WO2017010372A1 - Electrolytic cell and electrolyzed water generation device - Google Patents

Electrolytic cell and electrolyzed water generation device Download PDF

Info

Publication number
WO2017010372A1
WO2017010372A1 PCT/JP2016/070001 JP2016070001W WO2017010372A1 WO 2017010372 A1 WO2017010372 A1 WO 2017010372A1 JP 2016070001 W JP2016070001 W JP 2016070001W WO 2017010372 A1 WO2017010372 A1 WO 2017010372A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
anode
cathode
chamber
water
Prior art date
Application number
PCT/JP2016/070001
Other languages
French (fr)
Japanese (ja)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Publication of WO2017010372A1 publication Critical patent/WO2017010372A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • the present invention relates to an electrolytic cell and an electrolyzed water generating apparatus for electrolyzing water to generate electrolytic hydrogen water.
  • an electrolyzed water generating apparatus that includes an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water is known.
  • an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water.
  • Electrolytic hydrogen water generated in the cathode chamber of the electrolyzed water generator is expected to exhibit an excellent effect in improving gastrointestinal symptoms.
  • electrolytic hydrogen water in which hydrogen gas generated in the cathode chamber by the electrolysis is dissolved has been attracting attention as being suitable for removal of active oxygen.
  • the first convex portion disposed on the inner surface of the first case piece of the electrolytic cell is referred to as an anode side feeder (hereinafter referred to as “anode feeder”).
  • the second convex portion disposed on the inner surface of the second case piece comes into contact with a power supply body on the cathode side (hereinafter sometimes referred to as “cathode power supply body”).
  • the first convex portion and the second convex portion sandwich the laminate composed of the anode power feeder, the diaphragm, and the cathode power feeder.
  • the anode power supply body and the cathode power supply body which are arranged to face each other across the diaphragm, are provided with power supply terminals for applying a DC electrolytic voltage.
  • the amount of hydrogen gas generated depends on the electrolysis current supplied to each power feeder. Therefore, in order to generate hydrogen gas uniformly, it is necessary to make the distribution of the electrolysis voltage applied between the anode power supply and the cathode power supply arranged opposite to each other uniform.
  • the anode feeder and the cathode feeder each have their own electrical resistance, a voltage drop occurs when a current flows inside each feeder. For this reason, the electrolysis voltage in the region where the voltage drop is large between the anode power supply and the cathode power supply facing each other is lower than the electrolysis voltage in the region where the voltage drop is small. Accordingly, the amount of hydrogen gas generated varies depending on the location in the electrolytic chamber, and it may be difficult to efficiently dissolve the hydrogen gas into the electrolyzed water.
  • the present invention has been devised in view of the above situation, and an electrolytic cell and an electrolytic cell that can easily increase the concentration of dissolved hydrogen by uniformizing the distribution of the electrolytic voltage applied to each power feeder.
  • the main purpose is to provide a water generator.
  • the first invention of the present invention is an electrolysis tank for electrolyzing water, and an electrolysis chamber to which water to be electrolyzed is supplied, and an anode-side power feeding arranged opposite to each other in the electrolysis chamber And a separator that is sandwiched between the anode-side feeder and the cathode-side feeder and divides the electrolytic chamber into an anode chamber and a cathode chamber. And a conductive auxiliary body having conductivity is provided in at least one of the anode-side power supply body and the cathode-side power supply body.
  • a DC voltage is applied to each of the anode-side feeder and the cathode-side feeder between the anode-side feeder and the cathode-side feeder. It is preferable that the power supply terminal of the at least one power supply body is fixed to the conductive auxiliary body.
  • the at least one power feeding body is formed in a rectangular shape that is long in the vertical direction along the flow of water in the electrolytic chamber as viewed from the thickness direction of the diaphragm, and the conductive auxiliary It is desirable that the body is formed along a lateral direction orthogonal to the longitudinal direction of the at least one power feeding body.
  • the conductive auxiliary body is provided on one end side in the longitudinal direction of the at least one power feeding body.
  • the conductive auxiliary body is preferably formed in a plate shape.
  • the anode-side power feeding body and the cathode-side power feeding body are made of a mesh metal.
  • the second invention of the present invention is an electrolyzed water generating device characterized by comprising the electrolytic cell.
  • the electrolytic cell of the first invention of the present invention since at least one of the anode-side feeder and the cathode-side feeder is provided with a conductive auxiliary body having conductivity, it is supplied to the feeder.
  • the current is dispersed in the conductive auxiliary body, and the voltage drop at the power feeding body is suppressed.
  • the electrolysis voltage at any position facing each other between the anode-side power supply body and the cathode-side power supply body is made uniform, and the distribution of the generated hydrogen gas is made uniform. Therefore, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell, and the dissolved hydrogen concentration can be easily increased.
  • FIG. 4 It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. It is the assembly perspective view which has arrange
  • FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment.
  • the electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.
  • the electrolyzed water generating apparatus 1 includes an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, and an anode power supply 41 and a cathode power supply 42 that are disposed to face each other in the electrolysis chamber 40. And a diaphragm 43 disposed between the anode power supply 41 and the cathode power supply 42.
  • Another electrolytic cell may be provided upstream or downstream of the electrolytic cell 4. Further, another electrolytic cell may be provided in parallel with the electrolytic cell 4. A configuration equivalent to that of the electrolytic cell 4 can also be applied to the electrolytic cell provided separately.
  • the diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. Water is supplied to both the anode chamber 40 ⁇ / b> A and the cathode chamber 40 ⁇ / b> B of the electrolysis chamber 40, and water is electrolyzed in the electrolysis chamber 40 by applying a DC voltage to the anode feeder 41 and the cathode feeder 42.
  • the diaphragm 43 allows ions generated by electrolysis to pass therethrough, and the anode feeder 41 and the cathode feeder 42 are electrically connected through the diaphragm 43.
  • a hydrophilic material such as polytetrafluoroethylene (PTFE), a solid polymer material made of a fluororesin having a sulfonic acid group, or the like is used.
  • the electrolyzed water generating apparatus 1 further includes a control means 6 for controlling the electrolyzer 4, a water inlet 7 provided on the upstream side of the electrolyzer 4, and a water outlet 8 provided on the downstream side of the electrolyzer 4. ing.
  • the control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
  • a CPU Central Processing Unit
  • a program that controls the operation of the CPU
  • a memory that stores various information.
  • Current detection means 44 is provided on the current supply line between the anode power supply 41 and the control means 6.
  • the current detection unit 44 may be provided in a current supply line between the cathode power supply 42 and the control unit 6.
  • the current detection unit 44 detects the electrolytic current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control unit 6.
  • the control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 44. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.
  • the water inlet 7 has a water supply pipe 71, a flow rate sensor 72, a branching portion 73, a flow rate adjustment valve 74 and the like.
  • the water supply pipe 71 is connected to, for example, a water purification cartridge (not shown), and guides water supplied with water purified by the water purification cartridge to the electrolysis chamber 40.
  • the flow rate sensor 72 is provided in the water supply pipe 71. The flow rate sensor 72 periodically detects the flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter sometimes simply referred to as “flow rate”) F, and outputs a signal corresponding to the value F to the control means 6. Output to.
  • the branch part 73 branches the water supply pipe 71 into two directions of the water supply pipes 71a and 71b.
  • the flow rate adjusting valve 74 connects the water supply pipes 71a and 71b to the anode chamber 40A or the cathode chamber 40B.
  • the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B is adjusted by the flow rate adjusting valve 74 under the control of the control means 6.
  • the flow rate adjusting valve 74 adjusts the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B in order to increase the use efficiency of water. This may cause a pressure difference between the anode chamber 40A and the cathode chamber 40B.
  • the flow rate sensor 72 is provided on the upstream side of the branching portion 73, the sum of the flow rate of water supplied to the anode chamber 40A and the flow rate of water supplied to the cathode chamber 40B, that is, A flow rate F of water supplied to the electrolysis chamber 40 is detected.
  • the water outlet 8 includes a flow path switching valve 81, a water discharge pipe 82, a drain pipe 83, and the like.
  • the flow path switching valve 81 selectively connects the anode chamber 40A and the cathode chamber 40B to the water discharge pipe 82 or the drain pipe 83.
  • the electrolyzed hydrogen water generated in the cathode chamber 40B dilutes the reverse osmosis membrane module for filtration and the dialysate stock solution through the water discharge pipe 82. Supplied to a dilution device or the like.
  • the control means 6 controls the polarity of the DC voltage applied to the anode power supply 41 and the cathode power supply 42.
  • the control means 6 integrates the flow rate F of water supplied to the electrolysis chamber 40 based on a signal input from the flow sensor 72, and when it reaches a predetermined integrated value, the anode power supply 41 and the cathode power supply 42.
  • the polarity of the DC voltage applied to is switched.
  • the control means 6 operates the flow rate adjustment valve 74 and the flow path switching valve 81 in synchronization. Thereby, the cathode chamber 40B and the water discharge pipe 82 are always connected, and the electrolytic hydrogen water generated in the cathode chamber 40B is discharged from the water discharge pipe 82.
  • FIG. 2 is an assembly perspective view in which main parts before assembly of the electrolytic cell 4 are arranged.
  • the electrolytic cell 4 includes a first case piece 50 on the anode power supply 41 side and a second case piece 60 on the cathode power supply 42 side.
  • the first case piece 50 and the second case piece 60 arranged to face each other are fixed to each other, so that the electrolysis chamber 40 (see FIG. 1) is formed therein.
  • the electrolytic cell 4 accommodates a laminated body 45 in which an anode power supply 41, a diaphragm 43 and a cathode power supply 42 are stacked in an electrolysis chamber 40.
  • the anode feeder 41 and the cathode feeder 42 are each formed in a sheet shape.
  • water can be electrolyzed in a large area, and the generation efficiency of hydrogen gas is increased.
  • the anode power supply body 41 and the cathode power supply body 42 are configured such that water can travel back and forth in the thickness direction.
  • a net-like metal such as an expanded metal can be applied.
  • Such a net-like anode power supply 41 and cathode power supply 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
  • the net-like anode power supply body 41 and the cathode power supply body 42 are flexibly deformed together with the diaphragm 43 to suppress damage to the diaphragm 43.
  • the anode power supply body 41 and the cathode power supply body 42 be formed of a net-like metal having a small thickness and a small strand width.
  • the anode power supply body 41 and the cathode power supply body 42 one in which a platinum plating layer is formed on the surface of a titanium expanded metal is applied. The platinum plating layer prevents the oxidation of titanium.
  • the anode power supply body 41 is provided with a power supply terminal 41 a that passes through the first case piece 50 and protrudes outside the electrolytic cell 4.
  • a terminal 41f is attached to the power supply terminal 41a via a sealing member 41b, a bush 41c, and nuts 41d and 41e.
  • the cathode power supply body 42 is also provided with a power supply terminal 42 a that penetrates the second case piece 60 and protrudes outside the electrolytic cell 4.
  • a terminal 42f is attached to the power supply terminal 42a via a sealing member 42b, a bush 42c, and nuts 42d and 42e.
  • the terminals 41f and 42f are connected to the control means 6 shown in FIG.
  • a DC voltage is applied to the anode power supply 41 and the cathode power supply 42 via the power supply terminals 41a and 42a and the terminals 41f and 42f.
  • the diaphragm 43 for example, a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used.
  • the electrolytic cell 4 having the diaphragm 43 using a solid polymer material neutral electrolyzed water is generated.
  • electrolytic hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40B
  • electrolytic oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40A.
  • plating layers 43a made of platinum are formed on both surfaces of the diaphragm 43.
  • the plating layer 43a, the anode power supply 41, and the cathode power supply 42 are in contact with each other and are electrically connected.
  • the diaphragm 43 is sandwiched between the anode power supply 41 and the cathode power supply 42 in the electrolysis chamber 40. Therefore, the shape of the diaphragm 43 is held by the anode power supply 41 and the cathode power supply 42. According to such a structure for holding the diaphragm 43, most of the stress caused by the pressure difference generated between the anode chamber 40A and the cathode chamber 40B is borne by the anode feeder 41 and the cathode feeder 42. The stress on 43 decreases.
  • the diaphragm 43 is sandwiched between the anode power feeding body 41 and the cathode power feeding body 42, the contact between the plating layer 43 a and the anode power feeding body 41 of the diaphragm 43 and between the plating layer 43 a and the cathode power feeding body 42.
  • the resistance is reduced and the voltage drop is suppressed.
  • electrolysis in the electrolysis chamber 40 is promoted by a sufficient electrolysis current I, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.
  • the outer sides of the outer periphery of the anode power supply 41 and the cathode power supply 42 are sealed to prevent water leakage from the mating surfaces of the first case piece 50 and the second case piece 60.
  • a stop member 46 is provided. The outer peripheral portion of the diaphragm 43 is sandwiched by the sealing member 46.
  • the case pieces 50 and 60 are made of, for example, a synthetic resin.
  • Each case piece 50 and 60 is formed in a rectangular shape that is long in the longitudinal direction V along the flow of water in the electrolysis chamber 40.
  • the electrolytic chamber 40 is formed in a rectangular shape that is long in the vertical direction V.
  • Such a vertically long electrolytic chamber 40 makes the flow path in the electrolytic cell 4 long.
  • the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the water in the cathode chamber 40B, and the dissolved hydrogen concentration can be increased.
