JP2004188336A - Electrolytic cell having diaphragm - Google Patents

Electrolytic cell having diaphragm Download PDF

Info

Publication number
JP2004188336A
JP2004188336A JP2002360358A JP2002360358A JP2004188336A JP 2004188336 A JP2004188336 A JP 2004188336A JP 2002360358 A JP2002360358 A JP 2002360358A JP 2002360358 A JP2002360358 A JP 2002360358A JP 2004188336 A JP2004188336 A JP 2004188336A
Authority
JP
Japan
Prior art keywords
diaphragm
water
electrolyzed
electrolytic
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360358A
Other languages
Japanese (ja)
Inventor
Akio Fujita
晃央 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2002360358A priority Critical patent/JP2004188336A/en
Publication of JP2004188336A publication Critical patent/JP2004188336A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To uniformize the flow on the entire inner surface of an electrode plate of water to be electrolyzed and to improve electrolytic efficiency in an electrolytic cell having a diaphragm which introduces the water to be electrolyzed from a supply port through an introduction part into an electrolytic chamber and electrolyzes it while making it flow upwards along the entire inner surface of the electrode plate. <P>SOLUTION: For the electrolytic cell having the diaphragm, a pair of the electrolytic chambers R1 and R2 are formed by a pair of spacers 23 disposed between the diaphragm 21 inside a cell main body and the respective electrode plates 22. A part on the inflow port side of the water to be electrolyzed in the electrolytic chambers R1 and R2 is formed into a flowing water introduction part 16c in the shape of being inclined upwards and extended from the outer side direction to the inner side direction of the electrolytic chambers R1 and R2 and the control of the flow of the water to be electrolyzed in the flowing water introduction part 16c is dissolved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、槽本体の内部を陽極側電解室と陰極側電解室とに区画する隔膜を有する有隔膜電解槽に関する。
【0002】
【従来の技術】
電解水生成装置を構成する電解槽の一形式として、槽本体の内部を陽極側電解室と陰極側電解室とに区画する隔膜を有する有隔膜電解槽がある。当該有隔膜電解槽は、槽本体と、前記槽本体の内部に配設されて同槽本体内に一対の区画室を形成する隔膜と、これら各区画室に配設された一対の電極板と、前記槽本体の内部における前記隔膜と前記電極板間に配設されてこれら隔膜と電極板間に同電極の上下方向に延びる電解室を形成する一対のスペーサを備える構成となっている。
【0003】
当該形式の有隔膜電解槽においては、槽本体の内部に供給される被電解水が各スペーサにて確保されている各電解室の下端側から各電解室内に導入され、導入された被電解水は、各電解室内を各電極板に沿ってそれらの下端側から上端側へ流動する。
【0004】
この間、被電解水は、各電解室にて電解を受けて、陽極側電解室では酸性水(電解生成酸性水)が生成され、かつ、陰極側電解室ではアルカリ性水(電解生成アルカリ性水)が生成される。生成された各電解生成水(電解生成酸性水および電解生成アルカリ性水)は、各電解室の上端側を経て、各流出口から槽本体の外部へ流出される。
【0005】
従って、当該形式の有隔膜電解槽においては、その電解効率を向上させるためには、前記各電解室の下端部から各電解室内に導入された被電解水が、各電極板の内面全面に沿って均一に流動するようにすることが重要である。
【0006】
従来のこの種形式の有隔膜電解槽においては、かかる問題に対処すべく、被電解水を電解室内へ導入する前に電解室の幅方向に分配した状態にし、この状態の被電解水を電解室内に導入するようにし、このための被電解水の導入部を備えている。
【0007】
当該導入部は、槽本体の横方向に延びて被電解水の供給口に連通する第1の流通路と、槽本体の横方向に延びて各電解室の下端の下方部に位置して両電解室内の下端に臨む第2の流通路と、槽本体の縦方向に延びて第1の流通路と第2の流通路を互いに連結する複数の第3の流通路を備える構成としている。(例えば特許文献1を参照)。
【0008】
