、チタンま
たはチタン合金などの薄板を鍋状に加工した陽極室側の
隔壁5と鉄、ステンレス、ニッケル等の薄板を同様に鍋
状に加工した陰極室側の隔壁6を結合部7で電気的およ
び機械的に結合している。陽極室、陰極室には隔壁に結
合した導電リブ8、9に、それぞれ白金族の金属あるい
は酸化物を含有する被覆を形成した陽極10とニッケル
系、白金族系の陰極活性物質を被覆した陰極11が取り
付けられており、電極室の上部にはU型管路12、13
が設けられている。U型管路は、電極および隔壁と間隔
を設けて取り付けられており、U型管路の電極面側の側
壁14と電極室の上部壁15の間には、上昇した電解液
および気泡が流入する狭い間隙16が形成されており、
U型管路の隔壁側の壁面には連通路17が設けられてい
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a plan view of a bipolar electrode unit with a part cut away, and FIG. 2 is a cross-sectional view of FIG. 1 taken along line AA. The bipolar cell unit 1 has an anode chamber 3 and a cathode chamber 4 formed on the left and right with a frame frame 2 formed of a rigid body such as carbon steel as a skeleton. The partition wall 5 on the side of the anode chamber, which has been processed into a shape, and the partition wall 6 on the side of the cathode chamber, which is also made of a thin plate made of iron, stainless steel, nickel or the like, are electrically and mechanically connected by a connecting portion 7. In the anode chamber and the cathode chamber, an anode 10 having a coating containing a platinum group metal or oxide formed on conductive ribs 8 and 9 bonded to a partition wall respectively, and a cathode having a nickel or platinum group cathode active material coated thereon 11 are attached, and U-shaped conduits 12, 13 are provided at the upper part of the electrode chamber.
Is provided. The U-shaped conduit is attached with an interval between the electrode and the partition wall, and between the side wall 14 on the electrode surface side of the U-shaped conduit and the upper wall 15 of the electrode chamber, the raised electrolytic solution and bubbles flow. A narrow gap 16 is formed,
A communication path 17 is provided on the wall surface of the U-shaped pipe on the partition wall side.

【0015】また、U型管路の一端は電解槽ユニットの
側壁部18に取り付けた電解液および気体を外部へ取り
出すための排出ノズル19に結合され、電解槽ユニット
の下部には電解液の供給ノズル20が取り付けられてお
り、電解槽ユニットの側壁には電解槽ユニットを架台に
取り付ける取り付けアームが設けられている。
One end of the U-shaped conduit is connected to a discharge nozzle 19 attached to the side wall 18 of the electrolytic cell unit for taking out the electrolytic solution and gas to the outside. The nozzle 20 is attached, and a mounting arm for attaching the electrolytic cell unit to the gantry is provided on a side wall of the electrolytic cell unit.

【0016】図3は、U型管路を電解液の排出ノズルか
ら電解槽内部へ取り付ける図を示している。電解槽ユニ
ットの側壁部18に設けた排出ノズル19にU型管路1
2、13を取り付けている。U型管路は電解槽中での電
蝕を防止するために、フッ素樹脂、ポリプロピレン等の
合成樹脂を用いることが好ましい。U型管路はガスケッ
ト21を介して排出ノズル19に取り付けられており、
電極を取り付ける導電リブ8にはU型管路のガイドとな
る切り欠き部22を形成している。また、U型管路の側
壁には連通路17が設けられている。
FIG. 3 shows a view in which a U-shaped pipe is attached from the electrolyte discharge nozzle to the inside of the electrolytic cell. The U-shaped pipe 1 is connected to the discharge nozzle 19 provided on the side wall 18 of the electrolytic cell unit.
2, 13 are attached. For the U-shaped conduit, it is preferable to use a synthetic resin such as a fluororesin or polypropylene in order to prevent electrolytic corrosion in the electrolytic cell. The U-shaped pipe is attached to the discharge nozzle 19 via a gasket 21,
A cut-out portion 22 serving as a guide for a U-shaped conduit is formed in the conductive rib 8 for attaching an electrode. A communication passage 17 is provided on a side wall of the U-shaped pipe.