  • FIG. 3A is a perspective view of the first case piece 50 viewed from the inner surface side facing the electrolysis chamber 40 side
  • FIG. 3B is a second case viewed from the inner surface side facing the electrolysis chamber 40 side
  • 3 is a perspective view of a piece 60.
  • Alignment surfaces 51 and 61 for fixing the first case piece 50 and the second case piece 60 are formed on the outer edge portions of the inner surfaces of the first case piece 50 and the second case piece 60. Inside the mating surfaces 51, 61, the inner walls are recessed from the mating surfaces 51, 61 in the thickness direction of the first case piece 50 and the second case piece 60, so that the electrolysis parts 52, 62 are provided.
  • the electrolysis unit 52 configures the anode chamber 40A
  • the electrolysis unit 62 configures the cathode chamber 40B.
  • a plurality of first convex portions 53 are disposed on the inner surface of the first case piece 50. Each first convex portion 53 is arranged side by side in the horizontal direction H perpendicular to the vertical direction V, with the electrolysis portion 52 extending in the vertical direction V.
  • a plurality of second convex portions 63 are arranged on the inner surface of the second case piece 60. Each of the second convex portions 63 is arranged side by side in the horizontal direction H with the electrolysis portion 62 extending in the vertical direction V.
  • Such first convex portion 53 and second convex portion 63 do not hinder the movement of water flowing in the vertical direction V in the electrolysis chamber 40.
  • Each first convex portion 53 is in contact with the anode power feeding body 41 in the anode chamber 40A, and presses the anode power feeding body 41 toward the second case piece 60 side.
  • the shape and arrangement of the first convex portion 53 and the second convex portion 63 are arbitrary.
  • first convex portions 53 and the second convex portions 63 are alternately arranged in the lateral direction of the electrolysis chamber with the laminate interposed therebetween as shown in FIG.
  • they may be arranged so as to face each other with the laminate interposed therebetween.
  • the 1st convex-shaped part 53 and the 2nd convex-shaped part 63 may be the form provided discretely in the vertical direction, as FIG. 9 and 10 of the said patent document 1 shows.
  • first convex portions 53 and the second convex portions 63 are alternately arranged in the lateral direction of the electrolysis chamber with the laminate interposed therebetween.
  • the laminated body is formed into a corrugated shape by the convex portion 63.
  • the first case piece 50 has a first water diversion channel 54 on the upstream side of the electrolysis unit 52 and a first water collecting channel 56 on the downstream side.
  • the first water diversion channel 54 and the first water collecting channel 56 are formed deeper than the electrolysis unit 52 in which the first convex portion 53 is formed.
  • the second case piece 60 has a second water diversion channel 64 on the upstream side of the electrolysis unit 62 and a second water collection channel 66 on the downstream side.
  • the second water diversion channel 64 and the second water collecting channel 66 are formed deeper than the electrolysis unit 62 in which the second convex portion 63 is formed.
  • a through hole 58 is formed in the first case piece 50 so that the power supply terminal 41 a protrudes outside the first case piece 50.
  • a through hole 68 is formed in the second case piece 60 so that the power supply terminal 42 a protrudes outside the second case piece 60.
  • the through hole 58 is provided in the first water collection channel 56
  • the through hole 68 is provided in the second water collection channel 66.
  • the electrolytic cell 4 is provided with L-shaped joints 91, 92, 93, 94.
  • the joints 91 and 92 are attached to the lower part of the first case piece 50 and the second case piece 60 and connected to the flow rate adjusting valve 74.
  • the joints 93 and 94 are attached to the upper portions of the first case piece 50 and the second case piece 60 and connected to the flow path switching valve 81.
  • the hydrogen gas generated in the cathode chamber 40B moves as a minute bubble above the cathode chamber 40B.
  • the movement direction of hydrogen gas and the direction in which water flows generally coincide with each other, so that hydrogen molecules easily dissolve in water and the dissolved hydrogen concentration is increased.
  • FIG. 4 shows an anode feeder 41 and a cathode feeder 42.
  • the anode power feeder 41 is provided with a conductive auxiliary body 47.
  • the conductive auxiliary body 47 is in contact with the anode power supply body 41.
  • the conductive auxiliary body 47 is fixed to the anode power feeding body 41 by welding, for example.
  • the conductive auxiliary body 47 is made of a conductive material.
  • the conductive auxiliary body 47 is preferably made of, for example, a metal material having an electric resistance smaller than that of the anode power supply body 41.
  • the anode power feeding body 41 is made of a net-like metal
  • the conductive auxiliary body 47 is made of, for example, a solid plate-like metal having a larger cross-sectional area.
  • the conductive auxiliary body 47 may be made of a metal material equivalent to the anode power feeding body 41 or may be made of a metal material having an electrical resistivity smaller than that of the anode power feeding body 41.
  • the conductive auxiliary body 47 is made of a metal material containing titanium, like the anode power supply body 41.
  • the conductive auxiliary body 47 is formed of the plate metal, it is possible to reduce the thickness of the anode power feeding body 41 and to reduce the thickness of the electrolytic cell 4 and thus the electrolyzed water generating apparatus 1. Become.
  • the cathode feeder 42 is provided with a conductive auxiliary body 48. Since the configuration of the conductive auxiliary body 48 is also the same as that of the conductive auxiliary body 47, the description thereof is omitted.
  • both the anode power supply body 41 and the cathode power supply body 42 are provided with conductive auxiliary bodies 47 and 48, but at least one of the anode power supply body 41 and the cathode power supply body 42 is provided.
  • a conductive auxiliary body 47 or 48 may be provided. In this case, it is desirable that the power feeding body on the other side where the conductive auxiliary body 47 or 48 is not provided is made of a metal material having a low electrical resistivity.
  • the electrolyzed water generating apparatus 1 of the present invention at least one of the anode power supply body 41 and the cathode power supply body 42 is in contact with one power supply body 41 or 42 and has an electric resistance smaller than that of the one power supply body 41 or 42.
  • a conductive auxiliary body 47 or 48 is provided. Therefore, the current supplied to the power feeder 41 or 42 is dispersed in the conductive auxiliary body 47 or 48, and the voltage drop at the power feeder 41 or 42 is suppressed.
  • the electrolysis voltage at any position facing each other in the anode power supply 41 and the cathode power supply 42 is made uniform, and the distribution of the generated hydrogen gas is made uniform. Therefore, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell 4, and the dissolved hydrogen concentration can be easily increased.
  • the power supply terminal 41 a on the anode power supply 41 side is preferably fixed to the conductive auxiliary body 47.
  • the power supply terminal 41a is fixed to the conductive auxiliary body 47 by welding.
  • the power supply terminal 41 a and the conductive auxiliary body 47 are directly electrically connected without passing through the anode power supply body 41.
  • the power supply terminal 42 a on the cathode power supply 42 side is preferably fixed to the conductive auxiliary body 48. Thereby, the voltage drop in the cathode power supply 42 is effectively suppressed, and the electrolytic voltage is made more uniform.
  • the power supply terminal 41 a is fixed to the central portion of the conductive auxiliary body 47.
  • the power supply terminal 41 a may be fixed to the end portion in the lateral direction H of the conductive auxiliary body 47. The same applies to the power supply terminal 42a.
  • the conductive auxiliary body 47 is desirably formed along the lateral direction H of the anode power supply body 41.
  • the conductive auxiliary body 48 is preferably formed along the lateral direction H of the cathode power supply body 42. According to such conductive auxiliary bodies 47 and 48, the electric potential becomes the same in the region aligned in the lateral direction H of the power feeding body 41, and the electrolytic voltage is made more uniform.
  • the conductive auxiliary body 47 obstructs the passage of water in the thickness direction of the anode power supply body 41. For this reason, in activating electrolysis in the electrolysis chamber 40, the conductive auxiliary body 47 is connected to the end of the anode power supply body 41 in order to suppress the influence of the water in the central portion of the electrolysis chamber 40. It is desirable to be formed at the edge.
  • the conductive auxiliary body 47 is formed on one end side in the longitudinal direction V of the anode power supply body 41.
  • the conductive auxiliary body 48 is also formed on one end side in the vertical direction V of the cathode power supply body 42.
  • the conductive auxiliary bodies 47 and 48 are accommodated in the first water collecting channel 56 and the second water collecting channel 66, and the electrolytic cell 4 can be easily reduced in thickness.
  • the conductive auxiliary bodies 47 and 48 do not interfere with the first convex portion 53 and the second convex portion 63, the waveform deformation of the stacked body 45 by the first convex portion 53 and the second convex portion 63 is hindered. There is no fear.
  • FIG. 5 shows an anode feeder 41X and a cathode feeder 42X, which are modifications of the anode feeder 41 and the cathode feeder 42.
  • the anode power supply body 41X and the cathode power supply body 42X the above-described configurations of the anode power supply body 41 and the cathode power supply body 42 can be appropriately employed for portions not described below.
  • the anode-side power supply terminal 41a and the cathode-side power supply terminal 42a are provided at positions that do not face each other. That is, the power supply terminal 41 a and the power supply terminal 42 a are provided at positions that do not overlap each other when viewed from the thickness direction of the diaphragm 43.
  • the power supply terminal 41a is on the one end 41F (upper end in FIG. 5) side of the anode power supply 41X
  • the power supply terminal 42a is on the other end 42G (lower end in FIG. 5) side of the cathode power supply 42X.
  • the conductive auxiliary body 47 is provided at one end portion 41F of the anode power feeding body 41X
  • the conductive auxiliary body 48 is provided at the other end portion 42G of the cathode power feeding body 42X.
  • the distance L1 from the one end 41F of the anode power supply 41 and the one end 42F of the cathode power supply 42, the other end 41G of the anode power supply 41, and the other end of the cathode power supply 42 is calculated as follows.
  • the voltage drop generated from the conductive auxiliary body 47 to the point P1 in the anode feeder 41X is I ⁇ ⁇ L1
  • the cathode The voltage drop generated from the conductive auxiliary body 48 to the point P1 in the power feeding body 42X is I ⁇ ⁇ L2. Therefore, when the voltage between the power supply terminal 41a and the power supply terminal 42a is V, the electrolytic voltage at the point P1 is V ⁇ I ⁇ ⁇ (L1 + L2).
  • the point P2 is located at a distance L2 from one end 41F of the anode power supply 41 and one end 42F of the cathode power supply 42, and at a distance L1 from the other end 41G of the anode power supply 41 and the other end 42G of the cathode power supply 42.
  • the electrolytic voltage is calculated as follows. The voltage drop generated from the conductive auxiliary body 47 to the point P2 in the anode power supply 41X is I ⁇ ⁇ L2, and the voltage drop generated from the conductive auxiliary body 48 to the point P2 in the cathode power supply 42X is I ⁇ ⁇ L1. Therefore, the electrolysis voltage at the point P2 is V ⁇ I ⁇ ⁇ (L1 + L2).
  • L1 + L2 is the distance from the one end 41F to the other end 41G of the anode power supply 41 and the distance from the one end 42F to the other end 42G of the cathode power supply 42.
  • the electrolysis voltage at any position on the cathode power supply 42 is equal and is V ⁇ I ⁇ ⁇ (L1 + L2).
  • the electrolysis voltage at any position facing each other is made uniform, and the distribution of the generated hydrogen gas becomes uniform. Therefore, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell 4, and the dissolved hydrogen concentration can be easily increased.
  • FIG. 6 shows an anode power feeding body 41Y and a cathode power feeding body 42Y which are another modified example of the anode power feeding body 41 and the cathode power feeding body 42.
  • the anode power feeding body 41Y and the cathode power feeding body 42Y the configuration of the anode power feeding body 41, the cathode power feeding body 42 and the like described above can be appropriately adopted for portions not described below.
  • the anode power supply body 41 ⁇ / b> Y has a conductive auxiliary body 47 at the edge in the horizontal direction H.
  • the cathode power supply body 42Y has a conductive auxiliary body 48 at the edge in the horizontal direction H.
  • the power supply terminal 41a on the anode power supply body 41 side and the power supply terminal 42a on the cathode power supply body 42 side are provided at positions facing each other. Accordingly, the conductive auxiliary body 47 and the conductive auxiliary body 48 are provided at positions facing each other across the diaphragm 43.
  • the conductive auxiliary body 47 and the conductive auxiliary body 48 extend along the longitudinal direction V, that is, the longitudinal direction of the anode power supply body 41Y and the cathode power supply body 42Y. Such a conductive auxiliary body 47 and a conductive auxiliary body 48 can effectively suppress a voltage drop in the anode power supply body 41Y and the cathode power supply body 42Y.
  • the power supply terminal 41a on the anode power supply 41 side and the power supply terminal 42a on the cathode power supply 42 side are the same as the anode power supply 41X and the cathode power supply 42X. May be provided at positions that do not face each other.
  • FIG. 7 shows an anode power feeding body 41Z and a cathode power feeding body 42Z, which are still another modified example of the anode power feeding body 41 and the cathode power feeding body 42.
  • the configurations of the anode power supply body 41, the cathode power supply body 42, and the like described above can be appropriately employed for portions not described below.
  • the power supply terminal 41a is provided at the center of the anode power supply 41, and the power supply terminal 42a is provided at the center of the cathode power supply 42.
  • the distance from the feeding terminal 41a to the edge of the anode feeding body 41 and the distance from the feeding terminal 42a to the edge of the cathode feeding body 42 are shortened, and the voltage drop at the anode feeding body 41Z and the cathode feeding body 42Z is reduced. It is suppressed.
  • the electrolytic cell 4 is at least an electrolytic cell 4 for electrolyzing water, and is disposed opposite to each other in the electrolytic chamber 40 to which water to be electrolyzed is supplied and the electrolytic chamber 40.
  • the anode-side power supply body 41 and the cathode-side power supply body 42 are sandwiched between the power supply body 41 and the power supply body 42 in the electrolysis chamber 40, and the electrolysis chamber 40 is divided into an anode chamber 40A and a cathode chamber 40B. It is sufficient that at least one of the power supply body 41 and the power supply body 42 is provided with a conductive auxiliary body 47 or 48 having conductivity.
  • Electrolysis tank 40 Electrolytic chamber 40A Anode chamber 40B Cathode chamber 41 Anode feeder 41a Feed terminal 42 Cathode feeder 42a Feed terminal 43 Diaphragm 47 Conductive auxiliary body 48 Conductive auxiliary body