上記した特許文献1に記載の有隔膜電解槽が備える被電解水の導入部は、その構成上、供給口から供給される被電解水を第1の流通路および複数の第3の流通路を経て、第2の流通路に対して、槽本体の横方向(換言すれば第2の流通路の長さ方向)に複数に分配して導入すべく機能する。これにより、槽本体の供給口から供給された被電解水は、流れ方向の慣性力が緩和され、被電解水の慣性力に起因する第2の流通路での偏り、乱れ、淀み等の発生が防止される。このため、被電解水は第2の流通路ではその長さ方向に均一に分配され、第2の流通路から各電解室内の下端側へ導入される被電解水は、電極板の幅方向に均一に分配されることになる。
【0009】
【特許文献1】
特開平7−185548号公報
【0010】
【発明が解決しようとする課題】
ところで、上記した特許文献1に記載の有隔膜電解槽にて採用されている、被電解水を電解室内へ導入するための導入部においては、電解槽の構成部材であるスペーサとの関係から、第2の流通路がスペーサの下端部の下方に臨み、第2の流通路と電解室の内部との連結部位では、スペーサの下端角部が突出する構造となっている。このため、かかる構造の第2の流通部では、スペーサの下端角部が、電極板の幅方向に均一に分配されて電解室内に流入しようとする被電解水の流れを規制して、一旦電極板の幅方向に均一に分配された被電解水の流れに偏り、乱れ、淀み等を発生させるおそれがある。
【0011】
従って、本発明の目的は、当該形式の有隔膜電解槽における被電解水の電解室内への導入部を改良して、スペーサの下端部による被電解水の乱れの発生を防止し、電解室内に導入される被電解水を電極板に沿って均一に流動させることによって、有隔膜電解槽における電解効率を一層向上させることにある。
【0012】
【課題を解決するための手段】
本発明は有隔膜電解槽に関するもので、本発明に係る有隔膜電解槽は、槽本体と、前記槽本体の内部に配設されて同槽本体内に一対の区画室を形成する隔膜と、これら各区画室に配設された一対の電極板と、前記槽本体の内部における前記隔膜と前記電極板間に配設されてこれら隔膜と電極板間に同電極板の上下方向に延びる電解室を形成する一対のスペーサを備える有隔膜電解槽である。
【0013】
しかして、本発明に係る有隔膜電解槽においては、前記電解室における被電解水の流入口側の部位が、同電解室の外側方向から内側方向へ上方傾斜して延びる形状の流水導入部に形成されていることを特徴とするものである。本発明に係る有隔膜電解槽を構成する前記スペーサが方形の格子状に形成されている場合には、同スペーサの格子状の内周縁部の下側部位を前記流水導入部に形成するようにすることができる。
【0014】
【発明の作用・効果】
本発明に係る有隔膜電解槽においては、各電解室における被電解水の流入口部が、電解室の下側から上側へ上方傾斜して延びる形状の流水導入部に形成されている。当該流水導入部のこのような構成には、電解槽を構成するスペーサ等構成部材の角部等の突出部位等、被電解水の流れを規制すべく機能する部位は存在しない。
【0015】
このため、当該流水導入部では、当該流水導入部前にて予め電極板の幅方向に均一に分配されていて、電解室の下端からその内部に流入しようとする被電解水の流れには偏り、乱れ、淀み等が発生することはなく、その分配状態がそのまま保持された状態で電解室内に流入することになる。
【0016】
この結果、本発明に係る有隔膜電解槽においては、槽本体の内部に供給される被電解水は、各電解室内を各電極板の下端側から上端側へ、各電極板の内面全面に沿って均一に流動して電解効率を高める。
【0017】
【発明の実施の形態】
本発明は、電解水生成装置を構成する有隔膜電解槽に関するもので、図1には本発明が適用対象とする形式の有隔膜電解槽を示しており、図2には、当該電解槽を分解した状態の各構成部材を示している。当該電解槽は、一対のセル10a,10bにて形成された槽本体、隔膜21、一対の電極板22、一対のスペーサ23を主要構成部材としている。
【0018】
両セル10a,10bは、左右対称の形状および構造を有する絶縁性の合成樹脂製のもので、それらの内側面に各電極板22および各スペーサ23を配置し、隔膜21を介在させた状態で互いに重合して結合されている。これにより、両セル10a,10b内には、隔膜21、各電極板22、および各スペーサ23にて、隔膜21と各電極板22間に電解室R1,R2が形成されて、電解室R1,R2は各スペーサ23にて確保されている。
【0019】
各電極板22は、その一側面の略中央に設けたナット22aに、電極端子22bを螺着することにより、各セル10a、10bの内側面に密着した状態に取付けられている。各スペーサ23は、絶縁性合成樹脂製の格子状のものであって、図3に示すように、多数本の縦枠部23aと、各縦枠部23aの上下各端部に固定された一対の横枠部23bにて構成されている。各スペーサ23は、その上下の横枠部23bを各セル10a,10bの内側面に設けた凹所にはめ込んだ状態で、各電極板22と隔膜21間に介在している。
【0020】
各スペーサ23は、各電極板22と隔膜21との接触を防止して、各電極板22と隔膜21間に、被電解水を流動させる空間部を確保している。これにより、槽本体内には、隔膜21を挟んで両側に一対の電解室R1,R2が形成されている。電解室R1,R2の空間部は、電極板22の内面全面の沿って上下方向に延びている。
【0021】
各セル10a,10bにおいては、被電解水を槽本体内の各電解室R1,R2内に供給するための供給口11を下方側部に備え、かつ、電解生成水を槽本体内の各電解室R1,R2内から外部へ流出するための流出口12を上方側部に備えている。また、各セル10a,10bの内側面には、図3および図4に示すように、供給口11から供給される被電解水を槽本体内の各電解室R1,R2内における各電極板22の下端側に導く導入部10cを備えている。
【0022】
導入部10cは、各セル10a,10bの内壁面に形成されて横方向に延びる横溝にて構成された第1の流通路13aと、各セル10a,10bの内壁面にて第1の流通路13aより下方に形成されて横方向に延びる横溝にて構成された第2の流通路13bと、各セル10a,10bの内壁面にて第1の流通路13aと第2の流通路13b間に形成されて縦方向に延びる縦溝にて構成された一対の第3の流通路14a,14bからなるもので、各電極板22の裏面側に位置している。
【0023】
導入部10cにおいては、第1の流通路13aは、その中央部にて被電解水の供給口11に連通している。また、第2の流通路13bは各電極板22の下端の下方部に位置し、第2の流通路13bには、その上方側から両電極板22および両スペーサ23の下端部が臨んでいる。これにより、各第2の流通路13bは各電解室R1,R2の内部下端に連通している。