【0017】図4は、複極式の電解槽を示す図であり、
5個の複極式の電解槽ユニット1と端部陽極ユニット2
3と端部陰極ユニット24から組み立てられており、各
電解槽ユニットの間には、陽イオン交換膜25を取り付
けて架台26に載置して油圧プレス、タイロッド等によ
って固定しており、電解槽ユニット側壁の排出ノズル1
9、供給ノズル20に管路を結合し、両端部の電解槽ユ
ニットに電解電流を供給している。
FIG. 4 is a diagram showing a bipolar electrolytic cell.
Five bipolar electrode unit 1 and end anode unit 2
3 and an end cathode unit 24. A cation exchange membrane 25 is attached between the electrolytic cell units, placed on a gantry 26, and fixed by a hydraulic press, a tie rod, or the like. Discharge nozzle 1 on unit side wall
9. A pipeline is connected to the supply nozzle 20 to supply an electrolytic current to the electrolytic cell units at both ends.

【0018】図5は、本発明の電解槽に設けたU型管路
への電解液の流れを説明する図である。U型管路は、電
極室の全体にわたり気液混相状態の電解液の上昇流を均
整化するとともに、電極室の隔壁側空間27に液面28
を保持し、気体のバイパス流路を形成するためには、電
極室の両側壁間の長さと相応する高さを必要とする。ま
た、U型の管路の側壁の高さは電極側の電解液の上昇路
において気泡の合一を促進する距離すなわち高さが必要
であり、電流密度3kA/m2 、温度85℃、塩水濃度
200g/lの標準的な電解条件のもとでの実験により
求めた結果では、電解槽の液面深さに対して4%以上好
ましくは5%以上必要であることがわかった。
FIG. 5 is a view for explaining the flow of the electrolytic solution to the U-shaped pipe provided in the electrolytic cell of the present invention. The U-shaped conduit equalizes the upward flow of the electrolyte in a gas-liquid mixed phase over the entire electrode chamber, and has a liquid surface 28 in the partition-side space 27 of the electrode chamber.
And a height corresponding to the length between both side walls of the electrode chamber is required to form the gas bypass channel. In addition, the height of the side wall of the U-shaped conduit needs to be a distance that promotes coalescence of bubbles in the rising path of the electrolytic solution on the electrode side, that is, a height, and the current density is 3 kA / m 2 , the temperature is 85 ° C., The results obtained by experiments under standard electrolysis conditions of a concentration of 200 g / l have revealed that 4% or more, preferably 5% or more, of the liquid surface depth of the electrolytic cell is required.

【0019】陽極室の電解空間部29は電解液の塩水中
を塩素気泡群が複雑な流体抵抗を受けつつも自由上昇し
ている領域であるが、上昇流がU型管路によって区切ら
れた部分に達すると気泡の大部分は電極側空間30の流
路に入って液と共に上昇するのに対し、隔壁側空間27
には気液の上昇はなく液面28が形成される。隔壁側空
間に液面28を形成し、電極側空間に上昇流を形成する
ためには、電極側の空間が隔壁側の空間より2倍以上大
きいことが必要であり、隔壁側空間の大きさは毛細管現
象を生じない範囲で狭い程好ましく、2〜4mmとする
ことが好ましい。また、図5に示すように、U型管路の
両側の液面の高さには差が形成される。
The electrolytic space 29 of the anode chamber is a region in which chlorine bubbles are freely rising in the salt solution of the electrolyte while receiving complicated fluid resistance, but the rising flow is separated by a U-shaped conduit. When reaching the portion, most of the bubbles enter the flow path of the electrode-side space 30 and rise together with the liquid, whereas the partition-side space 27
The liquid surface 28 is formed without any rise in gas-liquid. In order to form the liquid surface 28 in the partition-side space and to form an upward flow in the electrode-side space, it is necessary that the space on the electrode side be at least twice as large as the space on the partition-side. Is preferably as small as possible without causing capillary action, and more preferably 2 to 4 mm. Also, as shown in FIG. 5, a difference is formed between the liquid levels on both sides of the U-shaped conduit.