Abstract

This electrolyzed water generation device 1 is provided with: an electrolytic cell 4 in which an electrolysis chamber 40, to which electrolyzed water is supplied, is formed; an anode feeder 41 and cathode feeder 42 that are arranged facing each other in the electrolysis chamber 40; and a diaphragm 43 that divides the electrolysis chamber 40 into an anode chamber 40A and cathode chamber 40B. The anode feeder 41 and cathode feeder 42 are provided with conductive auxiliary bodies 47, 48 which are conductive. Consequently, current supplied to the anode feeder 41 and cathode feeder 42 is distributed to conductive auxiliary body 47 or 48, and voltage drop in the anode feeder 41 and cathode feeder 42 is suppressed. Due to this, the distribution of electrolysis voltage in the anode feeder 41 and cathode feeder 21 is made uniform, and the distribution of generated hydrogen gas is made uniform. Consequently, hydrogen gas dissolves efficiently in the electrolyzed water throughout the entire electrolytic cell 4.

Description

電解槽及び電解水生成装置Electrolysis tank and electrolyzed water generator
 本発明は、水を電気分解して電解水素水を生成する電解槽及び電解水生成装置に関する。 The present invention relates to an electrolytic cell and an electrolyzed water generating apparatus for electrolyzing water to generate electrolytic hydrogen water.
 従来から、隔膜で仕切られた陽極室と陰極室を有する電解槽を備え、電解槽内に導入された水道水等の原水を電気分解して電解水素水を生成する電解水生成装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, an electrolyzed water generating apparatus that includes an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water is known. (For example, refer to Patent Document 1).
 電解水生成装置の陰極室で生成される還元性の電解水素水は、胃腸症状の改善に優れた効果を発揮することが期待されている。また、近年、上記電気分解により陰極室で生成された水素ガスが溶け込んだ電解水素水は、活性酸素の除去に適しているとして注目されている。 Electrolytic hydrogen water generated in the cathode chamber of the electrolyzed water generator is expected to exhibit an excellent effect in improving gastrointestinal symptoms. In recent years, electrolytic hydrogen water in which hydrogen gas generated in the cathode chamber by the electrolysis is dissolved has been attracting attention as being suitable for removal of active oxygen.
特許第5639724号公報Japanese Patent No. 569724
 上記特許文献1に記載された電解水生成装置では、電解槽の第1ケース片の内面に配設された第1凸状部が陽極側の給電体(以下、「陽極給電体」と記すことがある。)と当接し、第2ケース片の内面に配設された第2凸状部が陰極側の給電体(以下、「陰極給電体」と記すことがある。)と当接する。第1凸状部及び第2凸状部によって、陽極給電体、隔膜及び陰極給電体からなる積層体が挟持される。隔膜を隔てて互いに対向して配置された陽極給電体及び陰極給電体には、直流の電解電圧を印加するための給電端子が設けられている。 In the electrolyzed water generating apparatus described in Patent Document 1, the first convex portion disposed on the inner surface of the first case piece of the electrolytic cell is referred to as an anode side feeder (hereinafter referred to as “anode feeder”). And the second convex portion disposed on the inner surface of the second case piece comes into contact with a power supply body on the cathode side (hereinafter sometimes referred to as “cathode power supply body”). The first convex portion and the second convex portion sandwich the laminate composed of the anode power feeder, the diaphragm, and the cathode power feeder. The anode power supply body and the cathode power supply body, which are arranged to face each other across the diaphragm, are provided with power supply terminals for applying a DC electrolytic voltage.
 ところで、電解水素水の溶存水素濃度を高めるためには、電解槽での水素ガスの発生量を多くすること、及び、発生した水素ガスを効率よく電解水に溶け込ませることが必要とされる。水素ガスを効率よく電解水に溶け込ませるためには、電解槽の全体で、水素ガスを均一に発生させることが重要である。 Incidentally, in order to increase the dissolved hydrogen concentration in the electrolytic hydrogen water, it is necessary to increase the amount of hydrogen gas generated in the electrolytic bath and to efficiently dissolve the generated hydrogen gas in the electrolytic water. In order to efficiently dissolve the hydrogen gas in the electrolyzed water, it is important to generate the hydrogen gas uniformly throughout the electrolytic cell.
 水素ガスの発生量は、各給電体に供給される電解電流に依存する。従って、水素ガスを均一に発生させるためには、互いに対向して配置された陽極給電体及び陰極給電体間に印加される電解電圧の分布を均一化する必要がある。 The amount of hydrogen gas generated depends on the electrolysis current supplied to each power feeder. Therefore, in order to generate hydrogen gas uniformly, it is necessary to make the distribution of the electrolysis voltage applied between the anode power supply and the cathode power supply arranged opposite to each other uniform.
 陽極給電体及び陰極給電体は、それぞれ固有の電気抵抗を有しているので、各給電体の内部に電流が流れる際に、電圧降下が生ずる。このため、対向する陽極給電体及び陰極給電体で、電圧降下の大きい領域での電解電圧は、電圧降下の小さい領域の電解電圧よりも低くなる。従って、電解室内の場所によって水素ガスの発生量が不均一となり、水素ガスを効率よく電解水に溶け込ませることが困難となるおそれがある。 Since the anode feeder and the cathode feeder each have their own electrical resistance, a voltage drop occurs when a current flows inside each feeder. For this reason, the electrolysis voltage in the region where the voltage drop is large between the anode power supply and the cathode power supply facing each other is lower than the electrolysis voltage in the region where the voltage drop is small. Accordingly, the amount of hydrogen gas generated varies depending on the location in the electrolytic chamber, and it may be difficult to efficiently dissolve the hydrogen gas into the electrolyzed water.
 特に、各給電端子の近傍領域では、各給電体の内部を流れる電流が集中し、電流値が大きくなるため、電圧降下が大きい。そして、各給電体に柔軟に変形可能な薄手の網状金属を適用する場合、上記電気抵抗が大きくなるため、上述した水素ガスの発生量の分布が不均一となる傾向は顕著に現れる。 Especially, in the region near each power supply terminal, the current flowing inside each power supply is concentrated and the current value increases, so the voltage drop is large. And when applying the thin mesh metal which can be deform | transformed flexibly to each electric power feeding body, since the said electrical resistance becomes large, the tendency for the distribution of the generation amount of the hydrogen gas mentioned above to appear unevenly appears.
 本発明は、以上のような実状に鑑み案出されたもので、各給電体に印加される電解電圧の分布を均一化することにより、溶存水素濃度を容易に高めることができる電解槽及び電解水生成装置を提供することを主たる目的としている。 The present invention has been devised in view of the above situation, and an electrolytic cell and an electrolytic cell that can easily increase the concentration of dissolved hydrogen by uniformizing the distribution of the electrolytic voltage applied to each power feeder. The main purpose is to provide a water generator.
 本発明の第1発明は、水を電気分解するための電解槽であって、電気分解される水が供給される電解室と、前記電解室内で、互いに対向して配置された陽極側の給電体及び陰極側の給電体と、前記電解室内で、前記陽極側の給電体と前記陰極側の給電体とによって挟持され、かつ、前記電解室を陽極室と陰極室とに区分する隔膜とを備え、前記陽極側の給電体及び前記陰極側の給電体の少なくとも一方の給電体には、導電性を有する導電補助体が設けられていることを特徴とする。 The first invention of the present invention is an electrolysis tank for electrolyzing water, and an electrolysis chamber to which water to be electrolyzed is supplied, and an anode-side power feeding arranged opposite to each other in the electrolysis chamber And a separator that is sandwiched between the anode-side feeder and the cathode-side feeder and divides the electrolytic chamber into an anode chamber and a cathode chamber. And a conductive auxiliary body having conductivity is provided in at least one of the anode-side power supply body and the cathode-side power supply body.
 本発明に係る前記電解槽において、前記陽極側の給電体及び前記陰極側の給電体のそれぞれには、前記陽極側の給電体と前記陰極側の給電体との間に直流電圧を印加するための給電端子が設けられ、前記少なくとも一方の給電体の給電端子は、前記導電補助体に固着されていることが望ましい。 In the electrolytic cell according to the present invention, a DC voltage is applied to each of the anode-side feeder and the cathode-side feeder between the anode-side feeder and the cathode-side feeder. It is preferable that the power supply terminal of the at least one power supply body is fixed to the conductive auxiliary body.
 本発明に係る前記電解槽において、前記少なくとも一方の給電体は、前記隔膜の厚さ方向から視て、前記電解室内での水の流れに沿う縦方向に長い矩形状に形成され、前記導電補助体は、前記少なくとも一方の給電体の前記縦方向と直交する横方向に沿って形成されていることが望ましい。 In the electrolytic cell according to the present invention, the at least one power feeding body is formed in a rectangular shape that is long in the vertical direction along the flow of water in the electrolytic chamber as viewed from the thickness direction of the diaphragm, and the conductive auxiliary It is desirable that the body is formed along a lateral direction orthogonal to the longitudinal direction of the at least one power feeding body.
 本発明に係る前記電解槽において、前記導電補助体は、前記少なくとも一方の給電体の前記縦方向の一端側に設けられていることが望ましい。 In the electrolytic cell according to the present invention, it is desirable that the conductive auxiliary body is provided on one end side in the longitudinal direction of the at least one power feeding body.
 本発明に係る前記電解槽において、前記導電補助体は、板状に形成されていることが望ましい。 In the electrolytic cell according to the present invention, the conductive auxiliary body is preferably formed in a plate shape.
 本発明に係る前記電解槽において、前記陽極側の給電体及び前記陰極側の給電体は、網状金属によって構成されていることが望ましい。 In the electrolytic cell according to the present invention, it is preferable that the anode-side power feeding body and the cathode-side power feeding body are made of a mesh metal.
 本発明の第2発明は、前記電解槽を備えたことを特徴とする電解水生成装置である。 The second invention of the present invention is an electrolyzed water generating device characterized by comprising the electrolytic cell.
 本発明の第1発明の電解槽では、陽極側の給電体及び陰極側の給電体の少なくとも一方の給電体には、導電性を有する導電補助体が設けられているので、給電体に供給された電流が導電補助体に分散し、給電体での電圧降下が抑制される。これにより、陽極側の給電体及び陰極側の給電体で互いに対向する任意の位置での電解電圧が均一化され、発生する水素ガスの分布が均一化される。従って、電解槽の全体で水素ガスを効率よく電解水に溶け込ませることができ、溶存水素濃度を容易に高めることが可能となる。 In the electrolytic cell of the first invention of the present invention, since at least one of the anode-side feeder and the cathode-side feeder is provided with a conductive auxiliary body having conductivity, it is supplied to the feeder. The current is dispersed in the conductive auxiliary body, and the voltage drop at the power feeding body is suppressed. As a result, the electrolysis voltage at any position facing each other between the anode-side power supply body and the cathode-side power supply body is made uniform, and the distribution of the generated hydrogen gas is made uniform. Therefore, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell, and the dissolved hydrogen concentration can be easily increased.
 本発明の第2発明の電解水生成装置では、上記第1発明と同様に、電解槽の全体で水素ガスを効率よく電解水に溶け込ませることができ、溶存水素濃度を容易に高めることが可能となる。 In the electrolyzed water generating apparatus according to the second invention of the present invention, as in the first invention, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell, and the dissolved hydrogen concentration can be easily increased. It becomes.
