JPH07173663A - Electrolytic device - Google Patents

Electrolytic device

Info

Publication number
JPH07173663A
JPH07173663A JP3047560A JP4756091A JPH07173663A JP H07173663 A JPH07173663 A JP H07173663A JP 3047560 A JP3047560 A JP 3047560A JP 4756091 A JP4756091 A JP 4756091A JP H07173663 A JPH07173663 A JP H07173663A
Authority
JP
Japan
Prior art keywords
inlet
chamber
electrode plate
raw material
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3047560A
Other languages
Japanese (ja)
Other versions
JP2724772B2 (en
Inventor
Naoki Tanaka
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O D S KK
Original Assignee
O D S KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O D S KK filed Critical O D S KK
Priority to JP3047560A priority Critical patent/JP2724772B2/en
Publication of JPH07173663A publication Critical patent/JPH07173663A/en
Application granted granted Critical
Publication of JP2724772B2 publication Critical patent/JP2724772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To continue electrolysis over a long period of time with an excellent electrolytic efficiency at the time of conducting the electrolysis in an electrolytic cell divided into two compartments by a solid polymer electrolyte diaphragm by switching the polarities of the electrodes in the two compartments and the supply of the electrolytes. CONSTITUTION:The inside of an electrolytic cell 1 is divided into a first compartment 3 and a second compartment 4 with a solid polymer electrolyte diaphragm 2, and electrode plates 8 and 9 are bonded to both sides of the diaphragm 2. Water is used as the electrolyte, the water is supplied from a water tank 30 to the compartment 3 by a switching device 12a and circulated between the compartment and tank 30, and the water in the compartment 4 is sealed. A current is applied from a power source 10 with the electrode plate 8 as an anode and the electrode plate 9 as a cathode. The oxygen produced from the anode 8 is dissolved in water as the electrolyte, and the water is circulated through the tank 30 to form an oxygen-enriched water, and hydrogen is generated from the cathode 9. The polarities of the electrodes 8 and 9 are alternately switched at regular time intervals, and the supply of the electrolyte is switched to the compartment 4 from the compartment 3. The deposit on both electrode surfaces are released and removed by the switching of polarities in electrolysis, hence and increase in the electric resistance of the electrode due to the deposit is prevented, and electrolysis is conducted continuously over a long period of time with an excellent current efficiency and productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気分解装置に関するも
ので、さらに詳しくは固形重合体電解質膜の両面に電極
を接合し、両電極に所定電圧を印加するとともに固形重
合体電解質膜の電極接触面に原料液を供送して電気分解
を行う電気分解装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyzer, and more specifically, to electrodes on both sides of a solid polymer electrolyte membrane, applying a predetermined voltage to both electrodes, and contacting the solid polymer electrolyte membrane with electrodes. The present invention relates to an electrolyzer that feeds a raw material liquid to a surface to perform electrolysis.

【0002】[0002]

【従来の技術】近時、上記のごとき固形重合体電解質膜
を利用した電気分解装置が種々提案されている。
2. Description of the Related Art Recently, various electrolyzers utilizing the solid polymer electrolyte membrane as described above have been proposed.

【0003】上記固形重合体電解質膜を利用した電気分
解装置は、電極間隔が固形重合体電解質膜の厚み分、通
常200〜700ミクロンと非常に近接しているため、
低い電圧で電気分解が行え、また、低電圧であるが故、
装置を小型化できるという利点を有している。また、固
形重合体電解質膜自体が電解質であるため、イオン交換
が円滑に行なわれ、溶質濃度の低い溶液をはじめ、純水
をも容易に電気分解することもできるという高い電気分
解効率が得られるという利点を有している。
In the electrolyzer using the above solid polymer electrolyte membrane, the electrode interval is very close to the thickness of the solid polymer electrolyte membrane, which is usually 200 to 700 microns.
Electrolysis can be performed at a low voltage, and because it is a low voltage,
It has the advantage that the device can be miniaturized. Further, since the solid polymer electrolyte membrane itself is an electrolyte, ion exchange is smoothly carried out, and high electrolysis efficiency that pure water including a solution having a low solute concentration can be easily electrolyzed is obtained. It has the advantage of

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の固
形重合体電解質膜を利用した電気分解装置は、固形重合
体電解質膜の表面で、しかも接触する電極の接触角部位
のごく限られた部位で電気分解が行われる。そして、原
料液中に何らかの形でカルシューム・カリュームなどが
溶存していると、この電気分解発生部に、これらが析出
して付着する傾向を有し、この析出物はカソード側には
カルシュームやナトリュームとして、アノード側にには
炭酸カルシュームや炭酸ナトリューム等の非導電性物質
とし付着し、やがて電気分解発生部位に原料液が接触す
るのを遮断して電気分解の効率を低下させることにな
る。
However, the above-mentioned conventional electrolysis apparatus utilizing the solid polymer electrolyte membrane has a very limited portion of the contact angle portion of the electrode on the surface of the solid polymer electrolyte membrane. Is electrolyzed. If some form of calcium / calumium is dissolved in the raw material liquid, they tend to deposit and adhere to the electrolysis generation part. As a result, non-conductive substances such as calcium carbonate and sodium carbonate are attached to the anode side, and eventually the contact of the raw material liquid with the electrolysis generation site is blocked to reduce the efficiency of electrolysis.

【0005】また、上記析出物は析出の進行にともな
い、固形重合体電解質膜と電極との間に析出物が侵入
し、両者間に導電性、非導電性を問わず疎なる析出物が
介入することで物理的および電気的接触不良を来し、電
気分解の発生を阻害する欠点を有している。
Further, as the above-mentioned precipitate progresses, the precipitate invades between the solid polymer electrolyte membrane and the electrode, and a sparse precipitate intervenes between the solid polymer electrolyte membrane and the electrode regardless of whether it is conductive or non-conductive. This leads to poor physical and electrical contact, and has the drawback of inhibiting the occurrence of electrolysis.