【0020】これは、電極室内では電極側の方を主に発
生気体の気泡が上昇するので、隔壁側の領域の電解液の
密度と電極側の密度に差を生じ、その結果U型管路と隔
壁との間に形成した空間の液面はU型管路の電極側に形
成されるからである。U型管路の幅は電解液供給量と気
体の発生量に見合う気液を管路に流入させ、排出ノズル
に混乱なく移動させるのに必要な流路断面積を形成する
ことが必要であり、10mm以上とすることが好まし
い。またU型管路の高さは、大きいほど電解液の流れる
流路面積が大きくなるが、反面導電リブを通じての電極
上端への電流分配が不十分となる可能性があるので、U
型管路の高さは60〜100mmとすることが好まし
い。とくに、本発明の電解槽ではU型管路と隔壁の間に
気相の空間を設けて発生気体のバイパスを形成したの
で、U型管路の幅を小さくすることが可能となる。
This is because, in the electrode chamber, the generated gas bubbles rise mainly on the electrode side, so that a difference occurs between the density of the electrolyte in the region on the partition wall side and the density on the electrode side. This is because the liquid surface of the space formed between the partition wall and the partition wall is formed on the electrode side of the U-shaped conduit. The width of the U-shaped conduit must be such that a gas-liquid flow rate commensurate with the supply amount of the electrolyte and the amount of gas generated flows into the conduit, and the cross-sectional area of the flow passage necessary to move the discharge nozzle without confusion is required. , And preferably 10 mm or more. Also, as the height of the U-shaped conduit increases, the flow area of the electrolytic solution increases, but the current distribution to the upper end of the electrode through the conductive rib may be insufficient.
It is preferable that the height of the mold pipe be 60 to 100 mm. In particular, in the electrolytic cell of the present invention, a gas-phase space is provided between the U-shaped pipe and the partition wall to form a bypass for generated gas, so that the width of the U-shaped pipe can be reduced.

【0021】また、電極側空間を上昇した気液混相流は
電極室の上部の壁面に達し、電極室の上部の壁面とU型
管路の電極側の側壁の上部によって形成された間隙から
U型管路中へ流入し、間隙を通過の際に多くの気泡は破
裂し、泡末を含んだ電解液がU型管路中へ、U型管路か
ら排出ノズルを通じて外部へ取り出されるが、U型管路
の側壁と電極室の上部壁との間で形成される間隙は、3
〜6mmとすることが適当であり、さらに4〜5mmと
することが好ましく、3mm以下となると流路抵抗が大
きくなり、逆に圧力変動が大きくなるので好ましくな
く、間隙が大きいと電極室内の圧力変動が大きくなって
好ましくない。
Further, the gas-liquid multiphase flow that has risen in the electrode side space reaches the upper wall surface of the electrode chamber, and the gas flows from the gap formed by the upper wall surface of the electrode chamber and the upper side wall of the U-shaped conduit on the electrode side. While flowing into the type pipe and passing through the gap, many bubbles burst, and the electrolyte containing the foam is taken out into the U-type pipe and from the U-type pipe to the outside through the discharge nozzle. The gap formed between the side wall of the U-shaped conduit and the upper wall of the electrode chamber is 3
If the gap is large, it is not preferable because the flow path resistance increases, and conversely, the pressure fluctuation increases. The fluctuation is undesirably large.

【0022】[0022]

【作用】本発明の電解槽は、電極室の上部に一端が閉鎖
された断面がU字状の上面が開口した管路を隔壁および
電極から間隔をおいて設け、電極との間隔を気泡を含む
電解液の流路、隔壁との間隔を気体のバイパス流路とし
ているので、電極室上部の気泡は電極と管路の狭められ
た流路で合一拡大して電極室の上部の壁面と管路の側壁
との間で形成された狭い間隙から管路中へ流入し、流入
の際の圧縮と膨張の圧力変化を受けてその多くは破裂し
て気液分離される。また、管路内を排出ノズルに向かっ
て流れる泡沫を含む電解液と気体の流れの中で、泡沫が
気体をせき止めて圧力が高まった場合には管路の隔壁側
の形成した連通路から隔壁との間に形成された空間へ気
体を流出して電極室内の圧力の変化を減少させることが
できるので、陽イオン交換膜の振動による悪影響が防止
可能である。
In the electrolytic cell of the present invention, a conduit having a U-shaped cross section with one end closed at the top of the electrode chamber is provided at an interval from the partition and the electrode, and the gap between the electrode and the electrode is reduced. Since the flow path of the electrolytic solution containing the gas and the space between the partition walls are used as the gas bypass flow path, the bubbles in the upper part of the electrode chamber are united and expanded in the narrow flow path of the electrode and the conduit, and the upper wall surface of the electrode chamber is formed. The gas flows into the pipe through a narrow gap formed between the pipe and a side wall of the pipe, and most of the gas bursts and undergoes gas-liquid separation due to a change in pressure of compression and expansion during the flow. Also, in the flow of the electrolyte and gas containing foam flowing toward the discharge nozzle in the pipe, when the foam blocks the gas and the pressure increases, the partition wall is formed from the communication passage formed on the partition side of the pipe. Since the gas can flow out into the space formed between the electrodes and the change in the pressure in the electrode chamber can be reduced, it is possible to prevent adverse effects due to the vibration of the cation exchange membrane.