本発明の電解水生成装置の一実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. 図1の電解槽の組み立て前の主要部品を配置した組立斜視図である。It is the assembly perspective view which has arrange | positioned the main components before the assembly of the electrolytic cell of FIG. 図2の第1ケース片及び第2ケース片を示す斜視図である。It is a perspective view which shows the 1st case piece and 2nd case piece of FIG. 図2の陽極給電体及び陰極給電体を示す斜視図である。It is a perspective view which shows the anode electric power feeder and cathode electric power feeder of FIG. 図4の陽極給電体及び陰極給電体の変形例を示す斜視図である。It is a perspective view which shows the modification of the anode electric power feeding body of FIG. 4, and a cathode electric power feeding body. 図4の陽極給電体及び陰極給電体の別の変形例を示す斜視図である。It is a perspective view which shows another modification of the anode electric power feeder of FIG. 4, and a cathode electric power feeder. 図4の陽極給電体及び陰極給電体のさらに別の変形例を示す斜視図である。It is a perspective view which shows another modification of the anode electric power feeder and cathode electric power feeder of FIG.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本実施形態の電解水生成装置1の概略構成を示している。電解水生成装置1は、家庭の飲料用及び料理用の水の生成や血液透析の透析液の生成に用いられてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment. The electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.
 電解水生成装置1は、電気分解される水が供給される電解室40が形成された電解槽4と、電解室40内で、互いに対向して配置された陽極給電体41及び陰極給電体42と、陽極給電体41と陰極給電体42との間に配された隔膜43とを備えている。電解槽4の上流側又は下流側に、別の電解槽が設けられていてもよい。また、電解槽4と並列に、別の電解槽が設けられていてもよい。別に設けられた電解槽についても、電解槽4と同等の構成が適用されうる。 The electrolyzed water generating apparatus 1 includes an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, and an anode power supply 41 and a cathode power supply 42 that are disposed to face each other in the electrolysis chamber 40. And a diaphragm 43 disposed between the anode power supply 41 and the cathode power supply 42. Another electrolytic cell may be provided upstream or downstream of the electrolytic cell 4. Further, another electrolytic cell may be provided in parallel with the electrolytic cell 4. A configuration equivalent to that of the electrolytic cell 4 can also be applied to the electrolytic cell provided separately.
 隔膜43は、電解室40を陽極給電体41側の陽極室40Aと、陰極給電体42側の陰極室40Bとに区分する。電解室40の陽極室40A及び陰極室40Bの両方に水が供給され、陽極給電体41及び陰極給電体42に直流電圧が印加されることにより、電解室40内で水が電気分解される。 The diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. Water is supplied to both the anode chamber 40 </ b> A and the cathode chamber 40 </ b> B of the electrolysis chamber 40, and water is electrolyzed in the electrolysis chamber 40 by applying a DC voltage to the anode feeder 41 and the cathode feeder 42.
 隔膜43は、電気分解で生じたイオンを通過させ、隔膜43を介して陽極給電体41と、陰極給電体42とが電気的に接続される。隔膜43には、例えば、ポリテトラフルオロエチレン(PTFE)等の親水性材料や、スルホン酸基を有するフッ素系樹脂からなる固体高分子材料等が用いられている。 The diaphragm 43 allows ions generated by electrolysis to pass therethrough, and the anode feeder 41 and the cathode feeder 42 are electrically connected through the diaphragm 43. For the diaphragm 43, for example, a hydrophilic material such as polytetrafluoroethylene (PTFE), a solid polymer material made of a fluororesin having a sulfonic acid group, or the like is used.
 電解水生成装置1は、電解槽4を制御する制御手段6と、電解槽4の上流側に設けられた入水部7と、電解槽4の下流側に設けられた出水部8とをさらに備えている。 The electrolyzed water generating apparatus 1 further includes a control means 6 for controlling the electrolyzer 4, a water inlet 7 provided on the upstream side of the electrolyzer 4, and a water outlet 8 provided on the downstream side of the electrolyzer 4. ing.
 制御手段6は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。 The control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
 陽極給電体41と制御手段6との間の電流供給ラインには、電流検出手段44が設けられている。電流検出手段44は、陰極給電体42と制御手段6との間の電流供給ラインに設けられていてもよい。電流検出手段44は、給電体41、42に供給する電解電流を検出し、その値に相当する信号を制御手段6に出力する。 Current detection means 44 is provided on the current supply line between the anode power supply 41 and the control means 6. The current detection unit 44 may be provided in a current supply line between the cathode power supply 42 and the control unit 6. The current detection unit 44 detects the electrolytic current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control unit 6.
 制御手段6は、電流検出手段44から入力される信号に基づいて、陽極給電体41と陰極給電体42との間に印加する電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御手段6は、上記電圧を減少させ、電解電流が過小である場合、制御手段6は、上記電圧を増加させる。これにより、給電体41、42に供給する電解電流が適切に制御されうる。 The control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 44. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.
 入水部7は、給水管71と、流量センサー72と、分岐部73と、流量調整弁74等を有している。給水管71は、例えば、浄水カートリッジ(図示せず)に接続され、浄水カートリッジによって浄化された水が供給された水を電解室40に導く。流量センサー72は、給水管71に設けられている。流量センサー72は、電解室40に供給される水の単位時間あたりの流量(以下、単に「流量」と記すこともある)Fを定期的に検出し、その値に相当する信号を制御手段6に出力する。 The water inlet 7 has a water supply pipe 71, a flow rate sensor 72, a branching portion 73, a flow rate adjustment valve 74 and the like. The water supply pipe 71 is connected to, for example, a water purification cartridge (not shown), and guides water supplied with water purified by the water purification cartridge to the electrolysis chamber 40. The flow rate sensor 72 is provided in the water supply pipe 71. The flow rate sensor 72 periodically detects the flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter sometimes simply referred to as “flow rate”) F, and outputs a signal corresponding to the value F to the control means 6. Output to.
 分岐部73は、給水管71を給水管71a、71bの二方に分岐する。流量調整弁74は、給水管71a、71bを陽極室40A又は陰極室40Bに接続する。陽極室40A及び陰極室40Bに供給される水の流量は、制御手段6の管理下で、流量調整弁74によって調整される。流量調整弁74は、水の利用効率を高めるために、陽極室40A及び陰極室40Bに供給される水の流量を調整する。これにより、陽極室40Aと陰極室40Bとの間で圧力差が生ずる場合がある。 The branch part 73 branches the water supply pipe 71 into two directions of the water supply pipes 71a and 71b. The flow rate adjusting valve 74 connects the water supply pipes 71a and 71b to the anode chamber 40A or the cathode chamber 40B. The flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B is adjusted by the flow rate adjusting valve 74 under the control of the control means 6. The flow rate adjusting valve 74 adjusts the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B in order to increase the use efficiency of water. This may cause a pressure difference between the anode chamber 40A and the cathode chamber 40B.
 本実施形態では、流量センサー72は、分岐部73の上流側に設けられているので、陽極室40Aに供給される水の流量と陰極室40Bに供給される水の流量との総和、すなわち、電解室40に供給される水の流量Fを検出する。 In the present embodiment, since the flow rate sensor 72 is provided on the upstream side of the branching portion 73, the sum of the flow rate of water supplied to the anode chamber 40A and the flow rate of water supplied to the cathode chamber 40B, that is, A flow rate F of water supplied to the electrolysis chamber 40 is detected.
 出水部8は、流路切替弁81と、吐水管82と、排水管83等を有している。流路切替弁81は、陽極室40A、陰極室40Bを吐水管82又は排水管83に選択的に接続する。電解水生成装置1が血液透析の透析液の生成に用いられる場合、陰極室40Bで生成された電解水素水が吐水管82を介して、濾過処理用の逆浸透膜モジュール及び透析原液を希釈する希釈装置等に供給される。 The water outlet 8 includes a flow path switching valve 81, a water discharge pipe 82, a drain pipe 83, and the like. The flow path switching valve 81 selectively connects the anode chamber 40A and the cathode chamber 40B to the water discharge pipe 82 or the drain pipe 83. When the electrolyzed water generating apparatus 1 is used for generating a dialysate for hemodialysis, the electrolyzed hydrogen water generated in the cathode chamber 40B dilutes the reverse osmosis membrane module for filtration and the dialysate stock solution through the water discharge pipe 82. Supplied to a dilution device or the like.
 制御手段6は、陽極給電体41及び陰極給電体42に印加する直流電圧の極性を制御する。例えば、制御手段6は、流量センサー72から入力される信号に基づいて、電解室40に供給される水の流量Fを積算し、所定の積算値に達すると陽極給電体41及び陰極給電体42に印加する直流電圧の極性を切り替える。これに伴い、陽極室40Aと陰極室40Bとが相互に入れ替わる。直流電圧の極性の切り替えにあたっては、制御手段6は、流量調整弁74及び流路切替弁81を同期して動作させる。これにより、陰極室40Bと吐水管82とが常に接続され、陰極室40Bで生成された電解水素水が吐水管82から吐出される。 The control means 6 controls the polarity of the DC voltage applied to the anode power supply 41 and the cathode power supply 42. For example, the control means 6 integrates the flow rate F of water supplied to the electrolysis chamber 40 based on a signal input from the flow sensor 72, and when it reaches a predetermined integrated value, the anode power supply 41 and the cathode power supply 42. The polarity of the DC voltage applied to is switched. Along with this, the anode chamber 40A and the cathode chamber 40B are interchanged. In switching the polarity of the DC voltage, the control means 6 operates the flow rate adjustment valve 74 and the flow path switching valve 81 in synchronization. Thereby, the cathode chamber 40B and the water discharge pipe 82 are always connected, and the electrolytic hydrogen water generated in the cathode chamber 40B is discharged from the water discharge pipe 82.
 図2は、電解槽4の組み立て前の主要部品を配置した組立斜視図である。電解槽4は、陽極給電体41側の第1ケース片50と、陰極給電体42側の第2ケース片60とを有している。互いに対向して配置された第1ケース片50と第2ケース片60とが固着されることにより、その内部に電解室40(図1参照)が形成される。 FIG. 2 is an assembly perspective view in which main parts before assembly of the electrolytic cell 4 are arranged. The electrolytic cell 4 includes a first case piece 50 on the anode power supply 41 side and a second case piece 60 on the cathode power supply 42 side. The first case piece 50 and the second case piece 60 arranged to face each other are fixed to each other, so that the electrolysis chamber 40 (see FIG. 1) is formed therein.
 電解槽4は、電解室40内に、陽極給電体41、隔膜43及び陰極給電体42が重ねられてなる積層体45を収容している。 The electrolytic cell 4 accommodates a laminated body 45 in which an anode power supply 41, a diaphragm 43 and a cathode power supply 42 are stacked in an electrolysis chamber 40.
 陽極給電体41及び陰極給電体42は、それぞれ、シート状に形成されている。このような陽極給電体41及び陰極給電体42によって、大きな面積で水を電気分解することができ、水素ガスの発生効率が高められる。 The anode feeder 41 and the cathode feeder 42 are each formed in a sheet shape. By such an anode power supply 41 and cathode power supply 42, water can be electrolyzed in a large area, and the generation efficiency of hydrogen gas is increased.
 陽極給電体41及び陰極給電体42は、それぞれ、その厚さ方向で水が行き来可能に構成されている。陽極給電体41及び陰極給電体42には、例えば、エクスパンドメタル等の網状金属が適用されうる。このような、網状の陽極給電体41及び陰極給電体42は、隔膜43を挟持しながら、隔膜43の表面に水を行き渡らせることができ、電解室40内での電気分解を促進する。また、網状の陽極給電体41及び陰極給電体42は、隔膜43と共に柔軟に変形することにより、隔膜43の損傷を抑制する。このため、陽極給電体41及び陰極給電体42は、厚さ及びストランド幅の小さい網状金属から形成されるのが望ましい。本実施形態では、陽極給電体41及び陰極給電体42として、チタニウム製のエクスパンドメタルの表面に白金のめっき層が形成されたものが適用されている。白金のめっき層は、チタニウムの酸化を防止する。 The anode power supply body 41 and the cathode power supply body 42 are configured such that water can travel back and forth in the thickness direction. For the anode power supply 41 and the cathode power supply 42, for example, a net-like metal such as an expanded metal can be applied. Such a net-like anode power supply 41 and cathode power supply 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40. Further, the net-like anode power supply body 41 and the cathode power supply body 42 are flexibly deformed together with the diaphragm 43 to suppress damage to the diaphragm 43. For this reason, it is desirable that the anode power supply body 41 and the cathode power supply body 42 be formed of a net-like metal having a small thickness and a small strand width. In the present embodiment, as the anode power supply body 41 and the cathode power supply body 42, one in which a platinum plating layer is formed on the surface of a titanium expanded metal is applied. The platinum plating layer prevents the oxidation of titanium.