【0006】すなわち、従来の固形重合体電解質膜を利
用した電気分解装置は、効率的ではあるが、その効率を
長期間保持することができないというのが課題である。
That is, the conventional electrolysis apparatus using a solid polymer electrolyte membrane is efficient, but the problem is that the efficiency cannot be maintained for a long period of time.

【0007】そこで、本発明は上記に鑑みなされたもの
で、効率的な電気分解が安定して長期間保持できる電気
分解装置を提供することを目的としたものである。
Therefore, the present invention has been made in view of the above, and an object thereof is to provide an electrolysis apparatus capable of stably maintaining efficient electrolysis for a long period of time.

【0008】[0008]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、電気分解槽1内を、固形重合体電解質
膜2で第一室3と第二室4とに仕切り、上記第一室3に
は原料液の第一流入口5aと第一流出口6aとを、第二
室4には原料液の第二流入口5bと第二流出口6bとを
設け、上記固形重合体電解質膜2の第一室3側面には多
数の開口部7を有した第一電極板8を、第二室4側面に
は同じく多数の開口部7を有した第二電極板9を接合
し、上記第一電極板8と第二電極板9とは、陽極出力端
と陰極出力端とを所定時間間隔で切り換える電源反転装
置11を有した電源10に連結し、また、上記電気分解
槽1には、第一流入口5aと第二流入口5bとの流入口
切換装置12、または第一流出口6aと第二流出口6b
との流出口切換装置13のいずれか一方または双方を連
結し、さらに、この第一流入口5aと第二流入口5bと
に原料液を圧送する原料液圧送装置12a,12bを連
結し、この上記流入口切換装置12および流出口切換装
置13を前記電源反転装置11に連動させたことを特徴
とする技術的手段を講じたものである。
In order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims and has the above-mentioned object, has a solid polymer electrolyte membrane 2 inside the electrolysis tank 1 in order to solve the above-mentioned problems. Is divided into a first chamber 3 and a second chamber 4, and the first chamber 3 is provided with a first inlet 5a and a first outlet 6a for the raw material liquid, and the second chamber 4 is provided with a second inlet 5b for the raw material liquid. And a second outflow port 6b are provided, a first electrode plate 8 having a large number of openings 7 is provided on the side surface of the first chamber 3 of the solid polymer electrolyte membrane 2, and a large number of the same is provided on the side surface of the second chamber 4. A second electrode plate 9 having an opening 7 is joined, and the first electrode plate 8 and the second electrode plate 9 have a power reversing device 11 for switching between an anode output end and a cathode output end at a predetermined time interval. Connected to the power source 10, and the electrolysis tank 1 has an inlet switching device 12 between the first inlet 5a and the second inlet 5b, and The first outlet port 6a and second outlet 6b
And one or both of the outlet switching devices 13 for connecting the raw material liquid and the raw material liquid pressure feeding devices 12a, 12b for feeding the raw material liquid to the first inflow port 5a and the second inflow port 5b. The inflow switching device 12 and the outflow switching device 13 are interlocked with the power source reversing device 11 to provide a technical means.

【0009】[0009]

【作用】それ故、本発明電気分解装置は、原料液を原料
液圧送装置12a,12bで電気分解槽1内に向け供送
し、電源10によって第一電極板8と第二電極板9との
間に所定の直流電圧を印加する。すると、第一電極板8
と第二電極板9とは夫々電源反転装置11で所定時間間
隔ごとにアノードとカソードとに反転する。すなわち、
第一電極板8は所定時間ごとにアノードまたはカソード
となり、第二電極板9は第一電極板8とは逆に所定時間
ごとにカソードまたはアノードとなる。また、流入口切
換装置12または流出口切換装置13は、前記電源反転
装置11に連動しているため、この電源反転装置11に
よってアノード側またはカソード側で電気分解された原
料液または電気分解によって発生した物質を選択して流
すように作用する。
Therefore, in the electrolyzer of the present invention, the raw material liquid is fed toward the inside of the electrolysis tank 1 by the raw material liquid pressure feeding devices 12a, 12b, and the first electrode plate 8 and the second electrode plate 9 are supplied by the power source 10. A predetermined DC voltage is applied between the two. Then, the first electrode plate 8
The second electrode plate 9 and the second electrode plate 9 are inverted by the power reversing device 11 into an anode and a cathode at predetermined time intervals. That is,
The first electrode plate 8 becomes an anode or a cathode at a predetermined time, and the second electrode plate 9 becomes a cathode or an anode at a predetermined time, contrary to the first electrode plate 8. Further, since the inlet switching device 12 or the outlet switching device 13 is interlocked with the power reversing device 11, it is generated by the raw material liquid electrolyzed by the power reversing device 11 on the anode side or the cathode side or by electrolysis. It acts to select and flush the selected substance.

【0010】また、電気分解によってカソード側および
アノード側には析出物が析出することは従来と同じで避
け得ない。しかし、この析出物は、析出当初は電極付近
にコロイド状に出現し、やがて電極および固形重合体電
解質膜2に付着して個化(純粋な結晶というより固形粒
子が互いに付着して個化した状態に付着)する性状を有
し、このコロイド状の状態で、電源反転装置11でアノ
ード側をカソード側に反転することで、電気的反発力を
受け、さらに原料液の流れに随伴して流れさるので、固
化して付着されるのを阻止するように作用する。
Further, it is unavoidable that deposits are deposited on the cathode side and the anode side by electrolysis as in the conventional case. However, this precipitate appeared as a colloid in the vicinity of the electrode at the beginning of deposition, and eventually adhered to the electrode and the solid polymer electrolyte membrane 2 to become individualized (solid particles adhered to each other and became solid rather than pure crystals. In this colloidal state, the power source reversing device 11 reverses the anode side to the cathode side to receive an electric repulsive force and further flow with the flow of the raw material liquid. Since it is a monkey, it acts to prevent it from solidifying and being attached.