【0024】
導入部10cにおいては、供給口11から流入する被電解水を、供給口11の出口で第1の流通路13aの左右の方向に分配して、左右の分岐路を形成する各第3の流通路14a,14bを通して第2の流通路13bに導く。すなわち、当該導入通路10cは、供給口11から槽本体内に供給される被電解水を各電解室R1,R2内の下端側に導入し、被電解水を電極板22の左右の幅方向に分配された状態で各電解室R1,R2内に導入する。
【0025】
当該電解槽にあっては、各電解室R1,R2内の下端側に導入された被電解水は、図5の1点鎖線で示すように、各電極板22の内面全面に沿ってその下端側からその上端側へ流動する。この間、被電解水は各電解室R1,R2内にて電解を受けて電解生成水(電解生成酸性水および電解生成アルカリ性水)となり、各電解生成水は各流出口12から外部へ流出される。
【0026】
このように、当該電解槽においては、被電解水を槽本体の側部に設けた供給口11から槽本体内の各電解室R1,R2内の下端側に導入する導入部10cを備えていて、供給口11から槽本体内に供給される被電解水を供給口11の出口で第1の流通路13aの左右に分配して、第3の流通路14a,14bおよび第2の流通路13bを通して各電極板22の左右の幅方向の全体に導入するようにしている。
【0027】
これにより、当該電解槽においては、電解運転時、被電解水を電解室R1,R2内にて各電極板22の内面全面に沿って下端側から上端側へ流動させつつ電解することができて、電解効率を相当程度向上させることができる。
【0028】
しかしながら、当該電解槽の導入部10cにあっては、図5に拡大して示したように、電解槽の構造部材であるスペーサ23との関係から、第2の流通路13bがスペーサ23の下端部の下方に臨み、第2の流通路13bと電解室R1,R2の空間部との連結部位に、スペーサ23の下端角部である横枠部23bの角部が突出する構造となっている。
【0029】
このため、かかる構造の導入部10cでは、スペーサ23の下端角部が、電極板22の幅方向に均一に分配されて電解室R1,R2内に流入しようとする被電解水の流れを規制して、一旦電極板22の左右の幅方向に均一に分配された状態の被電解水の流れに偏り、乱れ、淀み等を発生させるおそれがある。
【0030】
本発明においては、被電解水の当該導入部10cを改良して、電解槽の電解効率を一層向上すべく意図しているものである。
【0031】
図6および図7には、本発明に係る有隔膜電解槽における改良された導入部10dを示しており、図7は図6の一部を拡大したものである。また、図8は、当該導入部10dを構成するスペーサ23を縦断した一部を拡大したものである。
【0032】
当該導入部10dを有する有隔膜電解槽では、各セル10a,10bの内面に方形の嵌合凹所15が形成されていて、嵌合凹所15に通路形成用板16を嵌合固着することにより、第1の流通路13a、第2の流通路13b、および、第3の流通路14a,14bが形成されている。
【0033】
当該電解槽の電解室R1,R2を構成するスペーサ23は、縦枠部23aと横枠部23bが一体に形成されている。スペーサ23においては、図8に示すように、その下側の横枠部23bが段付き形状に形成されていて、厚みの薄い上側段部23b1における上端縁部23b2が、その外側から内側へ上方傾斜して延びる形状に形成されている。スペーサ23は、隔膜21を左右から挟持した状態で、その外周を両セル10a,10bに挟持されて槽本体内に配設されている。
【0034】
この状態で配設されたスペーサ23においては、その下側の横枠部23bの上端縁部23b2が導入部10dを構成する第2の流通路13bの内側に、下方から臨んでいる。これにより、上端縁部23b2は、被電解水を第2の流通路13bから電解室R1,R2 内に導入するための流水導入部13cを形成している。
【0035】
当該流水導入部13cは、電解室R1,R2の外側方向から内側方向へ上方傾斜して延びる形状となっていて、流水導入部13c内には、第2の流通路13bから電解室R1,R2 内に流入する被電解水の流れを規制する部位は存在しない。
【0036】
このため、当該流水導入部10dでは、予め電極板22の幅方向に均一に分配されて電解室R1,R2の下端からその内部に流入しようとする被電解水の流には、偏り、乱れ、淀み等が発生することはなく、被電解水は、その分配状態がそのまま保持された状態で電解室内に流入することになる。この結果、被電解水は、電解室R1,R2内を電極板22の下端部から電極板22の内面全面に沿って均一に上端側へ流動して電解効率を高める。
【図面の簡単な説明】
【図1】本発明が適用対象とする形式の電解槽の縦断側面図である。
【図2】同電解槽を分解した状態の縦断側面図である。
【図3】同電解槽を構成するセルを互いに分離した状態で内側からみた正面図である。
【図4】同セルの内面の正面図である。
【図5】同電解槽を構成する導入部を拡大して示す縦断面図である。
【図6】本発明の一例に係る電解槽を構成する導入部を示す縦断面図である。
【図7】同導入部を拡大して示す縦断面図である。
【図8】同電解槽を構成するスペーサの下端部を拡大して示す縦断面図である。
【符号の説明】
10a,10b…セル、10c,10d…導入部、11…供給口、12…流出口、13a…第1の流通路、13b…第2の流通路、13c…流水導入部、14a,14b…第3の流通路、15…嵌合凹所、16…流通路形成板、21…隔膜、22…電極板、22a…ナット、22b…電極端子、23…スペーサ、23a…縦枠部、23b…横枠部、23b1…上側段部、23b2…上端縁部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a diaphragm electrolytic cell having a diaphragm that partitions the inside of a cell body into an anode-side electrolytic chamber and a cathode-side electrolytic chamber.
[0002]
[Prior art]