 陽極給電体41には、第1ケース片50を貫通して電解槽4の外部に突出する給電端子41aが設けられている。給電端子41aには、例えば、封止部材41b、ブッシュ41c、ナット41d、41eを介して端子41fが装着される。同様に、陰極給電体42にも、第2ケース片60を貫通して電解槽4の外部に突出する給電端子42aが設けられている。給電端子42aには、例えば、封止部材42b、ブッシュ42c、ナット42d、42eを介して端子42fが装着される。端子41f、42fは、図1に示される制御手段6に接続されている。給電端子41a、42a及び端子41f、42fを介して、陽極給電体41及び陰極給電体42に直流電圧が印加される。 The anode power supply body 41 is provided with a power supply terminal 41 a that passes through the first case piece 50 and protrudes outside the electrolytic cell 4. For example, a terminal 41f is attached to the power supply terminal 41a via a sealing member 41b, a bush 41c, and nuts 41d and 41e. Similarly, the cathode power supply body 42 is also provided with a power supply terminal 42 a that penetrates the second case piece 60 and protrudes outside the electrolytic cell 4. For example, a terminal 42f is attached to the power supply terminal 42a via a sealing member 42b, a bush 42c, and nuts 42d and 42e. The terminals 41f and 42f are connected to the control means 6 shown in FIG. A DC voltage is applied to the anode power supply 41 and the cathode power supply 42 via the power supply terminals 41a and 42a and the terminals 41f and 42f.
 本実施形態では、隔膜43には、例えば、スルホン酸基を有するフッ素系の樹脂材料からなる固体高分子材料が用いられている。固体高分子材料を用いた隔膜43を有する電解槽4では、中性の電解水が生成される。電解室40内で水が電気分解されることにより、陰極室40Bでは、水素ガスが溶け込んだ電解水素水が得られ、陽極室40Aでは酸素ガスが溶け込んだ電解酸素水が得られる。隔膜43の両面には、白金からなるめっき層43aが形成されている。めっき層43aと陽極給電体41及び陰極給電体42とは、当接し、電気的に接続される。 In the present embodiment, for the diaphragm 43, for example, a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used. In the electrolytic cell 4 having the diaphragm 43 using a solid polymer material, neutral electrolyzed water is generated. By electrolyzing water in the electrolytic chamber 40, electrolytic hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40B, and electrolytic oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40A. On both surfaces of the diaphragm 43, plating layers 43a made of platinum are formed. The plating layer 43a, the anode power supply 41, and the cathode power supply 42 are in contact with each other and are electrically connected.
 隔膜43は、電解室40内で、陽極給電体41及び陰極給電体42によって挟持されている。従って、隔膜43の形状は陽極給電体41及び陰極給電体42によって保持されている。このような、隔膜43の保持構造によれば、陽極室40Aと陰極室40Bとの間に生ずる圧力差に起因する応力の大部分は、陽極給電体41及び陰極給電体42によって負担され、隔膜43にかかる応力は減少する。これにより、陽極室40Aと陰極室40Bとの間で大きな圧力差が生ずる状態で電解水生成装置1を動作させても、隔膜43には大きな応力が生じない。従って、隔膜43の損傷を抑制し、水の利用効率を容易に高めることが可能となる。 The diaphragm 43 is sandwiched between the anode power supply 41 and the cathode power supply 42 in the electrolysis chamber 40. Therefore, the shape of the diaphragm 43 is held by the anode power supply 41 and the cathode power supply 42. According to such a structure for holding the diaphragm 43, most of the stress caused by the pressure difference generated between the anode chamber 40A and the cathode chamber 40B is borne by the anode feeder 41 and the cathode feeder 42. The stress on 43 decreases. Thereby, even if the electrolyzed water generating apparatus 1 is operated in a state where a large pressure difference is generated between the anode chamber 40A and the cathode chamber 40B, no large stress is generated in the diaphragm 43. Therefore, it is possible to suppress damage to the diaphragm 43 and easily increase the water use efficiency.
 また、隔膜43が陽極給電体41及び陰極給電体42で挟持されているので、隔膜43のめっき層43aと陽極給電体41との間及びめっき層43aと陰極給電体42との間での接触抵抗が減少し、電圧降下が抑制される。これにより、十分な電解電流Iによって電解室40内での電気分解が促進され、高い溶存水素濃度の電解水素水が生成可能となる。 Further, since the diaphragm 43 is sandwiched between the anode power feeding body 41 and the cathode power feeding body 42, the contact between the plating layer 43 a and the anode power feeding body 41 of the diaphragm 43 and between the plating layer 43 a and the cathode power feeding body 42. The resistance is reduced and the voltage drop is suppressed. Thereby, electrolysis in the electrolysis chamber 40 is promoted by a sufficient electrolysis current I, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.
 図2に示されるように、陽極給電体41及び陰極給電体42の外周縁の外側には、第1ケース片50と第2ケース片60との合わせ面からの水漏れを防止するための封止部材46が設けられている。隔膜43の外周部は、封止部材46によって挟持されている。 As shown in FIG. 2, the outer sides of the outer periphery of the anode power supply 41 and the cathode power supply 42 are sealed to prevent water leakage from the mating surfaces of the first case piece 50 and the second case piece 60. A stop member 46 is provided. The outer peripheral portion of the diaphragm 43 is sandwiched by the sealing member 46.
 各ケース片50及び60は、例えば、合成樹脂によって形成されている。各ケース片50及び60は、電解室40内での水の流れに沿う縦方向Vに長い矩形状に形成されている。これに伴い、電解室40は、縦方向Vに長い矩形状に形成されている。このような縦長形状の電解室40によって、電解槽4内での流路が長くなる。その結果、陰極室40Bで発生した水素ガスが、陰極室40B内の水に溶け込みやすくなり、溶存水素濃度を高めることができる。 The case pieces 50 and 60 are made of, for example, a synthetic resin. Each case piece 50 and 60 is formed in a rectangular shape that is long in the longitudinal direction V along the flow of water in the electrolysis chamber 40. Accordingly, the electrolytic chamber 40 is formed in a rectangular shape that is long in the vertical direction V. Such a vertically long electrolytic chamber 40 makes the flow path in the electrolytic cell 4 long. As a result, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the water in the cathode chamber 40B, and the dissolved hydrogen concentration can be increased.
 図3(a)は、電解室40側を向く内面側から視た第1ケース片50の斜視図であり、図3(b)は、電解室40側を向く内面側から視た第2ケース片60の斜視図である。 3A is a perspective view of the first case piece 50 viewed from the inner surface side facing the electrolysis chamber 40 side, and FIG. 3B is a second case viewed from the inner surface side facing the electrolysis chamber 40 side. 3 is a perspective view of a piece 60. FIG.
 第1ケース片50及び第2ケース片60の内面の外縁部には、第1ケース片50と第2ケース片60とを固着するための合わせ面51、61が形成されている。合わせ面51、61の内側には、内壁が合わせ面51、61から第1ケース片50、第2ケース片60の厚さ方向に陥没することにより、電解部52、62が設けられている。電解部52は陽極室40Aを構成し、電解部62は陰極室40Bを構成する。 Alignment surfaces 51 and 61 for fixing the first case piece 50 and the second case piece 60 are formed on the outer edge portions of the inner surfaces of the first case piece 50 and the second case piece 60. Inside the mating surfaces 51, 61, the inner walls are recessed from the mating surfaces 51, 61 in the thickness direction of the first case piece 50 and the second case piece 60, so that the electrolysis parts 52, 62 are provided. The electrolysis unit 52 configures the anode chamber 40A, and the electrolysis unit 62 configures the cathode chamber 40B.
 第1ケース片50の内面には、複数の第1凸状部53が配設されている。各第1凸状部53は、電解部52を縦方向Vにのび、縦方向Vと直交する横方向Hに並べて配設されている。一方、第2ケース片60の内面には、複数の第2凸状部63が配設されている。各第2凸状部63は、電解部62を縦方向Vにのび、横方向Hに並べて配設されている。このような第1凸状部53及び第2凸状部63は、電解室40内を縦方向Vに流れる水の移動を阻害しない。 A plurality of first convex portions 53 are disposed on the inner surface of the first case piece 50. Each first convex portion 53 is arranged side by side in the horizontal direction H perpendicular to the vertical direction V, with the electrolysis portion 52 extending in the vertical direction V. On the other hand, a plurality of second convex portions 63 are arranged on the inner surface of the second case piece 60. Each of the second convex portions 63 is arranged side by side in the horizontal direction H with the electrolysis portion 62 extending in the vertical direction V. Such first convex portion 53 and second convex portion 63 do not hinder the movement of water flowing in the vertical direction V in the electrolysis chamber 40.
 各第1凸状部53は、陽極室40Aで陽極給電体41と当接し、陽極給電体41を第2ケース片60の側に押圧する。一方、各第2凸状部63は、陰極室40Bで陰極給電体42と当接し、陰極給電体42を第1ケース片50の側に押圧する。従って、各第1凸状部53及び各第2凸状部63によって、積層体45は、その両面から挟持される。第1凸状部53及び第2凸状部63の形状及び配置は、任意である。例えば、各第1凸状部53及び各第2凸状部63は、上記特許文献1の図4に示されるように、積層体を挟んで電解室の横方向に交互に配設されていてもよく、上記特許文献1の図8に示されるように、積層体を挟んで対向するように配設されていてもよい。また、第1凸状部53及び第2凸状部63は、上記特許文献1の図9及び10に示されるように、縦方向に離散的に設けられた形態であってもよい。第1凸状部53及び各第2凸状部63が、積層体を挟んで電解室の横方向に交互に配設されている形態にあっては、第1凸状部53及び各第2凸状部63によって積層体が波形に成形される。 Each first convex portion 53 is in contact with the anode power feeding body 41 in the anode chamber 40A, and presses the anode power feeding body 41 toward the second case piece 60 side. On the other hand, each 2nd convex-shaped part 63 contact | abuts with the cathode electric power feeding body 42 in the cathode chamber 40B, and presses the cathode electric power feeding body 42 to the 1st case piece 50 side. Therefore, the laminated body 45 is sandwiched from both surfaces by the first convex portions 53 and the second convex portions 63. The shape and arrangement of the first convex portion 53 and the second convex portion 63 are arbitrary. For example, the first convex portions 53 and the second convex portions 63 are alternately arranged in the lateral direction of the electrolysis chamber with the laminate interposed therebetween as shown in FIG. Alternatively, as shown in FIG. 8 of the above-mentioned Patent Document 1, they may be arranged so as to face each other with the laminate interposed therebetween. Moreover, the 1st convex-shaped part 53 and the 2nd convex-shaped part 63 may be the form provided discretely in the vertical direction, as FIG. 9 and 10 of the said patent document 1 shows. In the form in which the first convex portions 53 and the second convex portions 63 are alternately arranged in the lateral direction of the electrolysis chamber with the laminate interposed therebetween, the first convex portions 53 and the second convex portions 53 are arranged. The laminated body is formed into a corrugated shape by the convex portion 63.