【0011】[0011]

【実施例】次に、本発明を添付図面に示す、原料液に水
を使用し、この原料水を電気分解してアノード側に発生
した酸素を該原料水に溶解せしめ、酸素が高濃度に溶存
する高濃度酸素水(以下、過飽和酸素水という)を得る
装置例によって詳細に説明する。
EXAMPLES Next, the present invention is shown in the accompanying drawings. Water was used as a raw material liquid, and this raw material water was electrolyzed to dissolve oxygen generated on the anode side in the raw material water to obtain a high concentration of oxygen. This will be described in detail with reference to an apparatus example for obtaining dissolved high-concentration oxygen water (hereinafter referred to as supersaturated oxygen water).

【0012】図中、1が電気分解槽で、この電気分解槽
1は、その内部を固形重合体電解質膜2で第一室3と第
二室4とに仕切られてなる。この電気分解槽1は耐水性
材で構成されることはむろん、後述第一電極板8および
第二電極板9との外部との電気的連結を遮断するため絶
縁材で構成することが望ましく、また、電気分解によっ
て発生した発生期の酸素は酸化力が大きいので合成樹脂
材などの耐食性に優れた物が使用される。また、上記固
形重合体電解質膜2としては、従来公知なイオン交換樹
脂膜が使用される。
In the figure, reference numeral 1 is an electrolysis tank, which is divided into a first chamber 3 and a second chamber 4 by a solid polymer electrolyte membrane 2. The electrolysis tank 1 is, of course, made of a water resistant material, and is desirably made of an insulating material in order to cut off electrical connection between the first electrode plate 8 and the second electrode plate 9 to be described later. In addition, since oxygen in the nascent stage generated by electrolysis has a large oxidizing power, a synthetic resin material or the like having excellent corrosion resistance is used. As the solid polymer electrolyte membrane 2, a conventionally known ion exchange resin membrane is used.

【0013】そして、上記第一室3には原料液の第一流
入口5aと第一流出口6aとを、第二室4には原料液の
第二流入口5bと第二流出口6bとを設けてある。すな
わち、前記電気分解槽1は第一流入口5aより第一室3
内に流入した原料水は第一流出口6aより流出し、第二
流入口5bより第二室4内に流入した原料水は第二流出
口6bより流出するようになしてある。
The first chamber 3 is provided with a first inlet 5a and a first outlet 6a for the raw material liquid, and the second chamber 4 is provided with a second inlet 5b and a second outlet 6b for the raw material liquid. There is. That is, the electrolysis tank 1 is connected to the first chamber 3 from the first inlet 5a.
The raw material water that has flowed in flows out through the first outflow port 6a, and the raw material water that has flowed into the second chamber 4 through the second inflow port 5b flows out through the second outflow port 6b.

【0014】そして、上記固形重合体電解質膜2の第一
室3側面には多数の開口部7を有した第一電極板8を、
第二室4側面には同じく多数の開口部7を有した第二電
極板9を接合してある。多数の開口部7を有した第一電
極板8および第二電極板9としては、「図1」例では多
孔板を使用しているが、その他スリットを多数設けた
板、金網等が使用でき、「図2」および「図3」例では
耐食性の金属網の第一電極板8と、この第一電極板8の
外側に接合する多数の開口部7aを有した第一集電電極
8aとを二重にして使用している。なお、この第一電極
板8および第二電極板9(第一集電電極8aと、図示は
していないが第二集電電極とを含む)はステンレス、ニ
ッケル、チタン、その他、金、プラチナ等の耐食性の金
属が使用される。
Then, on the side surface of the first chamber 3 of the solid polymer electrolyte membrane 2, there is provided a first electrode plate 8 having a large number of openings 7.
A second electrode plate 9 having a large number of openings 7 is also joined to the side surface of the second chamber 4. As the first electrode plate 8 and the second electrode plate 9 having a large number of openings 7, a perforated plate is used in the example of FIG. 1, but a plate having a large number of slits, a wire mesh or the like may be used. 2 and 3, the first electrode plate 8 made of a corrosion-resistant metal mesh and the first collector electrode 8a having a large number of openings 7a joined to the outside of the first electrode plate 8 are provided. Are used in duplicate. The first electrode plate 8 and the second electrode plate 9 (including the first current collecting electrode 8a and the second current collecting electrode (not shown)) are made of stainless steel, nickel, titanium, gold, platinum. Corrosion resistant metal such as is used.

【0015】そして、上記第一電極板8および第二電極
板9を固形重合体電解質膜2に接合するには、従来公知
な種々の手段で該第一電極板8、第二電極板9、固形重
合体電解質膜2の夫々を固定乃至弾止すればよいが、
「図2」「図3」例では、電気分解槽1を第一容体1a
と第二容体1bとの二つ割容器状となし、固形重合体電
解質膜2の一面に耐食性の金属網の第一電極板8を、こ
の第一電極板8の外側に多数の開口部7aを有した第一
集電電極8aを、さらに該第一集電電極8aの外側にジ
グザグ流発生板14aを重ね、「図3」では省略してあ
るが、固形重合体電解質膜2の他面側も略同構造である
ので、固形重合体電解質膜2の他面に耐食性の金属網の
第二電極板(9)を、この第二電極板(9)の外側に多
数の開口部(7a)を有した第二集電電極(9a)を、
さらに該第二集電電極(9a)の外側にジグザグ流発生
板(14b)を重ね、これらを第一容体1aと第二容体
1bとの内面で挟持して固定(上記符合にカッコを付し
た部位は「図3」には表示していない、同様に以下にお
いてはこの部位は固形重合体電解質膜2を中央にして略
対称構造であるので説明を省略する。)して挟持し、上
記第一集電電極8aと第二集電電極(9a)とは電極押
えを兼ねるようになしている。また、同じく図示はして
いないが、このジグザグ流発生板14aの外面と第一容
体1aの内面との間にパッキン等をクッション材として
介在せしめて、これらの挟持が所定の力で弾止されるよ
うになしてもよい。
Then, in order to bond the first electrode plate 8 and the second electrode plate 9 to the solid polymer electrolyte membrane 2, the first electrode plate 8, the second electrode plate 9 and the second electrode plate 9 can be formed by various conventionally known means. Each of the solid polymer electrolyte membranes 2 may be fixed or elastically fixed.
In the examples of "Fig. 2" and "Fig. 3", the electrolysis tank 1 is set to the first container 1a.
And a second container 1b in the form of a split container, a first electrode plate 8 made of a metal net having corrosion resistance on one surface of the solid polymer electrolyte membrane 2, and a large number of openings 7a on the outer side of the first electrode plate 8. The first collector electrode 8a having a zigzag flow generating plate 14a is further laid on the outside of the first collector electrode 8a, and the other surface of the solid polymer electrolyte membrane 2 is omitted in FIG. Since the side has substantially the same structure, a second electrode plate (9) made of a corrosion-resistant metal net is provided on the other surface of the solid polymer electrolyte membrane 2, and a large number of openings (7a) are provided outside the second electrode plate (9). ) Having a second collector electrode (9a),
Further, a zigzag flow generation plate (14b) is placed on the outside of the second collector electrode (9a), and these are sandwiched and fixed by the inner surfaces of the first container 1a and the second container 1b (the above reference numerals are parenthesized). The portion is not shown in FIG. 3, and similarly, in the following, this portion has a substantially symmetrical structure with the solid polymer electrolyte membrane 2 at the center, and the description thereof will be omitted.) The first collecting electrode 8a and the second collecting electrode (9a) are formed so as to also serve as electrode holders. Also, although not shown, a packing or the like is interposed as a cushioning material between the outer surface of the zigzag flow generating plate 14a and the inner surface of the first container 1a so that the sandwiching therebetween is stopped by a predetermined force. You may do so.