【0023】[0023]

【実施例】【Example】

実施例1 厚み1mmのチタン板とステンレス板をプレス金型によ
り縦140cm×横93.5cm×深さ3cmの陽極室
と陰極室を成型し、これにU型管路を固定するための切
り欠きを上端に設けた厚み4mm、幅3cm、長さ13
0cmのチタン及びステンレスの導電リブを電極室横幅
の中心から18cmの間隔で5本を溶接で取り付け、両
極室側壁の下部に電解液供給ノズルとして電極室と同材
質で内径13mm、外径17.3mm、長さ100mm
のフランジ付短管を取り付け、電解液と電解生成気体の
排出ノズルとして電極室と同材質の厚み1.5mm縦
6.5cm×横3cm×長さ10cmのフランジ付角型
パイプを溶接して取りつけた。 次いで、額縁状の枠体
と陽極室および陰極室を、陽極室側に取り付けたチタン
と銅とのクラッド体と陰極室側の隔壁を特開平3−24
0984号に記載されているように、半田を用いて電気
炉内でろう付けを行って両電極室の隔壁を結合するとと
もに額縁状の枠体を一体化した。
Example 1 A titanium plate having a thickness of 1 mm and a stainless steel plate were formed into a 140 mm long × 93.5 cm wide × 3 cm deep anode chamber and a cathode chamber by a press die, and a notch for fixing a U-shaped conduit thereto. 4 mm thick, 3 cm wide, 13 long with
Five conductive ribs of 0 cm titanium and stainless steel were attached by welding at an interval of 18 cm from the center of the width of the electrode chamber, and an electrolyte supply nozzle was formed below the side walls of both electrode chambers as an electrolyte solution supply nozzle using the same material as the electrode chamber with an inner diameter of 13 mm and an outer diameter of 17. 3mm, length 100mm
A short pipe with a flange is attached, and a flanged square pipe of the same material as the electrode chamber and having a thickness of 1.5 mm, 6.5 cm x 3 cm x 10 cm, is attached as a discharge nozzle for the electrolytic solution and the gas produced by the electrolysis. Was. Next, a frame-like frame, an anode chamber and a cathode chamber were mounted on a cladding body of titanium and copper attached to the anode chamber side and a partition on the cathode chamber side as disclosed in JP-A-3-24.
As described in Japanese Patent No. 0984, brazing was performed in an electric furnace using solder to join the partition walls of both electrode chambers and to integrate the frame-shaped frame.

【0024】しかる後、厚み1mmのチタン板から得ら
れた開口率が35%のエキスパンデッドメタルに貴金属
酸化物を含有する陽極活性被覆を施した縦1.399m
×横0.933m電解有効面積1.3m2 の陽極(ペル
メレック電極(株)製)と厚み1.5mmのステンレス
板から得られた開口率37%のエキスパンデッドメタル
にニッケル系の活性陰極被覆を施した、陽極と同寸法の
陰極を導電リブにスポット溶接して複極式電解槽ユニッ
トを製造した。
Thereafter, an expanded metal having an aperture ratio of 35% obtained from a titanium plate having a thickness of 1 mm and having an anode active coating containing a noble metal oxide, having a length of 1.399 m, was obtained.
× 0.933 m width Electrode effective area 1.3 m 2 anode (manufactured by Permelec Electrode Co., Ltd.) and expanded metal with a 37% aperture ratio obtained from a 1.5 mm thick stainless steel plate coated with a nickel-based active cathode And a cathode having the same dimensions as the anode was spot-welded to the conductive rib to produce a bipolar electrolytic cell unit.

【0025】また陽極室と陰極室がそれぞれ単独の端部
陽極ユニットと端部陰極ユニットを製作し、3個の複極
式電解槽ユニットをフランジ面に耐食性ガスケットを設
けて、両端部には端部陽極ユニットと端部陰極ユニット
を設けてイオン交換膜を挟持して積層した。電極間間隔
は2mmとし、陽イオン交換膜としてNafionN9
54(デュポン社商品名)を4枚有する複極式電解槽を
組み立てた。
The anode chamber and the cathode chamber each form a single end anode unit and a single end cathode unit. Three double-electrode type electrolytic cell units are provided with corrosion-resistant gaskets on the flange surface. An anode unit and an end cathode unit were provided, and an ion exchange membrane was sandwiched and laminated. The distance between the electrodes was 2 mm, and Nafion N9 was used as a cation exchange membrane.
A bipolar electrolytic cell having four 54 (trade name of DuPont) was assembled.