 第1ケース片50は、電解部52の上流側に第1分水路54を、下流側に第1集水路56をそれぞれ有している。第1分水路54及び第1集水路56は、第1凸状部53が形成されている電解部52よりも深く形成されている。一方、第2ケース片60は、電解部62の上流側に第2分水路64を、下流側に第2集水路66をそれぞれ有している。第2分水路64及び第2集水路66は、第2凸状部63が形成されている電解部62よりも深く形成されている。 The first case piece 50 has a first water diversion channel 54 on the upstream side of the electrolysis unit 52 and a first water collecting channel 56 on the downstream side. The first water diversion channel 54 and the first water collecting channel 56 are formed deeper than the electrolysis unit 52 in which the first convex portion 53 is formed. On the other hand, the second case piece 60 has a second water diversion channel 64 on the upstream side of the electrolysis unit 62 and a second water collection channel 66 on the downstream side. The second water diversion channel 64 and the second water collecting channel 66 are formed deeper than the electrolysis unit 62 in which the second convex portion 63 is formed.
 第1ケース片50には、給電端子41aを第1ケース片50の外部に突出させるため貫通孔58が形成されている。同様に、第2ケース片60には、給電端子42aを第2ケース片60の外部に突出させるため貫通孔68が形成されている。貫通孔58は第1集水路56に、貫通孔68は第2集水路66にそれぞれ設けられている。 A through hole 58 is formed in the first case piece 50 so that the power supply terminal 41 a protrudes outside the first case piece 50. Similarly, a through hole 68 is formed in the second case piece 60 so that the power supply terminal 42 a protrudes outside the second case piece 60. The through hole 58 is provided in the first water collection channel 56, and the through hole 68 is provided in the second water collection channel 66.
 図2、3に示されるように、電解槽4には、L字状の継手91、92、93、94が設けられている。継手91、92は、第1ケース片50、第2ケース片60の下部に装着され、上記流量調整弁74と接続される。継手93、94は、第1ケース片50、第2ケース片60の上部に装着され、上記流路切替弁81と接続される。電解水生成装置1への通水を開始することにより、陽極室40A及び陰極室40Bの下部から上部に向かって、大局的な水の流れが生ずる。 2 and 3, the electrolytic cell 4 is provided with L-shaped joints 91, 92, 93, 94. The joints 91 and 92 are attached to the lower part of the first case piece 50 and the second case piece 60 and connected to the flow rate adjusting valve 74. The joints 93 and 94 are attached to the upper portions of the first case piece 50 and the second case piece 60 and connected to the flow path switching valve 81. By starting water flow to the electrolyzed water generator 1, a general flow of water is generated from the lower part to the upper part of the anode chamber 40A and the cathode chamber 40B.
 陰極室40Bにて発生した水素ガスは、微小な気泡となって陰極室40Bの上方に移動する。本実施形態では、水素ガスの移動方向と大局的に水が流れる方向が一致するため、水素分子が水に溶け込み易くなり、溶存水素濃度が高められる。 The hydrogen gas generated in the cathode chamber 40B moves as a minute bubble above the cathode chamber 40B. In the present embodiment, the movement direction of hydrogen gas and the direction in which water flows generally coincide with each other, so that hydrogen molecules easily dissolve in water and the dissolved hydrogen concentration is increased.
 図4は、陽極給電体41及び陰極給電体42を示している。本発明では、陽極給電体41には、導電補助体47が設けられている。導電補助体47は、陽極給電体41と当接している。導電補助体47は、例えば、溶接により陽極給電体41に固着されている。 FIG. 4 shows an anode feeder 41 and a cathode feeder 42. In the present invention, the anode power feeder 41 is provided with a conductive auxiliary body 47. The conductive auxiliary body 47 is in contact with the anode power supply body 41. The conductive auxiliary body 47 is fixed to the anode power feeding body 41 by welding, for example.
 導電補助体47は、導電性を有する材料からなる。導電補助体47は、例えば、陽極給電体41よりも電気抵抗が小さい金属材料によって構成されているのが望ましい。本実施形態では、陽極給電体41が網状金属によって形成されているのに対して、導電補助体47は、例えば、より断面積の大きい無垢の板状金属等によって形成されている。この場合、導電補助体47は、陽極給電体41と同等の金属材料によって構成されていてもよく、陽極給電体41よりも電気抵抗率が小さい金属材料によって構成されていてもよい。本実施形態では、導電補助体47は、陽極給電体41と同様に、チタニウムを含む金属材料によって構成されている。なお、導電補助体47が上記板状金属によって形成されることにより、陽極給電体41の厚さを薄くすることができ、電解槽4ひいては電解水生成装置1の薄型化を図ることが可能となる。 The conductive auxiliary body 47 is made of a conductive material. The conductive auxiliary body 47 is preferably made of, for example, a metal material having an electric resistance smaller than that of the anode power supply body 41. In the present embodiment, the anode power feeding body 41 is made of a net-like metal, whereas the conductive auxiliary body 47 is made of, for example, a solid plate-like metal having a larger cross-sectional area. In this case, the conductive auxiliary body 47 may be made of a metal material equivalent to the anode power feeding body 41 or may be made of a metal material having an electrical resistivity smaller than that of the anode power feeding body 41. In the present embodiment, the conductive auxiliary body 47 is made of a metal material containing titanium, like the anode power supply body 41. In addition, since the conductive auxiliary body 47 is formed of the plate metal, it is possible to reduce the thickness of the anode power feeding body 41 and to reduce the thickness of the electrolytic cell 4 and thus the electrolyzed water generating apparatus 1. Become.
 同様に、陰極給電体42には、導電補助体48が設けられている。導電補助体48の構成についても、上記導電補助体47と同等であるため、その説明を省略する。 Similarly, the cathode feeder 42 is provided with a conductive auxiliary body 48. Since the configuration of the conductive auxiliary body 48 is also the same as that of the conductive auxiliary body 47, the description thereof is omitted.
 図4に示されるように、陽極給電体41及び陰極給電体42の両方に、導電補助体47、48が設けられているのが望ましいが、陽極給電体41及び陰極給電体42のうち少なくとも一方に導電補助体47又は48が設けられていてもよい。この場合、導電補助体47又は48が設けられていない他方側の給電体は、電気抵抗率が小さい金属材料によって構成されているのが望ましい。 As shown in FIG. 4, it is desirable that both the anode power supply body 41 and the cathode power supply body 42 are provided with conductive auxiliary bodies 47 and 48, but at least one of the anode power supply body 41 and the cathode power supply body 42 is provided. A conductive auxiliary body 47 or 48 may be provided. In this case, it is desirable that the power feeding body on the other side where the conductive auxiliary body 47 or 48 is not provided is made of a metal material having a low electrical resistivity.
 本発明の電解水生成装置1では、陽極給電体41及び陰極給電体42のうち少なくとも一方には、一方の給電体41又は42と当接し、一方の給電体41又は42よりも電気抵抗が小さい導電補助体47又は48が設けられている。従って、給電体41又は42に供給された電流が導電補助体47又は48に分散し、給電体41又は42での電圧降下が抑制される。これにより、陽極給電体41及び陰極給電体42で互いに対向する任意の位置での電解電圧が均一化され、発生する水素ガスの分布が均一化される。従って、電解槽4の全体で水素ガスを効率よく電解水に溶け込ませることができ、溶存水素濃度を容易に高めることが可能となる。 In the electrolyzed water generating apparatus 1 of the present invention, at least one of the anode power supply body 41 and the cathode power supply body 42 is in contact with one power supply body 41 or 42 and has an electric resistance smaller than that of the one power supply body 41 or 42. A conductive auxiliary body 47 or 48 is provided. Therefore, the current supplied to the power feeder 41 or 42 is dispersed in the conductive auxiliary body 47 or 48, and the voltage drop at the power feeder 41 or 42 is suppressed. As a result, the electrolysis voltage at any position facing each other in the anode power supply 41 and the cathode power supply 42 is made uniform, and the distribution of the generated hydrogen gas is made uniform. Therefore, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell 4, and the dissolved hydrogen concentration can be easily increased.
 陽極給電体41側の給電端子41aは、導電補助体47に固着されているのが望ましい。本実施形態では、給電端子41aは、溶接により導電補助体47に固着されている。これにより、給電端子41aと導電補助体47とが、陽極給電体41を介することなく直接電気的に接続される。また、陽極給電体41を流れる電流が集中する給電端子41aの近傍領域での電気抵抗が抑制されるので、陽極給電体41での電圧降下が効果的に抑制され、電解電圧がより一層均一化される。同様に、陰極給電体42側の給電端子42aは、導電補助体48に固着されているのが望ましい。これにより、陰極給電体42での電圧降下が効果的に抑制され、電解電圧がより一層均一化される。 The power supply terminal 41 a on the anode power supply 41 side is preferably fixed to the conductive auxiliary body 47. In the present embodiment, the power supply terminal 41a is fixed to the conductive auxiliary body 47 by welding. As a result, the power supply terminal 41 a and the conductive auxiliary body 47 are directly electrically connected without passing through the anode power supply body 41. Further, since the electric resistance in the vicinity of the power supply terminal 41a where the current flowing through the anode power supply 41 is concentrated is suppressed, the voltage drop in the anode power supply 41 is effectively suppressed, and the electrolytic voltage is made more uniform. Is done. Similarly, the power supply terminal 42 a on the cathode power supply 42 side is preferably fixed to the conductive auxiliary body 48. Thereby, the voltage drop in the cathode power supply 42 is effectively suppressed, and the electrolytic voltage is made more uniform.
 給電端子41aは、導電補助体47の中央部に固着されている。導電補助体47の電気抵抗が陽極給電体41の電気抵抗に対して十分に小さい場合、給電端子41aは、導電補助体47の横方向Hの端部に固着されていてもよい。給電端子42aについても、同様である。 The power supply terminal 41 a is fixed to the central portion of the conductive auxiliary body 47. When the electrical resistance of the conductive auxiliary body 47 is sufficiently smaller than the electrical resistance of the anode power supply body 41, the power supply terminal 41 a may be fixed to the end portion in the lateral direction H of the conductive auxiliary body 47. The same applies to the power supply terminal 42a.
 導電補助体47は、陽極給電体41の横方向Hに沿って形成されているのが望ましい。同様に、導電補助体48は、陰極給電体42の横方向Hに沿って形成されているのが望ましい。このような導電補助体47、48によれば、給電体41の横方向Hに並ぶ領域で同電位となり、電解電圧がより一層均一化される。 The conductive auxiliary body 47 is desirably formed along the lateral direction H of the anode power supply body 41. Similarly, the conductive auxiliary body 48 is preferably formed along the lateral direction H of the cathode power supply body 42. According to such conductive auxiliary bodies 47 and 48, the electric potential becomes the same in the region aligned in the lateral direction H of the power feeding body 41, and the electrolytic voltage is made more uniform.
 導電補助体47は、陽極給電体41の厚さ方向の水の行き来を阻害する。このため、電解室40での電気分解を活性化するにあたっては、電解室40の中央部での上記水の行き来への影響を抑制するために、導電補助体47は、陽極給電体41の端縁部に形成されているのが望ましい。 The conductive auxiliary body 47 obstructs the passage of water in the thickness direction of the anode power supply body 41. For this reason, in activating electrolysis in the electrolysis chamber 40, the conductive auxiliary body 47 is connected to the end of the anode power supply body 41 in order to suppress the influence of the water in the central portion of the electrolysis chamber 40. It is desirable to be formed at the edge.
 本実施形態では、導電補助体47は、陽極給電体41の縦方向Vの一端側に形成されている。同様に、導電補助体48も、陰極給電体42の縦方向Vの一端側に形成されている。これにより、導電補助体47、48が第1集水路56、第2集水路66に収容され、容易に電解槽4の薄型化を図ることができる。また、導電補助体47、48が第1凸状部53及び第2凸状部63と干渉しないので、第1凸状部53及び第2凸状部63による積層体45の波形変形が阻害されるおそれがない。 In the present embodiment, the conductive auxiliary body 47 is formed on one end side in the longitudinal direction V of the anode power supply body 41. Similarly, the conductive auxiliary body 48 is also formed on one end side in the vertical direction V of the cathode power supply body 42. Thereby, the conductive auxiliary bodies 47 and 48 are accommodated in the first water collecting channel 56 and the second water collecting channel 66, and the electrolytic cell 4 can be easily reduced in thickness. Further, since the conductive auxiliary bodies 47 and 48 do not interfere with the first convex portion 53 and the second convex portion 63, the waveform deformation of the stacked body 45 by the first convex portion 53 and the second convex portion 63 is hindered. There is no fear.
 図5は、陽極給電体41、陰極給電体42の変形例である陽極給電体41X、陰極給電体42Xを示している。陽極給電体41X、陰極給電体42Xのうち、以下で説明されていない部分については、上述した陽極給電体41、陰極給電体42の構成が適宜採用されうる。 FIG. 5 shows an anode feeder 41X and a cathode feeder 42X, which are modifications of the anode feeder 41 and the cathode feeder 42. Of the anode power supply body 41X and the cathode power supply body 42X, the above-described configurations of the anode power supply body 41 and the cathode power supply body 42 can be appropriately employed for portions not described below.
 陽極給電体41X、陰極給電体42Xにおいて、陽極側の給電端子41aと陰極側の給電端子42aとは、互いに対向しない位置に設けられている。すなわち、給電端子41aと給電端子42aとは、隔膜43の厚さ方向から視て、互いに重複しない位置に設けられている。好ましい態様では、給電端子41aは、陽極給電体41Xの一端部41F(図5では上端部)側に、給電端子42aは、陰極給電体42Xの他端部42G(図5では下端部)側に設けられている。これに伴い、導電補助体47は、陽極給電体41Xの一端部41Fに、導電補助体48は、陰極給電体42Xの他端部42Gにそれぞれ設けられている。 In the anode power supply 41X and the cathode power supply 42X, the anode-side power supply terminal 41a and the cathode-side power supply terminal 42a are provided at positions that do not face each other. That is, the power supply terminal 41 a and the power supply terminal 42 a are provided at positions that do not overlap each other when viewed from the thickness direction of the diaphragm 43. In a preferred embodiment, the power supply terminal 41a is on the one end 41F (upper end in FIG. 5) side of the anode power supply 41X, and the power supply terminal 42a is on the other end 42G (lower end in FIG. 5) side of the cathode power supply 42X. Is provided. Accordingly, the conductive auxiliary body 47 is provided at one end portion 41F of the anode power feeding body 41X, and the conductive auxiliary body 48 is provided at the other end portion 42G of the cathode power feeding body 42X.
 以下、導電補助体47、48の電気抵抗が陽極給電体41X、陰極給電体42Xの電気抵抗に対して十分に小さい場合について検討する。陽極給電体41X及び陰極給電体42Xにおいて、陽極給電体41の一端部41F及び陰極給電体42の一端部42Fから距離L1、陽極給電体41の他端部41G及び陰極給電体42の他端部42Gから距離L2にある点P1での電解電圧は、以下の通り計算される。陽極給電体41X及び陰極給電体42Xの縦方向に一様な電流Iが流れると仮定すると、陽極給電体41Xで導電補助体47から点P1までに生ずる電圧降下は、I×ρL1であり、陰極給電体42Xで導電補助体48から点P1までに生ずる電圧降下は、I×ρL2である。従って、給電端子41aと給電端子42aとの間の電圧をVとすると、点P1での電解電圧は、V-I×ρ(L1+L2)である。 Hereinafter, a case where the electrical resistances of the conductive auxiliary bodies 47 and 48 are sufficiently smaller than the electrical resistances of the anode feeder 41X and the cathode feeder 42X will be considered. In the anode power supply 41X and the cathode power supply 42X, the distance L1 from the one end 41F of the anode power supply 41 and the one end 42F of the cathode power supply 42, the other end 41G of the anode power supply 41, and the other end of the cathode power supply 42 The electrolytic voltage at the point P1 at a distance L2 from 42G is calculated as follows. Assuming that a uniform current I flows in the longitudinal direction of the anode feeder 41X and the cathode feeder 42X, the voltage drop generated from the conductive auxiliary body 47 to the point P1 in the anode feeder 41X is I × ρL1, and the cathode The voltage drop generated from the conductive auxiliary body 48 to the point P1 in the power feeding body 42X is I × ρL2. Therefore, when the voltage between the power supply terminal 41a and the power supply terminal 42a is V, the electrolytic voltage at the point P1 is V−I × ρ (L1 + L2).
 同様に、陽極給電体41の一端部41F及び陰極給電体42の一端部42Fから距離L2、陽極給電体41の他端部41G及び陰極給電体42の他端部42Gから距離L1にある点P2での電解電圧は、以下の通り計算される。陽極給電体41Xで導電補助体47から点P2までに生ずる電圧降下は、I×ρL2であり、陰極給電体42Xで導電補助体48から点P2までに生ずる電圧降下は、I×ρL1である。従って、点P2での電解電圧は、V-I×ρ(L1+L2)である。 Similarly, the point P2 is located at a distance L2 from one end 41F of the anode power supply 41 and one end 42F of the cathode power supply 42, and at a distance L1 from the other end 41G of the anode power supply 41 and the other end 42G of the cathode power supply 42. The electrolytic voltage is calculated as follows. The voltage drop generated from the conductive auxiliary body 47 to the point P2 in the anode power supply 41X is I × ρL2, and the voltage drop generated from the conductive auxiliary body 48 to the point P2 in the cathode power supply 42X is I × ρL1. Therefore, the electrolysis voltage at the point P2 is V−I × ρ (L1 + L2).
 ここで、L1+L2は、陽極給電体41の一端部41Fから他端部41Gまでの距離であると共に、陰極給電体42の一端部42Fから他端部42Gまでの距離であるため、陽極給電体41及び陰極給電体42上の任意の位置における電解電圧は、等しく、V-I×ρ(L1+L2)である。 Here, L1 + L2 is the distance from the one end 41F to the other end 41G of the anode power supply 41 and the distance from the one end 42F to the other end 42G of the cathode power supply 42. And the electrolysis voltage at any position on the cathode power supply 42 is equal and is V−I × ρ (L1 + L2).
 従って、陽極給電体41及び陰極給電体42上で、互いに対向する任意の位置での電解電圧が均一化され、発生する水素ガスの分布が均一となる。従って、電解槽4の全体で水素ガスを効率よく電解水に溶け込ませることができ、溶存水素濃度を容易に高めることが可能となる。 Therefore, on the anode power supply body 41 and the cathode power supply body 42, the electrolysis voltage at any position facing each other is made uniform, and the distribution of the generated hydrogen gas becomes uniform. Therefore, hydrogen gas can be efficiently dissolved in the electrolyzed water in the entire electrolytic cell 4, and the dissolved hydrogen concentration can be easily increased.
 図6は、陽極給電体41及び陰極給電体42の別の変形例である陽極給電体41Y及び陰極給電体42Yを示している。陽極給電体41Y、陰極給電体42Yのうち、以下で説明されていない部分については、上述した陽極給電体41、陰極給電体42等の構成が適宜採用されうる。陽極給電体41Yは、横方向Hの端縁部に導電補助体47を有している。一方、陰極給電体42Yは、横方向Hの端縁部に導電補助体48を有している。 FIG. 6 shows an anode power feeding body 41Y and a cathode power feeding body 42Y which are another modified example of the anode power feeding body 41 and the cathode power feeding body 42. Of the anode power feeding body 41Y and the cathode power feeding body 42Y, the configuration of the anode power feeding body 41, the cathode power feeding body 42 and the like described above can be appropriately adopted for portions not described below. The anode power supply body 41 </ b> Y has a conductive auxiliary body 47 at the edge in the horizontal direction H. On the other hand, the cathode power supply body 42Y has a conductive auxiliary body 48 at the edge in the horizontal direction H.
 陽極給電体41Y及び陰極給電体42Yにおいて、陽極給電体41側の給電端子41aと陰極給電体42側の給電端子42aとは、互いに対向する位置に設けられている。これに伴い、導電補助体47と導電補助体48とは、隔膜43を挟んで互いに対向する位置に設けられている。 In the anode power supply body 41Y and the cathode power supply body 42Y, the power supply terminal 41a on the anode power supply body 41 side and the power supply terminal 42a on the cathode power supply body 42 side are provided at positions facing each other. Accordingly, the conductive auxiliary body 47 and the conductive auxiliary body 48 are provided at positions facing each other across the diaphragm 43.
 導電補助体47及び導電補助体48は、縦方向Vすなわち陽極給電体41Y及び陰極給電体42Yの長手方向に沿って延びている。このような導電補助体47及び導電補助体48は、陽極給電体41Y及び陰極給電体42Yでの電圧降下を効果的に抑制しうる。 The conductive auxiliary body 47 and the conductive auxiliary body 48 extend along the longitudinal direction V, that is, the longitudinal direction of the anode power supply body 41Y and the cathode power supply body 42Y. Such a conductive auxiliary body 47 and a conductive auxiliary body 48 can effectively suppress a voltage drop in the anode power supply body 41Y and the cathode power supply body 42Y.
 図6に示される陽極給電体41Y及び陰極給電体42Yにおいては、上記陽極給電体41X及び陰極給電体42Xと同様に、陽極給電体41側の給電端子41aと陰極給電体42側の給電端子42aとが、互いに対向しない位置に設けられていてもよい。 In the anode power supply 41Y and the cathode power supply 42Y shown in FIG. 6, the power supply terminal 41a on the anode power supply 41 side and the power supply terminal 42a on the cathode power supply 42 side are the same as the anode power supply 41X and the cathode power supply 42X. May be provided at positions that do not face each other.
 図7は、陽極給電体41及び陰極給電体42のさらに別の変形例である陽極給電体41Z及び陰極給電体42Zを示している。陽極給電体41Z、陰極給電体42Zのうち、以下で説明されていない部分については、上述した陽極給電体41、陰極給電体42等の構成が適宜採用されうる。 FIG. 7 shows an anode power feeding body 41Z and a cathode power feeding body 42Z, which are still another modified example of the anode power feeding body 41 and the cathode power feeding body 42. Among the anode power supply body 41Z and the cathode power supply body 42Z, the configurations of the anode power supply body 41, the cathode power supply body 42, and the like described above can be appropriately employed for portions not described below.
 陽極給電体41Z及び陰極給電体42Zにおいて、給電端子41aは陽極給電体41の中央部に、給電端子42aは陰極給電体42の中央部にそれぞれ設けられ、導電補助体47と導電補助体48とは、隔膜43を挟んで互いに対向する位置に設けられている。これにより、給電端子41aから陽極給電体41の端縁までの距離及び給電端子42aから陰極給電体42の端縁までの距離が短くなり、陽極給電体41Z及び陰極給電体42Zでの電圧降下が抑制される。 In the anode power supply 41Z and the cathode power supply 42Z, the power supply terminal 41a is provided at the center of the anode power supply 41, and the power supply terminal 42a is provided at the center of the cathode power supply 42. Are provided at positions facing each other across the diaphragm 43. As a result, the distance from the feeding terminal 41a to the edge of the anode feeding body 41 and the distance from the feeding terminal 42a to the edge of the cathode feeding body 42 are shortened, and the voltage drop at the anode feeding body 41Z and the cathode feeding body 42Z is reduced. It is suppressed.
 以上、本実施形態の電解水生成装置1及び電解槽4が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解槽4は、少なくとも、水を電気分解するための電解槽4であって、電気分解される水が供給される電解室40と、電解室40内で、互いに対向して配置された陽極側の給電体41及び陰極側の給電体42と、電解室40内で、給電体41と給電体42とによって挟持され、かつ、電解室40を陽極室40Aと陰極室40Bとに区分する隔膜とを備え、給電体41及び給電体42のうち少なくとも一方には、導電性を有する導電補助体47又は48が設けられていればよい。 As mentioned above, although the electrolyzed water generating apparatus 1 and the electrolytic cell 4 of this embodiment were demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment. That is, the electrolytic cell 4 is at least an electrolytic cell 4 for electrolyzing water, and is disposed opposite to each other in the electrolytic chamber 40 to which water to be electrolyzed is supplied and the electrolytic chamber 40. The anode-side power supply body 41 and the cathode-side power supply body 42 are sandwiched between the power supply body 41 and the power supply body 42 in the electrolysis chamber 40, and the electrolysis chamber 40 is divided into an anode chamber 40A and a cathode chamber 40B. It is sufficient that at least one of the power supply body 41 and the power supply body 42 is provided with a conductive auxiliary body 47 or 48 having conductivity.
  1  電解水生成装置
  4  電解槽
 40  電解室
 40A 陽極室
 40B 陰極室
 41  陽極給電体
 41a 給電端子
 42  陰極給電体
 42a 給電端子
 43  隔膜
 47  導電補助体
 48  導電補助体
 
 
 
 
 
 
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 4 Electrolysis tank 40 Electrolytic chamber 40A Anode chamber 40B Cathode chamber 41 Anode feeder 41a Feed terminal 42 Cathode feeder 42a Feed terminal 43 Diaphragm 47 Conductive auxiliary body 48 Conductive auxiliary body




Claims (7)

  1.  水を電気分解するための電解槽であって、
     電気分解される水が供給される電解室と、
     前記電解室内で、互いに対向して配置された陽極側の給電体及び陰極側の給電体と、
     前記電解室内で、前記陽極側の給電体と前記陰極側の給電体とによって挟持され、かつ、前記電解室を陽極室と陰極室とに区分する隔膜とを備え、
     前記陽極側の給電体及び前記陰極側の給電体の少なくとも一方の給電体には、導電性を有する導電補助体が設けられていることを特徴とする電解槽。
    An electrolytic cell for electrolyzing water,
    An electrolysis chamber supplied with water to be electrolyzed;
    In the electrolytic chamber, the anode-side power supply body and the cathode-side power supply body, which are arranged to face each other,
    A diaphragm that is sandwiched between the anode-side power supply body and the cathode-side power supply body in the electrolysis chamber, and that partitions the electrolysis chamber into an anode chamber and a cathode chamber,
    An electrolytic cell, wherein at least one of the anode-side power supply body and the cathode-side power supply body is provided with a conductive auxiliary body having conductivity.
  2.  前記陽極側の給電体及び前記陰極側の給電体のそれぞれには、前記陽極側の給電体と前記陰極側の給電体との間に直流電圧を印加するための給電端子が設けられ、
     前記少なくとも一方の給電体の給電端子は、前記導電補助体に固着されている請求項1記載の電解槽。
    Each of the anode-side power supply body and the cathode-side power supply body is provided with a power supply terminal for applying a DC voltage between the anode-side power supply body and the cathode-side power supply body,
    The electrolytic cell according to claim 1, wherein a power supply terminal of the at least one power supply body is fixed to the conductive auxiliary body.
  3.  前記少なくとも一方の給電体は、前記隔膜の厚さ方向から視て、前記電解室内での水の流れに沿う縦方向に長い矩形状に形成され、
     前記導電補助体は、前記少なくとも一方の給電体の前記縦方向と直交する横方向に沿って形成されている請求項1又は2に記載の電解槽。
    The at least one power supply body is formed in a rectangular shape that is long in the vertical direction along the flow of water in the electrolytic chamber, as viewed from the thickness direction of the diaphragm,
    The electrolytic cell according to claim 1, wherein the conductive auxiliary body is formed along a horizontal direction orthogonal to the vertical direction of the at least one power feeding body.
  4.  前記導電補助体は、前記少なくとも一方の給電体の前記縦方向の一端側に設けられている請求項3記載の電解槽。 The electrolytic cell according to claim 3, wherein the conductive auxiliary body is provided on one end side in the longitudinal direction of the at least one power feeding body.
  5.  前記導電補助体は、板状に形成されている請求項1乃至4のいずれかに記載の電解槽。 The electrolytic cell according to any one of claims 1 to 4, wherein the conductive auxiliary body is formed in a plate shape.
  6.  前記陽極側の給電体及び前記陰極側の給電体は、網状金属によって構成されている請求項5記載の電解槽。 6. The electrolytic cell according to claim 5, wherein the anode-side power supply body and the cathode-side power supply body are made of a mesh metal.
  7.  請求項1乃至6のいずれかに記載の電解槽を備えたことを特徴とする電解水生成装置。 An electrolyzed water generator comprising the electrolyzer according to any one of claims 1 to 6.
PCT/JP2016/070001 2015-07-14 2016-07-06 Electrolytic cell and electrolyzed water generation device WO2017010372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140387 2015-07-14
JP2015140387A JP6190426B2 (en) 2015-07-14 2015-07-14 Electrolysis tank and electrolyzed water generator

Publications (1)

Publication Number Publication Date
WO2017010372A1 true WO2017010372A1 (en) 2017-01-19

Family

ID=57758165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070001 WO2017010372A1 (en) 2015-07-14 2016-07-06 Electrolytic cell and electrolyzed water generation device

Country Status (2)

Country Link
JP (1) JP6190426B2 (en)
WO (1) WO2017010372A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013254A1 (en) * 2018-07-13 2020-01-16 パナソニックIpマネジメント株式会社 Electrolysed water generation device
CN115161679A (en) * 2021-03-19 2022-10-11 本田技研工业株式会社 Electrochemical hydrogen pump
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593594U (en) * 1992-05-19 1993-12-21 五洋建設株式会社 Electrode plate for electrolytic sewage treatment equipment
JP2004188336A (en) * 2002-12-12 2004-07-08 Hoshizaki Electric Co Ltd Electrolytic cell having diaphragm
JP2006015307A (en) * 2004-07-05 2006-01-19 Daikin Ind Ltd Electrolyzer
JP2006150153A (en) * 2004-11-25 2006-06-15 Honda Motor Co Ltd Electrolytic cell of electrolytic water generator
JP2008178809A (en) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd Electrolytic cell and electrolytic water making apparatus equipped with it
WO2014119765A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Hydrogen-containing water generating device
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593594U (en) * 1992-05-19 1993-12-21 五洋建設株式会社 Electrode plate for electrolytic sewage treatment equipment
JP2004188336A (en) * 2002-12-12 2004-07-08 Hoshizaki Electric Co Ltd Electrolytic cell having diaphragm
JP2006015307A (en) * 2004-07-05 2006-01-19 Daikin Ind Ltd Electrolyzer
JP2006150153A (en) * 2004-11-25 2006-06-15 Honda Motor Co Ltd Electrolytic cell of electrolytic water generator
JP2008178809A (en) * 2007-01-25 2008-08-07 Matsushita Electric Works Ltd Electrolytic cell and electrolytic water making apparatus equipped with it
WO2014119765A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Hydrogen-containing water generating device
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795072B2 (en) 2018-05-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator and electrolyzed water generation system
WO2020013254A1 (en) * 2018-07-13 2020-01-16 パナソニックIpマネジメント株式会社 Electrolysed water generation device
CN115161679A (en) * 2021-03-19 2022-10-11 本田技研工业株式会社 Electrochemical hydrogen pump

Also Published As

Publication number Publication date
JP6190426B2 (en) 2017-08-30
JP2017018915A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) Electrolyzed water generator
JP5753638B1 (en) Electrolyzed water generator
WO2016143540A1 (en) Electrolytic water generating apparatus
WO2017010372A1 (en) Electrolytic cell and electrolyzed water generation device
WO2017006911A1 (en) Electrolytic cell and electrolyzed-water generation device
JP6190424B2 (en) Electrolysis tank and electrolyzed water generator
JP6154859B2 (en) Electrolysis tank and electrolyzed water generator
JP6132234B2 (en) Electrolyzed water generator
JP6190427B2 (en) Electrolysis tank and electrolyzed water generator
CN108473344B (en) Electrolyzed water production device and device for producing water for dialysate preparation using same
JP2014014765A (en) Ozone water production apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824352

Country of ref document: EP

Kind code of ref document: A1