【0016】上記ジグザグ流発生板14aは、「図
2」、「図3」に示されるごとく、一端側に第一流入口
5aに連通する流入通孔5を他端側に第一流出口6aに
連通する流出通孔6を開穿し、裏面側に該流入通孔5に
連通する分流凹部15と該流出通孔6に連通する合流凹
部16とを凹設してある。また、集電電極8aには「図
2」において縦方向に開孔部7a,7b,7c・・・が
所定間隔で並ぶ縦列が複数列となるように設けられてい
る。そして、該ジグザグ流発生板14aの上記分流凹部
15と合流凹部16とは、横長に形成され集電電極8a
に重ねた際に、その一部が該集電電極8aの上下各端の
開孔部7a,7a,7a・・・または開孔部7f.7
f.7f・・・(「図2」において上下方向端部横列)
の上方(「図2」手前側)の一部に共通して適合するよ
うに位置しこれら開孔部7a,7a,7a・・・または
開孔部7f.7f.7f・・・を互いに分流凹部15と
合流凹部16でそれぞれ連通し、さらに、上記分流凹部
15と合流凹部16との間には各縦方向列の隣り合う開
孔部7a,7b,7c・・・の夫々二つの上方に適合し
て両者を連通する凹所17,17,17・・・を配設し
てなる。
As shown in FIGS. 2 and 3, the zigzag flow generating plate 14a has an inflow hole 5 communicating with the first inflow port 5a at one end and a first outflow port 6a at the other end. The outflow through hole 6 is opened, and a flow dividing recess 15 communicating with the inflow through hole 5 and a confluent recess 16 communicating with the outflow through hole 6 are provided on the back surface side. Further, the collector electrode 8a is provided with a plurality of vertical columns in which the openings 7a, 7b, 7c, ... Are arranged at predetermined intervals in the vertical direction in FIG. The flow dividing recess 15 and the confluent recess 16 of the zigzag flow generating plate 14a are formed in a horizontally long shape, and the current collecting electrode 8a is formed.
When they are stacked on top of each other, a part of the holes 7a, 7a, 7a ... Or the holes 7f. 7
f. 7f ... (vertical end row in FIG. 2)
Of the opening portions 7a, 7a, 7a ... Or the opening portions 7f. 7f. 7f are communicated with each other by the flow dividing recesses 15 and the flow merging recesses 16, and the adjacent flow apertures 7a, 7b, 7c ... The two recesses 17, 17, 17, ... Which are fitted to the upper side of each of the two and communicate with each other are provided.

【0017】したがって、上記ジグザグ流発生板14a
は「図3」に最も明らかに示されるごとく、原料液がジ
グザグ流発生板14aの分流凹部15内から合流凹部1
6内に至るまで、各凹所17内と集電電極8aの各開孔
部7a,7b,7c・・・・内とを交互に通り、矢印P
で示されるごとくジグザグ流となるようになっている。
Therefore, the zigzag flow generating plate 14a is formed.
As is most clearly shown in FIG. 3, the raw material liquid flows from the inside of the flow dividing recess 15 of the zigzag flow generating plate 14a to the confluent recess 1
6 to the inside of each recess 17 and each of the apertures 7a, 7b, 7c ...
It is designed to be a zigzag flow as indicated by.

【0018】また、上記第一電極板8と第二電極板9と
は、陽極出力端と陰極出力端とを所定時間間隔で反転す
る電源反転装置11を有した電源10に連結してある。
この電源10は、商用電源を所定直流電圧(実施例では
8V)に変換する従来公知な変圧・整流回路11aと、
タイマー回路を内蔵または外付けして設定時間ごとに陽
極出力端と陰極出力端とが反転する従来公知な電源反転
回路11と、この電源反転回路11bと連動する制御回
路11cとからなる。
The first electrode plate 8 and the second electrode plate 9 are connected to a power supply 10 having a power supply reversing device 11 which inverts the anode output end and the cathode output end at a predetermined time interval.
The power source 10 is a conventionally known transformer / rectifier circuit 11a for converting a commercial power source into a predetermined DC voltage (8V in the embodiment),
It comprises a conventionally known power supply inverting circuit 11 in which a timer circuit is built-in or externally attached and the anode output terminal and the cathode output terminal are inverted at every set time, and a control circuit 11c which works in conjunction with the power supply inverting circuit 11b.