【0026】次いで、フッ素樹脂製の厚み1.5mm、
高さ57mm、幅18mm、全長1025mm、上部開
口部長さ93mmであり、隔壁側の側壁には5mmの孔
を3個有するU型管路を、電極室の上部壁面とU型管路
の側壁との間隔を5mmとし、電極面との間隔を8m
m、隔壁との間隔を4mmとなるように挿入し、排出用
ノズルと結合した。
Next, a fluororesin thickness 1.5 mm,
A U-shaped conduit having a height of 57 mm, a width of 18 mm, a total length of 1025 mm, an upper opening length of 93 mm, and having three 5 mm holes on the side wall of the partition wall, the upper wall surface of the electrode chamber and the side wall of the U-shaped conduit Is 5 mm, and the distance from the electrode surface is 8 m.
m, and the distance between the partition and the partition was 4 mm, and was connected to the discharge nozzle.

【0027】各ノズルには、電解液供給用主管と電解液
及び生成気体排出用主管にフッ素樹脂製フレキシブルチ
ューブを介して接続し、直流電源と電解槽の陽極端子、
陰極端子とを接続して電解槽を完成させた。陰極室には
純水を供給し、陽極室には300g/lの食塩水を供給
し、陰極室からは32%の苛性ソーダを、陽極室からは
食塩水濃度を200g/lの戻り食塩水を取り出し、電
解槽温度85℃、電解電流5.2kA、電流密度3kA
/m2 で通電し30日間運転した。この間の苛性ソーダ
の生成電流効率は96.2%、4対の電解槽ユニットの
平均槽電圧3.05Vであり、陽極室内圧力変動は15
mmH2 O以内で極めて安定した状態であった。
Each nozzle is connected to a main pipe for supplying an electrolytic solution and a main pipe for discharging an electrolytic solution and a generated gas through a flexible tube made of a fluororesin.
The electrolytic cell was completed by connecting to a cathode terminal. Pure water is supplied to the cathode compartment, 300 g / l of saline is supplied to the anode compartment, 32% caustic soda is supplied from the cathode compartment, and 200 g / l of saline solution is returned from the anode compartment. Take out, electrolytic cell temperature 85 ° C, electrolytic current 5.2 kA, current density 3 kA
/ M 2 and operated for 30 days. During this period, the generated current efficiency of caustic soda was 96.2%, the average cell voltage of the four pairs of electrolytic cell units was 3.05 V, and the pressure fluctuation in the anode chamber was 15%.
The state was extremely stable within mmH 2 O.

【0028】次いで高負荷電解条件における圧力変動状
況確認を目的として電流密度4kA/m2 、塩水供給量
を戻り塩水を循環させることにより標準供給量の2〜4
倍量に増加して陽極室内圧力変動を測定し、結果を表1
に示す。また、電解槽の運転を停止して、陽イオン交換
膜を点検したが変色、変質などの異常は全く見られなか
った。
Then, the current density is set to 4 kA / m 2 , and the supply amount of the salt water is returned to circulate the salt water to confirm the pressure fluctuation under the high load electrolysis conditions.
The anode chamber pressure fluctuation was measured by increasing the amount twice, and the results are shown in Table 1.
Shown in In addition, the operation of the electrolytic cell was stopped, and the cation exchange membrane was inspected, but no abnormality such as discoloration or deterioration was found.

【0029】実施例2 実施例1のU型管路の電極側の側壁と陽極室の上部壁面
との間隔を10mmとしたU型管路を取り付けた点を除
いて、実施例1と同様の条件で15日間運転した結果電
流効率は95.6%、平均槽電圧は3.06Vであり、
初期電解性能は実施例1とほぼ同等であった。陽極室内
圧の変動を実施例1と同様に測定し、その結果を表1に
示す。また、運転停止後の陽イオン交換膜の上部には幅
約5mmの変色がみられた。 実施例3 実施例1のU型管路の電極側の側壁と陽極室の上部壁面
との間隔を15mmとしたU型管路を取り付けた点を除
いて、実施例1と同様の条件で15日間運転した結果電
流効率は95.2%、平均槽電圧は3.09Vであり、
初期電解性能は実施例1とほぼ同等であった。陽極室内
圧の変動を実施例1と同様に測定し、その結果を表1に
示す。また、運転停止後の陽イオン交換膜の上部には幅
約10mmの塩素によるとみられる変色が観察された。
Example 2 The same procedure as in Example 1 was carried out except that a U-shaped pipe having a distance of 10 mm between the side wall on the electrode side of the U-shaped pipe of Example 1 and the upper wall of the anode chamber was attached. After operating for 15 days under the conditions, the current efficiency was 95.6%, the average cell voltage was 3.06 V,
The initial electrolysis performance was almost the same as in Example 1. The fluctuation of the anode chamber pressure was measured in the same manner as in Example 1, and the results are shown in Table 1. After the operation was stopped, discoloration with a width of about 5 mm was observed on the upper portion of the cation exchange membrane. Example 3 The same conditions as in Example 1 were adopted, except that a U-shaped conduit having a distance of 15 mm between the electrode side wall of the U-shaped conduit of Example 1 and the upper wall surface of the anode chamber was attached. As a result of operating for a day, the current efficiency was 95.2%, the average cell voltage was 3.09 V,
The initial electrolysis performance was almost the same as in Example 1. The fluctuation of the anode chamber pressure was measured in the same manner as in Example 1, and the results are shown in Table 1. Further, after the operation was stopped, the discoloration of the upper part of the cation exchange membrane which was considered to be caused by chlorine having a width of about 10 mm was observed.

【0030】[0030]

【表1】 [Table 1]

【0031】比較例1 実施例2の電解槽よりU型管路を取り除き、実施例2で
使用した陽イオン交換膜を使用して電解槽の再組立を行
い、実施例2と同様の条件で15日間運転した。電流効
率は94.8%、平均槽電圧は3.11Vで電解性能の
低下が認められた。又、陽極室内圧力は−10〜120
mmH2 Oの範囲で常時変動し実施例2より更に大き
く、排出ノズルにおいてプラグ流が生じ、間欠流出現象
が見られた。
Comparative Example 1 The U-shaped conduit was removed from the electrolytic cell of Example 2, and the electrolytic cell was reassembled using the cation exchange membrane used in Example 2 under the same conditions as in Example 2. I drove for 15 days. The current efficiency was 94.8%, the average cell voltage was 3.11 V, and a decrease in electrolytic performance was observed. The pressure in the anode chamber is -10 to 120
The value constantly fluctuated in the range of mmH 2 O and was larger than that in Example 2. A plug flow occurred in the discharge nozzle, and an intermittent outflow phenomenon was observed.

【0032】運転の停止後に陽イオン交換膜を点検した
ところ、陽イオン交換膜の上部には幅約100mmの茶
褐色の変色が見られ排出ノズルの下辺より35mm下ま
で変色と直径約2mmの小ブリスターが散在し、又やす
り状の活性陰極表面に触れたと見られる黒褐色の変色と
擦過傷が一部に見られた。
When the cation exchange membrane was inspected after the operation was stopped, a brown discoloration with a width of about 100 mm was observed at the upper portion of the cation exchange membrane, and the discoloration changed to 35 mm below the lower side of the discharge nozzle and a small blister having a diameter of about 2 mm. Were scattered, and blackish brown discoloration and abrasions which appeared to have touched the file-like active cathode surface were partially observed.

【0033】比較例2 U型管路に代えて、高さ57mm、横幅18mmのL字
型の部材の上端と電極室上壁との間隔を5mm、電極と
の間隔を8mmとして電極室隔壁に溶接して取りつけた
上、電極室側壁の排出ノズルを改造して櫃底部の位置に
内径25mm×外径27.2mmの排出ノズルを設け電
極を修復して電解槽に組み込みその他実施例−1と同じ
標準電解条件のもとで15日間運転した。
COMPARATIVE EXAMPLE 2 Instead of a U-shaped conduit, the distance between the upper end of an L-shaped member having a height of 57 mm and a width of 18 mm and the upper wall of the electrode chamber was 5 mm, and the distance between the electrodes was 8 mm. After welding and mounting, the discharge nozzle on the side wall of the electrode chamber was modified, a discharge nozzle with an inner diameter of 25 mm x an outer diameter of 27.2 mm was provided at the bottom of the cabinet, the electrode was restored, and the electrode was assembled into the electrolytic cell. It was operated for 15 days under the same standard electrolysis conditions.

【0034】電流効率は95.8%、槽電圧は3.08
Vであた。電極室内圧力は−20〜180mmH2O の
範囲で大きく変動し排出ノズルからの気液の流出状態は
典型的な間欠的プラグ流であった。電流密度および循環
倍率を夫々4kA/m2 、3倍に変えた条件での圧力変
動は−40〜200mmH2O に増加した。開槽した膜
の上部には活性陰極に触れたと見られる黒褐色の変化が
見られた。
The current efficiency is 95.8% and the cell voltage is 3.08.
It was V. The electrode chamber pressure greatly fluctuated in the range of −20 to 180 mmH 2 O, and the gas / liquid outflow state from the discharge nozzle was a typical intermittent plug flow. The pressure fluctuation under the conditions where the current density and the circulation magnification were changed to 4 kA / m 2 and 3 times, respectively, increased to −40 to 200 mmH 2 O. At the top of the opened membrane, a black-brown change was seen, which appeared to have touched the active cathode.

【0035】[0035]

【発明の効果】以上説明したように、本発明の電解槽
は、電極室隔壁等に直接溶接を行って構成する他の圧力
変動抑制方法に代わり、電解液と生成ガスの混合流体を
取り出す排出ノズルからU型管路を挿入する簡単な手段
によって、電極室内の圧力の変動とこれによるイオン交
換膜の振動を防止し、イオン交換膜および電極を長寿命
化することができる。またU型管路として、合成樹脂製
の部材を使用するならば、漏洩電流を減少することも可
能となる。
As described above, the electrolytic cell of the present invention takes out and discharges the mixed fluid of the electrolytic solution and the generated gas instead of the other pressure fluctuation suppressing method constituted by directly welding the electrode chamber partition and the like. With a simple means of inserting a U-shaped conduit from the nozzle, fluctuations in the pressure in the electrode chamber and vibrations of the ion exchange membrane due to this can be prevented, and the life of the ion exchange membrane and the electrode can be extended. Also, if a member made of a synthetic resin is used as the U-shaped conduit, the leakage current can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示す複極式電解槽ユニット
一部を切り欠いた平面図である。
FIG. 1 is a plan view, partially cut away, of a bipolar electrolytic cell unit showing one embodiment of the present invention.

【図2】図1におけるA−A線の断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】U型管路を電解槽ユニットの側壁から電解槽内
部への取り付けを説明する図である。
FIG. 3 is a diagram illustrating attachment of a U-shaped conduit from the side wall of the electrolytic cell unit to the inside of the electrolytic cell.

【図4】複極式の電解槽を示す図である。FIG. 4 is a diagram showing a bipolar electrolytic cell.

【図5】本発明の電解槽に設けたU型管路への電解液の
流れを説明する図である。
FIG. 5 is a diagram illustrating a flow of an electrolytic solution to a U-shaped pipe provided in the electrolytic cell of the present invention.

【符号の説明】[Explanation of symbols]

1…電解槽ユニット、2…額縁状フレーム、3…陽極
室、4…陰極室、5…陽極室側の隔壁、6…陰極室側の
隔壁、7…結合部、8、9…導電リブ、10…陽極、1
1…陰極、12、13…U型管路、14…U型管路の電
極面側の側壁、15…電極室の上部壁、16…間隙、1
7…連通路、18…側壁部、19…排出ノズル、20…
供給ノズル、21…ガスケット、22…切り欠き部、2
3…端部陽極ユニット、24…端部陰極ユニット、25
…陽イオン交換膜、26…架台、27…隔壁側空間、2
8…液面、29…電解空間部、30…電極側空間
DESCRIPTION OF SYMBOLS 1 ... Electrolyzer unit, 2 ... Frame-shaped frame, 3 ... Anode room, 4 ... Cathode room, 5 ... Anode room side partition, 6 ... Cathode room side partition, 7 ... Connection part, 8, 9 ... Conductive rib, 10 ... Anode, 1
DESCRIPTION OF SYMBOLS 1 ... Cathode, 12, 13 ... U-shaped conduit, 14 ... Side wall on the electrode surface side of U-shaped conduit, 15 ... Upper wall of electrode chamber, 16 ... Gap, 1
7 ... communication passage, 18 ... side wall, 19 ... discharge nozzle, 20 ...
Supply nozzle, 21 gasket, 22 notch, 2
3 ... End anode unit, 24 ... End cathode unit, 25
... Cation exchange membrane, 26 ... Stand, 27 ... Partition side space, 2
8: liquid level, 29: electrolytic space part, 30: electrode side space

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン交換膜電解槽において、電解槽の
上部にU字状の上面が開口したU型管路を有し、U型管
路の側壁とU型管路の上部の壁面との間に間隙を形成
し、該間隙がU型管路の側壁の外面に形成される隙間と
連通し、電極室内で生成する気液混合物をU型管路の側
壁の外面に形成される隙間とU型管路の側壁とU型管路
の上部の壁面との間に形成される間隙からU型管路に導
入して、気液分離を行うことを特徴とするイオン交換膜
電解槽。
1. An ion-exchange membrane electrolytic cell having a U-shaped pipe having a U-shaped upper surface opened at the upper part of the electrolytic cell, wherein a side wall of the U-shaped pipe and an upper wall surface of the U-shaped pipe are connected to each other. A gap is formed between the gap and the gap communicating with the gap formed on the outer surface of the side wall of the U-shaped pipe, and the gas-liquid mixture generated in the electrode chamber is formed with the gap formed on the outer surface of the side wall of the U-shaped pipe. An ion-exchange membrane electrolytic cell, wherein gas-liquid separation is performed by introducing gas into a U-shaped pipe through a gap formed between a side wall of the U-shaped pipe and an upper wall surface of the U-shaped pipe.
【請求項2】 U型管路の電極室の隔壁側の上部の側面
には隔壁と管路との間に形成される空間との連通路を設
けるとともに、管路の他端は電解槽の側壁部に設けたノ
ズルに結合したことを特徴とする請求項1記載のイオン
交換膜電解槽。
2. A communication path with a space formed between the partition wall and the conduit is provided on the upper side surface of the electrode chamber of the U-shaped conduit on the partition wall side, and the other end of the conduit is connected to the electrolytic cell. The ion exchange membrane electrolytic cell according to claim 1, wherein the ion exchange membrane electrolytic cell is connected to a nozzle provided on a side wall portion.
JP04125883A 1992-05-19 1992-05-19 Ion exchange membrane electrolyzer Expired - Lifetime JP3110555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04125883A JP3110555B2 (en) 1992-05-19 1992-05-19 Ion exchange membrane electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04125883A JP3110555B2 (en) 1992-05-19 1992-05-19 Ion exchange membrane electrolyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10200729A Division JP3110720B2 (en) 1998-07-15 1998-07-15 Gas-liquid separation method in an ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JPH05320970A JPH05320970A (en) 1993-12-07
JP3110555B2 true JP3110555B2 (en) 2000-11-20

Family

ID=14921287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04125883A Expired - Lifetime JP3110555B2 (en) 1992-05-19 1992-05-19 Ion exchange membrane electrolyzer

Country Status (1)

Country Link
JP (1) JP3110555B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2379512C (en) * 1999-08-27 2008-07-29 Asahi Kasei Kabushiki Kaisha Unit cell for use in an aqueous alkali metal chloride solution electrolytic cell
DE102005045338B4 (en) * 2005-09-22 2009-04-02 Siltronic Ag Epitaxial silicon wafer and process for producing epitaxially coated silicon wafers
WO2008142880A1 (en) 2007-05-11 2008-11-27 Masanori Harada Device for correcting ingrown nail
CN106835185B (en) * 2017-04-07 2018-07-10 河北华普化工设备科技有限公司 Persulfate electrolysis production device
JP7198619B2 (en) * 2017-09-28 2023-01-04 株式会社Lixil gas recovery device

Also Published As

Publication number Publication date
JPH05320970A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
US4417960A (en) Novel electrolyzer and process
CA1258443A (en) Electrolysis apparatus with horizontally disposed electrodes
RU2709541C2 (en) Electrode device, electrode assemblies and electrolytic cells
US4210516A (en) Electrode element for monopolar electrolysis cells
US20160312370A1 (en) Electrochemical cell without an electrolyte-impermeable barrier
JP5869440B2 (en) Electrolytic cell and electrolytic cell
JPH07103471B2 (en) Electrolysis device
US4784735A (en) Concentric tube membrane electrolytic cell with an internal recycle device
KR100558405B1 (en) Ion exchange membrane electrolytic cell
JP3110555B2 (en) Ion exchange membrane electrolyzer
JP3110720B2 (en) Gas-liquid separation method in an ion exchange membrane electrolytic cell
JPS59133384A (en) Electrolytic cell
CA1123376A (en) Electrolysis bath assembly
JPH06316783A (en) Electrolyzer
JPWO2018139597A1 (en) Electrolytic cell, electrolytic device, electrolytic method
FI56557C (en) DIAFRAGMACELL MED ETT FLERTAL AVDELNINGAR FOER FRAMSTAELLNING AV KLOR OCH ALKALIMETALLHYDROXID
US4256562A (en) Unitary filter press cell circuit
JP6499151B2 (en) Electrolytic cell
JPS6342710B2 (en)
JPH10158875A (en) Bipolar filter press type electrolytic cell
JP3827647B2 (en) Ion exchange membrane electrolyzer with gas diffusion electrode
JPS5845388A (en) Electrolytic cell
JP3204322B2 (en) Electrolysis method of alkali chloride
WO1994025644A1 (en) Electrolytic cell
JP6294991B1 (en) Bipolar electrolytic cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12