As one type of the electrolytic cell constituting the electrolyzed water generating apparatus, there is a diaphragm electrolytic cell having a diaphragm that partitions the inside of the cell body into an anode-side electrolytic chamber and a cathode-side electrolytic chamber. The diaphragm electrolyzer, a tank body, a diaphragm arranged inside the tank body to form a pair of compartments in the tank body, and a pair of electrode plates arranged in each of these compartments, A configuration is provided in which a pair of spacers are provided between the diaphragm and the electrode plate inside the tank main body to form an electrolytic chamber extending between the diaphragm and the electrode plate in the vertical direction of the electrode.
[0003]
In a diaphragm electrolyzer of this type, the electrolyzed water supplied to the inside of the cell body is introduced into each electrolysis chamber from the lower end side of each electrolysis chamber secured by each spacer, and the introduced electrolyzed water is introduced. Flows from the lower end to the upper end of each electrolytic chamber along each electrode plate.
[0004]
During this time, the water to be electrolyzed is subjected to electrolysis in each electrolysis chamber, so that acidic water (electrolytically generated acidic water) is generated in the anode-side electrolysis chamber, and alkaline water (electrolysis-generated alkaline water) is generated in the cathode-side electrolysis chamber. Generated. The generated electrolyzed water (the electrolyzed acidic water and the electrolyzed alkaline water) is discharged from the outlets to the outside of the tank body through the upper end side of each electrolysis chamber.
[0005]
Therefore, in a diaphragm electrolyzer of this type, in order to improve the electrolysis efficiency, the water to be electrolyzed introduced into each electrolysis chamber from the lower end of each electrolysis chamber extends along the entire inner surface of each electrode plate. It is important that they flow uniformly.
[0006]
In order to cope with such a problem, a conventional diaphragm type electrolytic cell of this type is made such that the electrolyzed water is distributed in a width direction of the electrolysis chamber before the electrolyzed water is introduced into the electrolysis chamber, and the electrolyzed water in this state is electrolyzed. It is introduced into a room, and is provided with a section for introducing electrolyzed water for this purpose.
[0007]
The introduction section extends in the lateral direction of the tank body and communicates with the supply port of the water to be electrolyzed, and the introduction section extends in the lateral direction of the tank body and is located below the lower end of each electrolysis chamber. A second flow path facing the lower end in the electrolysis chamber and a plurality of third flow paths extending in the longitudinal direction of the tank body and connecting the first flow path and the second flow path to each other are provided. (See, for example, Patent Document 1).