【0019】また、上記電気分解槽1には、第一流入口
5aと第二流入口5bとの流入口切換装置12、または
第一流出口6aと第二流出口6bとの流出口切換装置1
3のいずれか一方または双方を連結し、さらに、この第
一流入口5aと第二流入口5bとに原料液を圧送する原
料液圧送装置12a,12bを連結して、この流入口切
換装置12および流出口切換装置13を前記電源反転装
置11に連動させてある。
In the electrolysis tank 1, an inlet switching device 12 between the first inlet 5a and the second inlet 5b or an outlet switching device 1 between the first outlet 6a and the second outlet 6b.
3, one or both of them are connected, and further raw material liquid pressure feeding devices 12a and 12b for pressure feeding the raw material liquid are connected to the first inflow port 5a and the second inflow port 5b, and the inflow port switching device 12 and The outlet switching device 13 is interlocked with the power reversing device 11.

【0020】上記原料液圧送装置12は、ポンプを使用
すればよいが、「図1」例はこのポンプ12a,12b
を第一流入口5aと第二流入口5bとに夫々連結し、こ
のポンプ12a,12bが流入口切換装置12を兼ねて
いる。すなわち、両ポンプ12a,12bは一方が運転
されている場合は他方が停止されるように、制御回路1
1cで制御され、アノード側あるいはカソード側にのみ
原料水を圧送するようになしてある。なお、この流入口
切換装置12は「図4」に示す3ポート2位切換弁12
bを使用(図では省略したが原料液圧送装置12a,1
2bは別途設けることは無論で、この場合ポンプは[図
1]例とはことなり通常一台を使用し、そのポンプ下流
側で流路を二つに分岐する。)してもよいし、3ポート
2位切切換12cを第一流出口6aと第二流出口6b
側、すなわち、電気分解槽1の下流側に配してもよい。
但し、電気分解槽1の下流側に流入口切換装置(本願で
は流出口切換装置13とする)を設ける場合は、アノー
ド側あるいはカソード側の一方に原料水を流し他方は止
めてある場合は、利用しない側で発生する酸素または水
素が上流側に押し戻されので、この酸素または水素が利
用する側に混入することもあるので留意が必要となる。
A pump may be used as the material liquid pressure feeding device 12, but in the example shown in FIG. 1, the pumps 12a and 12b are used.
Are respectively connected to the first inflow port 5a and the second inflow port 5b, and the pumps 12a and 12b also serve as the inflow port switching device 12. That is, both pumps 12a and 12b are controlled so that when one is operating, the other is stopped.
Controlled by 1c, the raw material water is pumped only to the anode side or the cathode side. The inlet switching device 12 is a 3-port 2-position switching valve 12 shown in FIG.
b is used (although not shown in the figure, the raw material liquid pressure feeding devices 12a, 1
It is needless to say that 2b is separately provided. In this case, one pump is usually used unlike the example shown in FIG. 1, and the flow path is branched into two on the downstream side of the pump. ) May be used, and the 3-port 2-position switching 12c is connected to the first outlet 6a and the second outlet 6b.
It may be arranged on the side, that is, on the downstream side of the electrolysis tank 1.
However, when an inlet switching device (herein referred to as an outlet switching device 13) is provided on the downstream side of the electrolysis tank 1, when the raw material water is supplied to one of the anode side and the cathode side and the other is stopped, It should be noted that oxygen or hydrogen generated on the non-use side is pushed back to the upstream side, and this oxygen or hydrogen may be mixed on the use side.

【0021】さらに、上記流入口切換装置12と流出口
切換装置13は種々の実施態様が可能で、「図5」の場
合は流出口切換装置13に4ポート2位切換弁を使用
し、この4ポート2位切換弁は両流出ポートを連結して
いるが、これは後述過飽和酸素水を得るために使用する
ためで、両流出ポートの夫々を別途使用場所に連通して
よいことは無論である。また、この4ポート2位切換弁
を第一流出口6aと第二流出口6b側に連結して(両流
出ポートを第一流出口6aと第二流出口6bとの夫々連
結する)してもよい。なお、この「図5」例ではアノー
ド側およびカソード側の双方に原料水が流れることにな
る。
Further, the inlet switching device 12 and the outlet switching device 13 can have various embodiments. In the case of FIG. 5, a 4-port 2-position switching valve is used for the outlet switching device 13, The 4-port 2-position switching valve connects both outflow ports, but this is used to obtain supersaturated oxygen water described later, and it goes without saying that each of the outflow ports may be connected to a separate place of use. is there. Further, the 4-port 2-position switching valve may be connected to the first outlet 6a and the second outlet 6b side (both outlet ports are connected to the first outlet 6a and the second outlet 6b, respectively). . In this “FIG. 5” example, the raw material water flows on both the anode side and the cathode side.

【0022】さらに、「図6」例は、流入口切換装置1
2と流出口切換装置13との双方を設けた例で、流入口
切換装置12は3ポート2位切換弁を使用し、流出口切
換装置13には4ポート2位切換弁を使用している。そ
して、流入口切換装置12はアノード側とカソード側と
の一方(実施例ではアノード側)にのみ原料水を流し、
他方は原料水が流れないようになしてあり、流出口切換
装置13の一方の流出ポートは後述水槽30等に連通
し、他方のポートは図示しない水素排気口または水素処
理部に連通してある。
Further, in the example of FIG. 6, the inlet switching device 1 is shown.
In the example in which both 2 and the outlet switching device 13 are provided, the inlet switching device 12 uses a 3-port 2-position switching valve, and the outlet switching device 13 uses a 4-port 2-position switching valve. . Then, the inlet switching device 12 causes the raw material water to flow only to one of the anode side and the cathode side (in the example, the anode side),
The other is configured so that raw material water does not flow, one outflow port of the outlet switching device 13 communicates with a water tank 30 described later, and the other port communicates with a hydrogen exhaust port or a hydrogen treatment unit not shown. .

【0023】そして、「図1」実施例は、第一流出口6
aと第二流出口6bとを夫々原料液圧送装置12a,1
2bを途中に介在する流入路31a,31bで水槽30
の原料水中に連通し、第一流出口6aと第二流出口6b
は夫々循環路32a,32bで水槽30に連通してあ
る。
In the embodiment shown in FIG. 1, the first outlet 6
a and the second outlet 6b are respectively connected to the raw material liquid pressure feeding devices 12a and 1a.
The water tank 30 is provided with the inflow passages 31a and 31b that intervene 2b.
Communicating with the raw material water of the first outlet 6a and the second outlet 6b
Are connected to the water tank 30 through circulation paths 32a and 32b, respectively.

【0024】そして、電源10により第一電極板8がア
ノード、第二電極板9がカソードの状態に電圧を印加
し、制御回路11cで一方の原料液圧送装置12aが運
転され、他方の原料液圧送装置12bは停止した状態と
する。すると、原料水は第一室3内を通過し水槽30に
循環し、第二室4内の原料水は封止状態で流れない。し
たがって、原料水はこの状態で電気分解槽1内で電気分
解され、第一室3内には酸素が第二室4内には水素が発
生する。そして、第一室3内において発生した酸素は原
料水に随伴され、原料水中に溶解される。この酸素の溶
解は水温にたいしての飽和濃度が一般的に知れれている
が、電気分解直後の酸素を原料水と接触させると、従来
知られている飽和濃度以上に酸素が溶解でき、その理由
の主たるものは発生期の酸素は溶解力が大きいと説明さ
れている。また、第二室4内に発生した水素は気体とな
って滞留する。
Then, a voltage is applied by the power source 10 in a state where the first electrode plate 8 is the anode and the second electrode plate 9 is the cathode, and the control circuit 11c operates one raw material liquid pressure feeding device 12a to operate the other raw material liquid. The pressure feeding device 12b is in a stopped state. Then, the raw material water passes through the first chamber 3 and circulates in the water tank 30, and the raw material water in the second chamber 4 does not flow in a sealed state. Therefore, the raw material water is electrolyzed in the electrolysis tank 1 in this state, and oxygen is generated in the first chamber 3 and hydrogen is generated in the second chamber 4. Then, the oxygen generated in the first chamber 3 is accompanied by the raw material water and is dissolved in the raw material water. This oxygen dissolution is generally known to have a saturated concentration with respect to the water temperature, but when oxygen immediately after electrolysis is brought into contact with raw material water, oxygen can be dissolved at a concentration higher than the conventionally known saturated concentration. The main one is that nascent oxygen has a high dissolving power. Moreover, the hydrogen generated in the second chamber 4 becomes a gas and stays.

【0025】上記状態で一定時間(実施例では1分)運
転されると、今度は第一電極板8がカソード、第二電極
板9がアノードの状態に電圧が印加されるように反転
し、さらに一方の原料液圧送装置12aが停止され、他
方の原料液圧送装置12bが運転される状態となる。す
ると、原料水は第二室4内を通過し水槽30に循環し、
第一室3内の原料水は封止状態で流れない。したがっ
て、原料水はこの状態で電気分解槽1内で電気分解さ
れ、第二室4内には酸素が第一室3内には水素が発生す
る。そして、第二室4内において発生した酸素は原料水
に随伴され、原料水中に溶解される。この工程が繰り返
されて水槽30内の溶存酸素濃度が順次高められるもの
である。なお、水素に関しては、滞留原料水中に発生す
るので大きな気体の泡となり原料水との接触頻度が少な
いのでほとんど水中に溶解することなく、次に水流で水
槽30内に注入されると即座に水面から大気中に消散
し、また「図6」例のごとくにすれば、水素は電気分解
槽1より直接補集、または排気することもできる。
When operated for a certain period of time (1 minute in the embodiment) in the above state, this time the first electrode plate 8 is reversed so that a voltage is applied to the cathode and the second electrode plate 9 is an anode, Further, one raw material liquid pressure feeding device 12a is stopped and the other raw material liquid pressure feeding device 12b is in a state of being operated. Then, the raw material water passes through the second chamber 4 and circulates in the water tank 30,
The raw material water in the first chamber 3 does not flow in a sealed state. Therefore, the raw water is electrolyzed in the electrolysis tank 1 in this state, and oxygen is generated in the second chamber 4 and hydrogen is generated in the first chamber 3. Then, the oxygen generated in the second chamber 4 is accompanied with the raw material water and is dissolved in the raw material water. By repeating this process, the dissolved oxygen concentration in the water tank 30 is sequentially increased. With respect to hydrogen, since it is generated in the stagnant raw material water and becomes a large gas bubble, the contact frequency with the raw material water is low, so it hardly dissolves in the water, and when it is next injected into the water tank 30 by the water flow, the water surface immediately increases. The hydrogen can also be directly collected from the electrolysis tank 1 or exhausted as in the example of FIG.

【0026】以上は、水の電気分解によって酸素を利用
する例を説明したが、無論、水素を利用してもよく、ま
た、原料液に海水を使用して電気分解よって発生する塩
素ガスを利用する等してもよい。
Although the example of utilizing oxygen by electrolysis of water has been described above, it goes without saying that hydrogen may be utilized and chlorine gas generated by electrolysis using seawater as a raw material liquid is utilized. You may do so.

【0027】なお、図中18は集電電極8aのリード、
19はパッキン、20は螺締螺子穴を示すものである。
In the figure, 18 is a lead of the collecting electrode 8a,
19 is a packing, and 20 is a screwing screw hole.

【0028】[0028]

【発明の効果】本発明は上記のごときであり、第一電極
板8と第二電極板9とを夫々アノードとカソードとに役
割分担させることなく、交互に使用しているため、カソ
ード側で使用された第一電極板8に陽イオンが吸引され
続け、やがて陽イオンの吸引が飽和状態となると、次い
で該陽イオンが析出し固化するが、遅くてもこの個化前
にアノードとカソードを反転すれば、陽イオンは電気的
な反発力を受け第一電極板8より離脱し、水流に随伴し
て該第一電極板より離れることになり、カソード側も略
同じであるので、長期間安定して電気分解を行える電気
分解装置を提供することができるものである。
The present invention is as described above, and since the first electrode plate 8 and the second electrode plate 9 are alternately used without the anode and the cathode being divided, the cathode side is used. When the cations are continuously attracted to the used first electrode plate 8 and the cations are eventually saturated, the cations are precipitated and solidify. If reversed, the cations will be repelled from the first electrode plate 8 by receiving an electric repulsive force, and will be separated from the first electrode plate along with the water flow. It is possible to provide an electrolysis device that can stably perform electrolysis.