[0008]
The introduction part of the electrolyzed water provided in the diaphragm electrolyzer described in Patent Literature 1 described above is configured such that the electrolyzed water supplied from the supply port is supplied to the first flow path and the plurality of third flow paths. Then, it functions to distribute and introduce a plurality of fluids into the second flow passage in the lateral direction of the tank body (in other words, the length direction of the second flow passage). Thereby, the inertia force in the flow direction of the electrolyzed water supplied from the supply port of the tank main body is reduced, and the occurrence of bias, turbulence, stagnation, and the like in the second flow passage due to the inertia force of the electrolyzed water. Is prevented. For this reason, the water to be electrolyzed is uniformly distributed in the lengthwise direction in the second flow passage, and the water to be electrolyzed introduced from the second flow passage to the lower end side of each electrolysis chamber flows in the width direction of the electrode plate. It will be evenly distributed.
[0009]
[Patent Document 1]
JP-A-7-185548
[Problems to be solved by the invention]
By the way, in the introduction portion for introducing the water to be electrolyzed into the electrolysis chamber, which is employed in the diaphragm electrolyzer described in Patent Literature 1, the relationship with the spacer, which is a constituent member of the electrolyzer, The second flow path faces below the lower end of the spacer, and at the connection portion between the second flow path and the inside of the electrolytic chamber, the lower end corner of the spacer protrudes. For this reason, in the second circulation part having such a structure, the lower end corner of the spacer regulates the flow of the electrolyzed water which is uniformly distributed in the width direction of the electrode plate and flows into the electrolysis chamber. The flow of the water to be electrolyzed evenly distributed in the width direction of the plate may be uneven, turbulent, or stagnation.
[0011]
Therefore, an object of the present invention is to improve the introduction part of the electrolyzed water into the electrolysis chamber in the diaphragm type electrolysis cell of this type, to prevent the electrolyzed water from being disturbed by the lower end of the spacer, It is another object of the present invention to further improve the electrolysis efficiency in a diaphragm electrolyzer by causing the electrolyzed water to be introduced to flow uniformly along the electrode plate.
[0012]
[Means for Solving the Problems]
The present invention relates to a diaphragm electrolyzer, a diaphragm electrolyzer according to the present invention, a tank body, a diaphragm disposed inside the tank body to form a pair of compartments in the tank body, A pair of electrode plates disposed in each of the compartments, and an electrolytic chamber disposed between the diaphragm and the electrode plate inside the tank main body and extending between the diaphragm and the electrode plate in a vertical direction of the electrode plate. It is a diaphragm electrolytic cell provided with a pair of spacers to be formed.
[0013]
Thus, in the diaphragm electrolyzer according to the present invention, the portion on the inlet side of the water to be electrolyzed in the electrolysis chamber is provided with a flowing water introduction portion having a shape extending obliquely upward from the outside to the inside of the electrolysis chamber. It is characterized by being formed. When the spacer constituting the diaphragm electrolyzer according to the present invention is formed in a rectangular grid, a lower portion of the grid-shaped inner peripheral edge of the spacer is formed in the flowing water introducing portion. can do.
[0014]
[Action and Effect of the Invention]
In the diaphragm electrolyzer according to the present invention, the inflow port of the electrolyzed water in each electrolysis chamber is formed in a flowing water introduction section having a shape extending upward from the lower side of the electrolysis chamber so as to be inclined upward. In such a configuration of the flowing water introducing portion, there is no portion that functions to regulate the flow of the water to be electrolyzed, such as a projecting portion such as a corner of a constituent member such as a spacer that forms the electrolytic cell.
[0015]
For this reason, in the flowing water introduction part, it is distributed beforehand in the width direction of the electrode plate evenly in front of the flowing water introduction part, and the flow of the electrolyzed water flowing into the inside from the lower end of the electrolytic chamber is biased. , Turbulence, stagnation, etc. do not occur, and flow into the electrolysis chamber in a state where the distribution state is maintained as it is.
[0016]
As a result, in the diaphragm electrolyzer according to the present invention, the water to be electrolyzed supplied to the inside of the cell main body flows along the entire inner surface of each electrode plate from the lower end side to the upper end side of each electrode plate in each electrolysis chamber. To increase the electrolysis efficiency by flowing evenly.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a diaphragm electrolyzer constituting an electrolyzed water generating apparatus, and FIG. 1 shows a diaphragm electrolyzer of a type to which the present invention is applied, and FIG. The components shown in a disassembled state are shown. The electrolytic cell has a main body composed of a cell body formed by a pair of cells 10a and 10b, a diaphragm 21, a pair of electrode plates 22, and a pair of spacers 23.
[0018]
Both cells 10a and 10b are made of an insulating synthetic resin having a symmetrical shape and structure, and each electrode plate 22 and each spacer 23 are arranged on the inner surface thereof, with the diaphragm 21 interposed therebetween. They are polymerized and bonded to each other. As a result, in both cells 10a and 10b, the electrolytic chambers R1, R2 are formed between the diaphragm 21 and the respective electrode plates 22 by the diaphragm 21, the respective electrode plates 22, and the respective spacers 23. R2 is secured by each spacer 23.
[0019]
Each electrode plate 22 is attached in a state of being tightly attached to the inner surface of each cell 10a, 10b by screwing an electrode terminal 22b to a nut 22a provided substantially at the center of one side surface. Each spacer 23 is a lattice made of insulating synthetic resin, and as shown in FIG. 3, a plurality of vertical frame portions 23a, and a pair of upper and lower ends fixed to each vertical frame portion 23a. Of the horizontal frame portion 23b. Each of the spacers 23 is interposed between each of the electrode plates 22 and the diaphragm 21 in a state where the upper and lower horizontal frame portions 23b are fitted into recesses provided on the inner surfaces of the cells 10a and 10b.
[0020]
Each spacer 23 prevents contact between each electrode plate 22 and the diaphragm 21, and secures a space between each electrode plate 22 and the diaphragm 21 for flowing the water to be electrolyzed. Thus, a pair of electrolytic chambers R1 and R2 are formed on both sides of the diaphragm 21 in the tank body. The space of the electrolytic chambers R1 and R2 extends vertically along the entire inner surface of the electrode plate 22.
[0021]
In each of the cells 10a and 10b, a supply port 11 for supplying water to be electrolyzed into each of the electrolysis chambers R1 and R2 in the tank main body is provided at a lower side portion, and electrolyzed water is supplied to each of the electrolysis chambers in the tank main body. An outlet 12 for flowing out of the chambers R1, R2 to the outside is provided on the upper side. As shown in FIG. 3 and FIG. 4, on the inner surface of each of the cells 10a and 10b, the electrolyzed water supplied from the supply port 11 is supplied to each of the electrode plates 22 in each of the electrolytic chambers R1 and R2 in the tank body. Is provided with an introduction portion 10c that leads to the lower end side.
[0022]
The introduction portion 10c includes a first flow passage 13a formed on the inner wall surface of each of the cells 10a and 10b and configured by a lateral groove extending in the lateral direction, and a first flow passage on the inner wall surface of each of the cells 10a and 10b. A second flow passage 13b formed below the first flow passage 13a and a second flow passage 13b on the inner wall surface of each of the cells 10a and 10b. The pair of third flow passages 14 a and 14 b are formed of vertical grooves extending in the vertical direction, and are located on the back side of each electrode plate 22.
[0023]
In the introduction part 10c, the first flow passage 13a communicates with the supply port 11 of the electrolyzed water at the center thereof. The second flow passage 13b is located below the lower end of each electrode plate 22, and the lower ends of both electrode plates 22 and both spacers 23 face the second flow passage 13b from above. . Thereby, each second flow passage 13b communicates with the lower end inside each of the electrolytic chambers R1, R2.
[0024]
In the introduction part 10c, the third flow, which distributes the electrolyzed water flowing from the supply port 11 in the left and right directions of the first flow passage 13a at the outlet of the supply port 11, forms left and right branch paths. It is guided to the second flow passage 13b through the passages 14a and 14b. That is, the introduction passage 10c introduces the electrolyzed water supplied from the supply port 11 into the tank body to the lower end side in each of the electrolysis chambers R1, R2, and transfers the electrolyzed water to the left and right width directions of the electrode plate 22. It is introduced into each of the electrolytic chambers R1, R2 in a distributed state.
[0025]
In the electrolytic cell, the water to be electrolyzed introduced into the lower ends of the electrolysis chambers R1 and R2 flows along the entire inner surface of each electrode plate 22 at the lower end thereof, as shown by the dashed line in FIG. From the side to its upper end. During this time, the water to be electrolyzed is electrolyzed in each of the electrolysis chambers R1 and R2 to become electrolyzed water (electrolyzed acidic water and electrolyzed alkaline water), and each electrolyzed water flows out of each outlet 12 to the outside. .
[0026]
As described above, the electrolytic cell is provided with the introduction section 10c for introducing the water to be electrolyzed from the supply port 11 provided on the side of the tank main body to the lower end side of each of the electrolytic chambers R1, R2 in the tank main body. The electrolyzed water supplied from the supply port 11 into the tank body is distributed to the left and right of the first flow path 13a at the outlet of the supply port 11, and the third flow paths 14a and 14b and the second flow path 13b Through each of the electrode plates 22 in the left and right width directions.
[0027]
Thus, in the electrolytic cell, during the electrolysis operation, the electrolyzed water can be electrolyzed while flowing from the lower end to the upper end along the entire inner surface of each electrode plate 22 in the electrolytic chambers R1 and R2. In addition, the electrolysis efficiency can be considerably improved.
[0028]
However, in the introduction portion 10c of the electrolytic cell, as shown in an enlarged manner in FIG. 5, the second flow passage 13b is formed at the lower end of the spacer 23 due to the relationship with the spacer 23, which is a structural member of the electrolytic cell. The lower frame portion has a structure in which a corner of a horizontal frame portion 23b, which is a lower corner portion of the spacer 23, protrudes at a connection portion between the second flow passage 13b and the space portions of the electrolytic chambers R1 and R2. .
[0029]
For this reason, in the introduction part 10c of such a structure, the lower end corner of the spacer 23 regulates the flow of the electrolyzed water which is uniformly distributed in the width direction of the electrode plate 22 and flows into the electrolysis chambers R1, R2. Therefore, there is a possibility that the flow of the electrolyzed water once distributed uniformly in the left and right width directions of the electrode plate 22 may cause unevenness, turbulence, stagnation, and the like.
[0030]
The present invention intends to improve the introduction portion 10c of the water to be electrolyzed to further improve the electrolysis efficiency of the electrolytic cell.
[0031]
6 and 7 show an improved inlet 10d in a diaphragm electrolyzer according to the present invention, and FIG. 7 is an enlarged view of a part of FIG. FIG. 8 is an enlarged view of a part of the spacer 23 constituting the introduction portion 10d.
[0032]
In the diaphragm electrolytic cell having the introduction portion 10d, a rectangular fitting recess 15 is formed on the inner surface of each of the cells 10a and 10b, and the passage forming plate 16 is fitted and fixed to the fitting recess 15. Thus, a first flow path 13a, a second flow path 13b, and third flow paths 14a and 14b are formed.
[0033]
The spacer 23 forming the electrolysis chambers R1 and R2 of the electrolytic cell has a vertical frame portion 23a and a horizontal frame portion 23b formed integrally. In the spacer 23, as shown in FIG. 8, the lower horizontal frame portion 23b is formed in a stepped shape, and the upper edge portion 23b2 of the thin upper step portion 23b1 is raised from outside to inside. It is formed in a shape extending inclining. The spacer 23 is disposed in the tank body with the outer periphery thereof being sandwiched between the cells 10a and 10b while the diaphragm 21 is sandwiched from the left and right.
[0034]
In the spacer 23 disposed in this state, the upper edge 23b2 of the lower horizontal frame portion 23b faces the inside of the second flow passage 13b constituting the introduction portion 10d from below. Thus, the upper edge portion 23b2 forms a flowing water introducing portion 13c for introducing the electrolyzed water from the second flow passage 13b into the electrolytic chambers R1, R2.
[0035]
The flowing water introduction part 13c has a shape extending upward and inclining from the outside to the inside of the electrolysis chambers R1, R2. Inside the flowing water introduction part 13c, the second flow passage 13b extends from the electrolysis chambers R1, R2. There is no portion that regulates the flow of the electrolyzed water flowing into the inside.
[0036]
For this reason, in the flowing water introduction part 10d, the flow of the electrolyzed water which is uniformly distributed in advance in the width direction of the electrode plate 22 and tries to flow from the lower ends of the electrolysis chambers R1 and R2 into the interior thereof is biased, turbulent, There is no stagnation or the like, and the electrolyzed water flows into the electrolysis chamber in a state where the distribution state is maintained as it is. As a result, the electrolyzed water uniformly flows from the lower end of the electrode plate 22 to the upper end along the entire inner surface of the electrode plate 22 in the electrolysis chambers R1 and R2, thereby increasing the electrolysis efficiency.
[Brief description of the drawings]
FIG. 1 is a vertical sectional side view of an electrolytic cell of a type to which the present invention is applied.
FIG. 2 is a vertical sectional side view of the electrolytic cell in a disassembled state.
FIG. 3 is a front view of the cells constituting the electrolytic cell as viewed from the inside in a state where the cells are separated from each other.
FIG. 4 is a front view of the inner surface of the cell.
FIG. 5 is an enlarged longitudinal sectional view showing an introduction part constituting the electrolytic cell.
FIG. 6 is a vertical cross-sectional view showing an introduction part constituting an electrolytic cell according to an example of the present invention.
FIG. 7 is an enlarged longitudinal sectional view of the introduction section.
FIG. 8 is an enlarged longitudinal sectional view showing a lower end portion of a spacer constituting the electrolytic cell.
[Explanation of symbols]
10a, 10b ... cells, 10c, 10d ... introduction parts, 11 ... supply ports, 12 ... outlets, 13a ... first flow paths, 13b ... second flow paths, 13c ... running water introduction parts, 14a, 14b ... No. Reference numeral 3 denotes a passage, 15: fitting recess, 16: passage forming plate, 21: diaphragm, 22: electrode plate, 22a: nut, 22b: electrode terminal, 23: spacer, 23a: vertical frame portion, 23b: horizontal. Frame part, 23b1 ... upper step part, 23b2 ... upper end edge part.

Claims (2)

槽本体と、前記槽本体の内部に配設されて同槽本体内に一対の区画室を形成する隔膜と、これら各区画室に配設された一対の電極板と、前記槽本体の内部における前記隔膜と前記電極板間に配設されてこれら隔膜と電極板間に同電極板の上下方向に延びる電解室を形成する一対のスペーサを備える有隔膜電解槽であり、前記電解室における被電解水の流入口側の部位が、同電解室の外側方向から内側方向へ上方傾斜して延びる形状の流水導入部に形成されていることを特徴とする有隔膜電解槽。A tank body, a diaphragm disposed inside the tank body to form a pair of compartments in the tank body, a pair of electrode plates disposed in each of the compartments, and the inside of the tank body. A diaphragm electrolyzer comprising a pair of spacers disposed between the diaphragm and the electrode plate to form an electrolysis chamber extending in the vertical direction of the electrode plate between the diaphragm and the electrode plate; Characterized in that a portion on the inlet side of the above is formed in a flowing water introduction portion which is formed to extend upward and incline from the outside to the inside of the electrolysis chamber. 請求項1に記載の有隔膜電解槽において、前記スペーサは方形の格子状に形成されていて、同スペーサの格子状の内周縁部の下側部位が前記電解室の流水導入部に形成されていることを特徴とする有隔膜電解槽。2. The diaphragm electrolyzer according to claim 1, wherein the spacer is formed in a rectangular grid shape, and a lower part of the grid-shaped inner peripheral edge of the spacer is formed in a flowing water introduction part of the electrolysis chamber. 3. A diaphragm electrolytic cell characterized by the following:
JP2002360358A 2002-12-12 2002-12-12 Electrolytic cell having diaphragm Pending JP2004188336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360358A JP2004188336A (en) 2002-12-12 2002-12-12 Electrolytic cell having diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360358A JP2004188336A (en) 2002-12-12 2002-12-12 Electrolytic cell having diaphragm

Publications (1)

Publication Number Publication Date
JP2004188336A true JP2004188336A (en) 2004-07-08

Family

ID=32759454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360358A Pending JP2004188336A (en) 2002-12-12 2002-12-12 Electrolytic cell having diaphragm

Country Status (1)

Country Link
JP (1) JP2004188336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168872A (en) * 2010-02-22 2011-09-01 Hoshizaki Electric Co Ltd Electrolytic cell structure of diaphragm electrolytic cell
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
WO2017010372A1 (en) * 2015-07-14 2017-01-19 株式会社日本トリム Electrolytic cell and electrolyzed water generation device
WO2017010373A1 (en) * 2015-07-14 2017-01-19 株式会社日本トリム Electrolytic cell and electrolyzed water generation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168872A (en) * 2010-02-22 2011-09-01 Hoshizaki Electric Co Ltd Electrolytic cell structure of diaphragm electrolytic cell
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
WO2017010372A1 (en) * 2015-07-14 2017-01-19 株式会社日本トリム Electrolytic cell and electrolyzed water generation device
WO2017010373A1 (en) * 2015-07-14 2017-01-19 株式会社日本トリム Electrolytic cell and electrolyzed water generation device
JP2017018916A (en) * 2015-07-14 2017-01-26 株式会社日本トリム Electrolytic cell and electrolytic water generator
JP2017018915A (en) * 2015-07-14 2017-01-26 株式会社日本トリム Electric cell and electrolysis water generation device

Similar Documents

Publication Publication Date Title
KR101906544B1 (en) Power generator using the salinity gradient with red stack cell
CN101142342A (en) Flow field plate arrangement
JPH06339683A (en) Electrolyzed water generation device
TW202039937A (en) Expanded ion-exchange membrane electrolysis cell
TW201632470A (en) Electrolyzed water-generating device
JP2005007348A (en) Electric deionizer
JP2017056376A (en) Electrolysis tank and electrolyzed water generating apparatus comprising the same
JP2004188336A (en) Electrolytic cell having diaphragm
JP6333628B2 (en) Hydrogen water generator
JP2024027150A (en) generator
JP2004225148A (en) Electrolytic vessel
CN106887624B (en) Fuel cell
JP3337835B2 (en) Electrolytic cell
KR101937930B1 (en) Hydrogenated electrolytic cell
JP2009142724A (en) Electrical deionizer and deionized water producing method
KR102224772B1 (en) Electrolysis Device for Fluid
WO2016114364A1 (en) Electrolyzed water generating device
JP6139589B2 (en) Electrolyzer
KR102284084B1 (en) Electrolysis apparatus of series connection structure for for ion water machine
CN110217866B (en) Electrodialysis device and method for treating stainless steel pickling wastewater by using electrodialysis device
JP4168894B2 (en) Electric deionizer
JPH07284773A (en) Electrolytic apparatus
JP3846201B2 (en) Electrolytic cell
JP3979207B2 (en) Electric deionizer
KR20070030866A (en) Electrolytic water create system