【0029】なお、具体的には人工海水を第一電極板8
をアノード、第二電極板9をカソード専用とし、「図
1」例で縦横30cmの多孔ステンレス電極で連続運転
したところ、5分程度で第二電極板9に白色の析出物の
付着が目視でき、8Vの直流電圧を印加したところ初期
には3アンペアの電流が流れたが、5分後には0.5ア
ンペア以下の電流値となった。この状態で電極を分解し
て噴射圧5Kの噴射水で水洗したが付着物の剥離は認め
られず、再度元の状態に組み立て、同様に8Vの直流電
圧を印加したが電源投入時の瞬間は1アンペア程度の電
流が流れたが、その後の電流値は0.5アンペア以下で
のままであった。そこで、この装置例(電極は新たなも
のを使用)で1分おきに電源と流入口切換装置12とを
切換えたところ初期には3アンペアの電流が流れるのは
同じであるが、以後電流値は順次低下し、1.5アンペ
アまで低下したところで安定した。そして、「図1」装
置の溶存酸素料を測定したところ水温摂氏15度で25
ppmまで溶存酸素濃度を高めることができ、この人工
海水にボンベの酸素を曝気し続けて飽和酸素濃度を測定
したところでは8ppmであったので明らかに電気分解
が効率的に継続されており、この測定は反復して行った
ところ、数時間放置して電源を投入した際は1.7アン
ペア程度の電流が数分間流れることはあるが、その後は
上記安定電流値となり反復継続性が確認された。
In addition, specifically, artificial seawater is used as the first electrode plate 8.
Was used as the anode and the second electrode plate 9 was exclusively used as the cathode, and continuous operation was performed with a porous stainless electrode having a length and width of 30 cm in the example of "Fig. 1". White deposits could be visually observed on the second electrode plate 9 in about 5 minutes. When a DC voltage of 8 V was applied, a current of 3 amps flowed in the initial stage, but after 5 minutes, the current value was 0.5 amperes or less. In this state, the electrode was disassembled and washed with water having a jet pressure of 5K, but no peeling of adhered substances was observed, and the electrode was reassembled in the original state, and a DC voltage of 8V was applied in the same manner. A current of about 1 amp flowed, but the current value thereafter remained at 0.5 amp or less. Therefore, in this device example (new electrode is used), when the power source and the inlet switching device 12 are switched every one minute, it is the same that a current of 3 amps flows in the initial stage. Gradually decreased, and became stable when it decreased to 1.5 amps. Then, when the dissolved oxygen content of the "Fig. 1" device was measured, it was 25 at a water temperature of 15 degrees Celsius.
The dissolved oxygen concentration could be increased to ppm, and when the saturated oxygen concentration was measured by continuously aerating the oxygen in the cylinder to this artificial seawater, it was 8 ppm, so electrolysis was clearly continued efficiently. When the measurement was repeated, a current of about 1.7 amperes might flow for several minutes when the power was turned on after being left for several hours, but after that, the above stable current value was obtained and repeat continuity was confirmed. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電気分解装置の一実施例を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing an embodiment of the electrolyzer of the present invention.

【図2】別の実施例を示す電気分解槽の正面図である。FIG. 2 is a front view of an electrolysis tank showing another embodiment.

【図3】「図2」の中央縦断面図である。FIG. 3 is a central vertical cross-sectional view of “FIG. 2”.

【図4】実施態様を示す流体回路図図である。FIG. 4 is a fluid circuit diagram showing an embodiment.

【図5】もう一つの実施態様を示す流体回路図図であ
る。
FIG. 5 is a fluid circuit diagram showing another embodiment.

【図6】さらにもう一つの実施態様を示す流体回路図で
ある。
FIG. 6 is a fluid circuit diagram showing still another embodiment.

【符号の説明】[Explanation of symbols]

1 電気分解槽 2 固形重合体電解質膜 3 第一室 4 第二室 5a 第一流入口 5b 第二流入口 6a 第一流出口 6b 第二流出口 7 開口部 8 第一電極板 9 第二電極板 10 電源 11 電源反転装置 12 流入口切換装置 12a,12b 原料液圧送装置 13 流出口切換装置 1 Electrolysis Tank 2 Solid Polymer Electrolyte Membrane 3 First Chamber 4 Second Chamber 5a First Inlet 5b Second Inlet 6a First Outlet 6b Second Outlet 7 Opening 8 First Electrode Plate 9 Second Electrode Plate 10 Power source 11 Power reversing device 12 Inlet switching device 12a, 12b Raw material liquid pressure feeding device 13 Outlet switching device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気分解槽内を、固形重合体電解質膜で
第一室と第二室とに仕切り、 上記第一室には原料液の第一流入口と第一流出口とを、
第二室には原料液の第二流入口と第二流出口とを設け、 上記固形重合体電解質膜の第一室側面には多数の開口部
を有した第一電極板を、第二室側面には同じく多数の開
口部を有した第二電極板を接合し、 上記第一電極板と第二電極板とは、陽極出力端と陰極出
力端とを所定時間間隔で切り換える電源反転装置を有し
た電源に連結し、 また、上記電気分解槽には、第一流入口と第二流入口と
の流入口切換装置、または第一流出口と第二流出口との
流出口切換装置のいずれか一方または双方を連結し、さ
らに、この第一流入口と第二流入口とに原料液を圧送す
る原料液圧送装置を連結し、この流入口切換装置および
流出口切換装置を前記電源反転装置に連動させたことを
特徴とする電気分解装置。
1. The inside of the electrolysis tank is divided into a first chamber and a second chamber by a solid polymer electrolyte membrane, and the first chamber is provided with a first inlet and a first outlet of a raw material liquid.
The second chamber is provided with a second inflow port and a second outflow port for the raw material liquid, and the first electrode plate having a large number of openings on the side face of the first chamber of the solid polymer electrolyte membrane, the second chamber A second electrode plate having a large number of openings is also joined to the side surface, and the first electrode plate and the second electrode plate are a power reversing device that switches an anode output end and a cathode output end at predetermined time intervals. The electrolysis tank is connected to a power source, and the electrolysis tank has one of an inlet switching device for the first inlet and the second inlet, or an outlet switching device for the first outlet and the second outlet. Alternatively, both are connected, and further, a raw material liquid pumping device for pumping the raw material liquid is connected to the first inlet and the second inlet, and the inlet switching device and the outlet switching device are interlocked with the power reversing device. An electrolyzer characterized in that
【請求項2】 電気分解槽内を、固形重合体電解質膜で
第一室と第二室とに仕切り、 上記第一室には原料液の第一流入口と第一流出口とを、
第二室には原料液の第二流入口と第二流出口とを設け、 上記固形重合体電解質膜の第一室側面には多数の開口部
を有した耐食性の金属網からなる第一電極板とこの第一
電極板の外側に接合する多数の開口部を有した第一集電
電極とを、第二室側面には同じく多数の開口部を有した
耐食性の金属網からなる第二電極板とこの第二電極板の
外側に接合する多数の開口部を有した第二集電電極とを
接合し、 上記第一電極板と第二電極板とは、陽極出力端と陰極出
力端とを所定時間間隔で切り換える電源反転装置を有し
た電源に連結し、 また、上記電気分解槽には、第一流入口と第二流入口と
の流入口切換装置、または第一流出口と第二流出口との
流出口切換装置のいずれか一方または双方を連結し、さ
らに、この第一流入口と第二流入口とに原料液を圧送す
る原料液圧送装置を連結し、この流入口切換装置および
流出口切換装置を前記電源反転装置に連動させたことを
特徴とする電気分解装置。
2. The inside of the electrolysis tank is partitioned into a first chamber and a second chamber by a solid polymer electrolyte membrane, and the first chamber has a first inlet and a first outlet for a raw material liquid.
The second chamber is provided with a second inflow port and a second outflow port for the raw material liquid, and the first electrode made of a corrosion-resistant metal net having a large number of openings on the side face of the first chamber of the solid polymer electrolyte membrane. A plate and a first collector electrode having a large number of openings joined to the outside of the first electrode plate, and a second electrode made of a corrosion-resistant metal net also having a large number of openings on the side surface of the second chamber A plate and a second collector electrode having a large number of openings joined to the outside of the second electrode plate are joined together, and the first electrode plate and the second electrode plate are an anode output end and a cathode output end. Is connected to a power source having a power reversing device for switching at a predetermined time interval, and the electrolysis tank has an inlet switching device between the first inlet and the second inlet, or a first outlet and a second outlet. And one or both of the outlet switching devices, and the raw material is connected to the first inlet and the second inlet. Connecting the raw liquid pumping device for pumping, electrolyzer, characterized in that the inlet switching device and the outlet port switching device was linked to the power inverter.
JP3047560A 1991-02-20 1991-02-20 Electrolysis equipment Expired - Fee Related JP2724772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047560A JP2724772B2 (en) 1991-02-20 1991-02-20 Electrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047560A JP2724772B2 (en) 1991-02-20 1991-02-20 Electrolysis equipment

Publications (2)

Publication Number Publication Date
JPH07173663A true JPH07173663A (en) 1995-07-11
JP2724772B2 JP2724772B2 (en) 1998-03-09

Family

ID=12778590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047560A Expired - Fee Related JP2724772B2 (en) 1991-02-20 1991-02-20 Electrolysis equipment

Country Status (1)

Country Link
JP (1) JP2724772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507653A (en) * 2013-01-22 2016-03-10 ジーティーエー,インコーポレイテッド ELECTROLYSIS DEVICE AND ITS MANUFACTURING METHOD
JP2016222961A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Electrolysis tank of electrolysis type hydrogen gas generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837181A (en) * 1981-08-31 1983-03-04 Tokuyama Soda Co Ltd Electrolytic cell for electrolysis of aqueous alkali metal chloride solution
JPH02166289A (en) * 1988-12-20 1990-06-26 Tatsuo Okazaki Multipurpose electrolytic water feeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837181A (en) * 1981-08-31 1983-03-04 Tokuyama Soda Co Ltd Electrolytic cell for electrolysis of aqueous alkali metal chloride solution
JPH02166289A (en) * 1988-12-20 1990-06-26 Tatsuo Okazaki Multipurpose electrolytic water feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507653A (en) * 2013-01-22 2016-03-10 ジーティーエー,インコーポレイテッド ELECTROLYSIS DEVICE AND ITS MANUFACTURING METHOD
JP2016222961A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Electrolysis tank of electrolysis type hydrogen gas generator

Also Published As

Publication number Publication date
JP2724772B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP6077087B2 (en) Electrolyzer for ozone generation
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JP5574877B2 (en) Ozone water generator
JP5069292B2 (en) Equipment for electrochemical water treatment
JP5702885B1 (en) Electrolyzed water generator
WO1996000701A1 (en) Electrolytic cell of non-diaphragm for electrolysis of water
US20180179089A1 (en) High Efficiency Electrochemical Desalination System That Incorporates Participating Electrodes
US3453201A (en) Polarity reversing electrode units and electrical switching means therefor
GB2392441A (en) Electrolytic activation of fluids
KR20050020298A (en) making apparatus of electrolysis water
CN111032919B (en) Electrolytic cell and electrode plate for electrolytic cell
WO2017010372A1 (en) Electrolytic cell and electrolyzed water generation device
KR20110060531A (en) Electrolysis device of flowing liquid through and sprayer using the same
JPH07173663A (en) Electrolytic device
JP6132234B2 (en) Electrolyzed water generator
JPH0676672B2 (en) Electrolytic ozone water production equipment
JP2002273428A (en) Electrolytic water generator
WO2017006912A1 (en) Electrolytic cell and electrolyzed-water generation device
TW201736279A (en) Electrolyzed water-producing apparatus and electrolyzed water-producing method
JPH09192667A (en) Electrolyzed water generating device
JPH06192869A (en) Electrolytic cell
JPH09202986A (en) Three-compartment electrolytic cell
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP4036732B2 (en) Seawater desalination method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees