JP2009142724A - Electrical deionizer and deionized water producing method - Google Patents

Electrical deionizer and deionized water producing method Download PDF

Info

Publication number
JP2009142724A
JP2009142724A JP2007320644A JP2007320644A JP2009142724A JP 2009142724 A JP2009142724 A JP 2009142724A JP 2007320644 A JP2007320644 A JP 2007320644A JP 2007320644 A JP2007320644 A JP 2007320644A JP 2009142724 A JP2009142724 A JP 2009142724A
Authority
JP
Japan
Prior art keywords
chamber
water
desalting
exchange membrane
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007320644A
Other languages
Japanese (ja)
Other versions
JP4819026B2 (en
Inventor
Masanari Hidaka
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2007320644A priority Critical patent/JP4819026B2/en
Publication of JP2009142724A publication Critical patent/JP2009142724A/en
Application granted granted Critical
Publication of JP4819026B2 publication Critical patent/JP4819026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical deionizer (EDI) capable of obtaining high quality water at high removal rate of impurities and without being affected by variation in quality of raw water, and a deionized water producing method. <P>SOLUTION: In a desalting section of the EDI, a first small desalting section and a second small desalting section which are divided in the direction of the thickness of the desalting section by an intermediate ion exchange membrane 26 arranged between a cation exchange membrane 30 and an anion exchange membrane 22 are formed, and desalting divisions divided in parallel to the direction of desalting section thickness are formed in each of the first small desalting section and the second small desalting section. In the deionized water producing method, the EDI is used and water to be treated is caused to pass through a plurality of the desalting divisions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体製造分野、医薬品製造分野、原子力や火力等の発電分野、食品工業等の各種の産業、または研究施設で使用される、電気式脱イオン水製造装置および脱イオン水製造方法に関する。   The present invention relates to an electrical deionized water production apparatus and a deionized water production method used in various fields such as semiconductor manufacturing field, pharmaceutical manufacturing field, power generation field such as nuclear power and thermal power, food industry, and research facilities. .

従来、脱イオン水を製造する方法として、イオン交換樹脂に被処理水を通して脱イオンを行う方法が知られている。しかし、この方法ではイオン交換樹脂がイオンで飽和されたときに、薬剤によって再生処理を行う必要がある。近年、このような処理操作上の不利な点を解消するため、薬剤によるイオン交換体再生の必要がない、電気式脱イオン水製造装置(以下、EDIという)が実用化されている。このEDIは、電気泳動と電気透析を組み合わせた純水製造装置である。アニオン交換膜とカチオン交換膜の間にイオン交換体を充填し、イオン交換膜の外側に陽極と陰極の電極を配置し、該電極に直流電圧を印加した状態でイオン交換体層に被処理水を通水することにより、被処理水中のイオンをイオン交換体で吸着し、電気泳動にて膜面までイオンを泳動させ、イオン交換膜にて電気透析して濃縮水中へと除去するものである。
従来の典型的なEDIは、アニオン交換膜とカチオン交換膜の間にイオン交換体を配置し形成した脱塩室を、イオンが排除される部屋となる濃縮室を介して複数積層し、その両端にプラスとマイナスの電極を配した構造である。
2. Description of the Related Art Conventionally, as a method for producing deionized water, a method for performing deionization by passing water to be treated through an ion exchange resin is known. However, in this method, when the ion exchange resin is saturated with ions, it is necessary to perform a regeneration treatment with a chemical. In recent years, in order to eliminate such disadvantages in processing operation, an electric deionized water production apparatus (hereinafter referred to as EDI) which does not require regeneration of an ion exchanger by a drug has been put into practical use. This EDI is an apparatus for producing pure water that combines electrophoresis and electrodialysis. An ion exchanger is filled between the anion exchange membrane and the cation exchange membrane, an anode electrode and a cathode electrode are arranged outside the ion exchange membrane, and a water to be treated is applied to the ion exchanger layer with a DC voltage applied to the electrodes. By passing water, ions in the water to be treated are adsorbed by the ion exchanger, migrated to the membrane surface by electrophoresis, and electrodialyzed by the ion exchange membrane to remove it into the concentrated water. .
Conventional typical EDI has a plurality of demineralization chambers formed by disposing an ion exchanger between an anion exchange membrane and a cation exchange membrane through a concentration chamber serving as a chamber from which ions are excluded. It has a structure with plus and minus electrodes.

これまでにも、EDIで得られる脱イオン水の水質向上や、省電力での不純物イオンの除去を目的として、種々の試みがなされてきた。脱塩室では、使用されるイオン交換体の充填方法や充填量が、要求される脱イオン水の水質によって決定されるため、脱塩室の電気抵抗を低減させるには限界がある。そこで、濃縮室の電気抵抗を低減させるための対策が採られることが多い。例えば、特許文献1では、濃縮室に電解質を添加供給して、濃縮室における電気抵抗を低減する方法が開示されている。
一方、特許文献2には、一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成した、脱塩室2セル構造のEDIが開示されている。該EDIは前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室および濃縮室を、陽極を備えた陽極室と、陰極を備えた陰極室との間に配置してなるものである。脱イオン水の製造は、電圧を印加しながら一方の小脱塩室(第一小脱塩室)に被処理水を流入させ、次いで、該小脱塩室の流出水を他方の小脱塩室(第二小脱塩室)に流入させると共に、濃縮室に濃縮水を流入させ被処理水中の不純物イオンを除去して、脱イオン水を得る。このような構造のEDIによれば、2つの小脱塩室のうち、少なくとも1つの小脱塩室に充填されるイオン交換体を例えばアニオン交換体のみ、またはカチオン交換体のみ等の単床形態、もしくはアニオン交換体とカチオン交換体の混床形態とすることができ、イオン交換体の種類毎に電気抵抗を低減し、かつ高い脱イオン性能を得るための最適な厚さに設定することができる。
特開平9−24374号公報 特許第3385553号公報
Until now, various attempts have been made for the purpose of improving the quality of deionized water obtained by EDI and removing impurity ions with power saving. In the desalting chamber, since the filling method and the filling amount of the ion exchanger to be used are determined by the required water quality of the deionized water, there is a limit in reducing the electrical resistance of the desalting chamber. Therefore, measures are often taken to reduce the electrical resistance of the concentrating chamber. For example, Patent Document 1 discloses a method of reducing the electrical resistance in the concentration chamber by adding and supplying an electrolyte to the concentration chamber.
On the other hand, Patent Document 2 discloses two small desalination chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. Discloses an EDI having a two-cell structure of a desalting chamber in which a desalting chamber is formed by filling an ion exchanger. The EDI is provided with concentration chambers on both sides of the desalting chamber via the cation exchange membrane and the anion exchange membrane. The desalting chamber and the concentration chamber are divided into an anode chamber having an anode, a cathode chamber having a cathode, It is arranged between. In the production of deionized water, water to be treated is introduced into one small desalination chamber (first small desalination chamber) while applying a voltage, and then the effluent from the small desalination chamber is used as the other small desalination chamber. In addition to flowing into the chamber (second small desalination chamber), concentrated water is allowed to flow into the concentration chamber to remove impurity ions in the water to be treated to obtain deionized water. According to the EDI having such a structure, the ion exchanger filled in at least one of the two small desalting chambers is, for example, an anion exchanger alone or a single bed form such as only a cation exchanger. Or, it can be a mixed bed form of anion exchanger and cation exchanger, and it can be set to an optimum thickness for reducing the electric resistance and obtaining high deionization performance for each type of ion exchanger. it can.
Japanese Patent Laid-Open No. 9-24374 Japanese Patent No. 3385553

しかしながら、これまでの技術では、脱塩室内または濃縮室内における電気抵抗を低減できるものの、不純物の除去やスケール発生防止は、未だ充分ではなかった。また、被処理水の原水水質の変動によって、得られる脱イオン水の水質が安定しないという問題があった。
本発明は、高い除去率で不純物を除去し、原水水質の変動に影響されずに高い水質を得る(原水耐性)ことができるEDI、および脱イオン水製造方法を目的とする。
However, although the conventional techniques can reduce the electrical resistance in the desalination chamber or the concentration chamber, removal of impurities and prevention of scale generation have not yet been sufficient. In addition, there is a problem that the quality of the deionized water obtained is not stable due to fluctuations in the raw water quality of the treated water.
An object of the present invention is to provide an EDI capable of removing impurities at a high removal rate and obtaining a high water quality (raw water resistance) without being affected by fluctuations in the raw water quality, and a method for producing deionized water.

本発明者は、従来のEDIにおけるイオン除去能力の低下、ならびにスケールの生成について鋭意検討した結果、次のような知見を得た。
従来の脱塩室2セル構造では、イオン交換体や中間イオン交換膜の配置によっては、第一小脱塩室と第二小脱塩室との間を、中間イオン交換膜を介して、シリカや炭酸、ナトリウム等のイオンが循環してしまい、濃縮室まで排出されにくいという問題があった。例えば、シリカが循環した場合には、被処理水から持ち込まれるシリカの量と、隣りの脱塩室から持ち込まれるシリカの量が合算され、実際には被処理水から持ち込まれるシリカよりも、多くのシリカ量を処理することとなる。その結果、シリカを除去しきれずに、脱イオン水に漏洩したり、電気抵抗を極端に上昇させるといった問題に繋がっている。
As a result of intensive studies on the reduction of ion removal ability and the generation of scale in the conventional EDI, the present inventor has obtained the following knowledge.
In the conventional two-cell structure of the desalination chamber, depending on the arrangement of the ion exchanger and the intermediate ion exchange membrane, the silica is interposed between the first small desalination chamber and the second small desalination chamber via the intermediate ion exchange membrane. In addition, ions such as carbonic acid and sodium circulate, and there is a problem that it is difficult to discharge to the concentration chamber. For example, when silica circulates, the amount of silica brought in from the water to be treated and the amount of silica brought in from the adjacent desalting chamber are added together, and actually more than silica brought in from the water to be treated. The amount of silica is to be treated. As a result, silica cannot be completely removed, leading to problems such as leakage into deionized water or extremely increasing electrical resistance.

また、第一小脱塩室にカチオン交換体、第二小脱塩室にアニオン交換体を充填したような構造の場合、第一小脱塩室においてカチオン成分が除去されるに従い、被処理水のpHが酸性側に傾き、H濃度が高くなる。このため、NaやCaといった、除去対象のカチオン成分への電流効率が低下し、カチオン成分を一定濃度以下には低減できなくなる。そして、第二小脱塩室にはカチオン交換体が充填されていないため、そのまま脱イオン水にまで漏洩してしまうという問題があった。さらに、第二小脱塩室を構成するアニオン交換膜のカチオン成分除去能が100%ではないため、一旦濃縮室に移動したカチオン成分は、極微量ではあるものの、アニオン交換膜を介して第二小脱塩室に逆移動してしまう。そして、第二小脱塩室にカチオン交換体が充填されていないために、結果として脱イオン水に、カチオン成分が漏洩するという現象がある。 In the case of a structure in which the first small desalting chamber is filled with a cation exchanger and the second small desalting chamber is filled with an anion exchanger, as the cation component is removed in the first small desalting chamber, The pH of the solution tends to be acidic, and the H + concentration increases. For this reason, the current efficiency to the cation component to be removed, such as Na + and Ca + , decreases, and the cation component cannot be reduced below a certain concentration. And since the 2nd small desalination chamber was not filled with the cation exchanger, there existed a problem that it would leak to deionized water as it is. Furthermore, since the cation component removal ability of the anion exchange membrane constituting the second small desalting chamber is not 100%, the cation component once moved to the concentration chamber is very small, but the second component passes through the anion exchange membrane. It moves back to the small desalination chamber. And since the 2nd small desalination chamber is not filled with the cation exchanger, there exists a phenomenon that a cation component leaks in deionized water as a result.

また、第一小脱塩室にアニオン交換体、第二小脱塩室にカチオン交換体を充填したような構造の場合、第一小脱塩室においてアニオン成分が除去されるに従い、被処理水のpHがアルカリ側に傾き、OH濃度が高くなる。このため、Clや炭酸、シリカといった、除去対象のアニオン成分への電流効率が低下し、アニオン成分を一定濃度以下には低減できなくなる。そして、第二小脱塩室にはアニオン交換体が充填されていないため、そのまま脱イオン水にまで漏洩してしまうという問題があった。さらに、第二小脱塩室を構成するカチオン交換膜のアニオン成分除去能が100%ではないため、一旦濃縮室に移動したアニオン成分は、極微量ではあるものの、カチオン交換膜を介して、第二小脱塩室に逆移動してしまう。そして、第二小脱塩室にアニオン交換体が充填されていないために、結果として脱イオン水に、アニオン成分が漏洩するという現象がある。 In the case of a structure in which the first small desalting chamber is filled with an anion exchanger and the second small desalting chamber is filled with a cation exchanger, as the anion component is removed in the first small desalting chamber, The pH of the solution tilts toward the alkali side, and the OH concentration increases. Therefore, Cl - or carbonate, such as silica, reduces the current efficiency of the anionic component to be removed, it can not be reduced anionic component constant concentration below. And since the 2nd small desalination chamber was not filled with the anion exchanger, there existed a problem that it would leak to deionized water as it is. Further, since the anion component removal ability of the cation exchange membrane constituting the second small desalting chamber is not 100%, the anion component once moved to the concentration chamber is very small, but the second component passes through the cation exchange membrane. It moves backward to the two small desalting chambers. And since the anion exchanger is not filled in the second small desalting chamber, there is a phenomenon that an anion component leaks into the deionized water as a result.

また、脱塩室を中間イオン交換膜で分割していない1セル構造のEDIにおいて、脱塩室に複数種のイオン交換体を積層して充填した場合、次のような問題があった。積層されたカチオン交換体の単床形態、アニオン交換体の単床形態、カチオン交換体とアニオン交換体の混床形態では、それぞれ電気抵抗が大きく異なる。このため、より電気抵抗の低い樹脂層にしか電気が流れず、電気抵抗の高い樹脂層でのイオン除去率が極端に低下するという現象がある。
加えて、アニオン交換膜とカチオン交換体との接点で発生したHは、カチオン交換体の再生に寄与するが、OHは濃縮室に移動してしまい、何の機能も果たさないという問題がある。この現象について、図4を用いて説明する。図4は、1セル構造のEDIの脱イオンモジュール220の模式図である。図4の通り、脱イオンモジュール220は、カチオン交換膜222とアニオン交換膜230との間に脱塩室224が形成され、脱塩室224の両側に濃縮室234が形成されて、図示されない陰極室と陽極室との間に配置されている。脱塩室224には、アニオン交換体が充填された脱塩層224aと、カチオン交換体が充填された脱塩層224bとが形成されている。被処理水を脱塩室224に通水すると、アニオン交換膜230と、脱塩層224bのカチオン交換体との界面では、脱塩室224側にH、濃縮室234側にOHが発生する。脱塩室224側に発生したHは、脱塩層224bのカチオン交換体の再生に寄与するが、濃縮室234側で発生したOHは、脱塩室224中のいずれのイオン交換体の再生にも寄与しない。同様に、カチオン交換膜222と脱塩層224aに充填したアニオン交換体との界面で発生したOHは、脱塩層224aのアニオン交換体の再生に寄与するが、濃縮室234側で発生したHは、脱塩室224中のいずれのイオン交換体の再生にも寄与しない。
本発明は、以上の知見を基になされたものである。
Further, in the EDI having a one-cell structure in which the desalting chamber is not divided by the intermediate ion exchange membrane, there are the following problems when a plurality of types of ion exchangers are stacked and filled in the desalting chamber. The electric resistance is greatly different between the single bed form of the stacked cation exchanger, the single bed form of the anion exchanger, and the mixed bed form of the cation exchanger and the anion exchanger. For this reason, electricity flows only through the resin layer having a lower electrical resistance, and there is a phenomenon that the ion removal rate in the resin layer having a higher electrical resistance is extremely reduced.
In addition, H + generated at the contact point between the anion exchange membrane and the cation exchanger contributes to regeneration of the cation exchanger, but OH moves to the concentration chamber and does not perform any function. is there. This phenomenon will be described with reference to FIG. FIG. 4 is a schematic diagram of an EDI deionization module 220 having a one-cell structure. As shown in FIG. 4, the deionization module 220 includes a demineralization chamber 224 formed between the cation exchange membrane 222 and the anion exchange membrane 230, and concentration chambers 234 formed on both sides of the demineralization chamber 224. Between the chamber and the anode chamber. In the desalting chamber 224, a desalting layer 224a filled with an anion exchanger and a desalting layer 224b filled with a cation exchanger are formed. When the water to be treated is passed through the desalting chamber 224, H + is generated on the desalting chamber 224 side and OH is generated on the concentrating chamber 234 side at the interface between the anion exchange membrane 230 and the cation exchanger of the desalting layer 224b. To do. H + generated on the desalting chamber 224 side contributes to the regeneration of the cation exchanger in the desalting layer 224 b, while OH generated on the concentration chamber 234 side is not any ion exchanger in the desalting chamber 224. Does not contribute to regeneration. Similarly, OH generated at the interface between the cation exchange membrane 222 and the anion exchanger filled in the desalting layer 224a contributes to the regeneration of the anion exchanger in the desalting layer 224a, but is generated on the concentration chamber 234 side. H + does not contribute to the regeneration of any ion exchanger in the desalting chamber 224.
The present invention has been made based on the above findings.

すなわち、本発明のEDIは、一側のカチオン交換膜と、他側のアニオン交換膜とで区画される空間にイオン交換体が充填されて脱塩室が設けられ、前記カチオン交換膜および前記アニオン交換膜を介して、前記脱塩室の両側に濃縮室が設けられ、前記脱塩室と前記濃縮室とが、陽極電極を備えた陽極室と陰極電極を備えた陰極室との間に配置された電気式脱イオン水製造装置であって、前記脱塩室には、前記カチオン交換膜と前記アニオン交換膜との間に配置された中間イオン交換膜によって、脱塩室の厚さ方向に区画された第一小脱塩室と第二小脱塩室が形成され、かつ前記第一小脱塩室と第二小脱塩室とには、脱塩室の厚さ方向と平行に、多段に区画された脱塩区が形成されていることを特徴とする。前記中間イオン交換膜は、カチオン交換膜あるいはアニオン交換膜の単一膜、またはカチオン交換膜およびアニオン交換膜の両方を配置した複式膜であっても良い。
本発明のEDIは、前記第一小脱塩室には、カチオン交換体が単床形態で充填され、第二小脱塩室には、アニオン交換体が単床形態で充填されていても良く、前記第一小脱塩室の厚さは、前記第二小脱塩室の厚さよりも薄くしても良く、前記第一小脱塩室の厚さは4〜16mmであって、かつ前記第二小脱塩室の厚さは8〜22mmであることが好ましい。
前記第一小脱塩室は、脱塩室の厚さ方向と平行に二分されて、第一小脱塩室第一脱塩区と第一小脱塩室第二脱塩区とが形成され、前記第二小脱塩室は、脱塩室の厚さ方向と平行に二分されて、第二小脱塩室第一脱塩区と第二小脱塩室第二脱塩区とが形成され、被処理水が、第一小脱塩室第一脱塩区、第二小脱塩室第一脱塩区、第一小脱塩室第二脱塩区、第二小脱塩室第二脱塩区の順に、流れるように制御されていることが好ましく、前記濃縮室には、アニオン交換体が単床形態で充填されていることが好ましく、前記陰極室および前記陽極室には、イオン交換体が、アニオン交換体もしくはカチオン交換体の単床形態、あるいはアニオン交換体およびカチオン交換体の混床形態で充填され、または陰極もしくは陽極と、仕切り膜との間に、アニオン交換体層とカチオン交換体層とからなる積層体が配列されていることが好ましく、前記陰極電極および/または前記陽極電極は、対応する脱塩区毎に分割され、各電極に印加する電流が別々に制御されていても良い。
That is, the EDI of the present invention is provided with a desalination chamber in which a space defined by a cation exchange membrane on one side and an anion exchange membrane on the other side is filled with an ion exchanger, and the cation exchange membrane and the anion Concentration chambers are provided on both sides of the desalting chamber via an exchange membrane, and the desalting chamber and the concentration chamber are disposed between an anode chamber having an anode electrode and a cathode chamber having a cathode electrode. In the deionization chamber, an intermediate ion exchange membrane disposed between the cation exchange membrane and the anion exchange membrane is provided in the demineralization chamber in the thickness direction of the demineralization chamber. A partitioned first small desalting chamber and a second small desalting chamber are formed, and the first small desalting chamber and the second small desalting chamber are parallel to the thickness direction of the desalting chamber, It is characterized in that a multi-stage desalting zone is formed. The intermediate ion exchange membrane may be a single membrane of a cation exchange membrane or an anion exchange membrane, or a dual membrane having both a cation exchange membrane and an anion exchange membrane.
In the EDI of the present invention, the first small desalting chamber may be filled with a cation exchanger in a single bed form, and the second small desalting chamber may be filled with an anion exchanger in a single bed form. The thickness of the first small desalting chamber may be smaller than the thickness of the second small desalting chamber, the thickness of the first small desalting chamber is 4 to 16 mm, and The thickness of the second small desalting chamber is preferably 8 to 22 mm.
The first small desalting chamber is divided into two in parallel with the thickness direction of the desalting chamber to form a first small desalting chamber first desalting zone and a first small desalting chamber second desalting zone. The second small desalting chamber is divided into two in parallel with the thickness direction of the desalting chamber, so that a second small desalting chamber first desalting zone and a second small desalting chamber second desalting zone are formed. Water to be treated is a first small desalting chamber, a first desalting zone, a second small desalting chamber, a first desalting zone, a first small desalting chamber, a second desalting zone, and a second small desalting chamber. It is preferable to be controlled to flow in the order of two desalting zones, the concentration chamber is preferably filled with an anion exchanger in a single-bed form, and the cathode chamber and the anode chamber are The ion exchanger is packed in an anion exchanger or a single bed form of a cation exchanger, or in a mixed bed form of an anion exchanger and a cation exchanger, or between an anode or an anode and a partition membrane. A laminate composed of an on-exchanger layer and a cation-exchanger layer is preferably arranged, and the cathode electrode and / or the anode electrode is divided for each corresponding desalting zone, and a current applied to each electrode. May be controlled separately.

本発明の脱イオン水の製造方法は、前記EDIを用いた脱イオン水の製造方法であって、複数の脱塩区に被処理水を流通させることを特徴とする。   The method for producing deionized water according to the present invention is a method for producing deionized water using the EDI, wherein the water to be treated is circulated through a plurality of demineralized zones.

本発明のEDIおよび脱イオン水製造方法によれば、スケール発生を防止しながら、高い除去率で不純物を除去し、かつ原水水質の変動に影響されずに高い水質を得ることができる。   According to the EDI and deionized water production method of the present invention, impurities can be removed at a high removal rate while preventing scale generation, and high water quality can be obtained without being affected by fluctuations in raw water quality.

本発明のEDIについて、例を挙げて説明するが、本実施形態に限定されるものではない。
本発明の実施形態の一例について、図1、図2を用いて説明する。図1は本実施形態のEDI10の模式図である。図2は本実施形態のEDI10の脱イオンモジュール20の斜視図である。なお、説明の便宜上、脱イオンモジュール20の各構成部材は一定間隔を開けて図示している。実際の脱イオンモジュール20では、各構成部材が密着している。
図1に示すとおり、本実施形態のEDI10は、陰極室12と陽極室16との間に、複数の脱イオンモジュール20が、濃縮室34を介して隣接するように配置されている。陰極室12は、陰極電極14と仕切り膜32とに挟持されたスペーサ13により、形成されている。陽極室16は、陽極電極18と仕切り膜32とに挟持されたスペーサ17により、形成されている。陰極電極14と、陽極電極18とは、それぞれ図示されない電源と接続されている。また、陰極室12には電極水流入ラインB1と、電極水流出ラインB2とが接続され、陽極室16には、電極水流入ラインB3と電極水流出ラインB4とが接続され、電極水流出ラインB2と電極水流入ラインB3とは、図示されない配管により接続されている。濃縮室34は、脱イオンモジュール20が離間して配置されて形成された空間に、アニオン交換樹脂が充填されて形成されている。また、濃縮室34には、濃縮水流入ラインC1と、濃縮水流出ラインC2とが接続されている。
The EDI of the present invention will be described with an example, but is not limited to this embodiment.
An example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram of an EDI 10 according to this embodiment. FIG. 2 is a perspective view of the deionization module 20 of the EDI 10 of this embodiment. For convenience of explanation, the constituent members of the deionization module 20 are shown at regular intervals. In the actual deionization module 20, the constituent members are in close contact with each other.
As shown in FIG. 1, the EDI 10 of the present embodiment has a plurality of deionization modules 20 disposed adjacent to each other via a concentration chamber 34 between a cathode chamber 12 and an anode chamber 16. The cathode chamber 12 is formed by the spacer 13 sandwiched between the cathode electrode 14 and the partition film 32. The anode chamber 16 is formed by a spacer 17 sandwiched between the anode electrode 18 and the partition film 32. The cathode electrode 14 and the anode electrode 18 are each connected to a power source (not shown). The cathode chamber 12 is connected to an electrode water inflow line B1 and an electrode water outflow line B2. The anode chamber 16 is connected to an electrode water inflow line B3 and an electrode water outflow line B4. B2 and the electrode water inflow line B3 are connected by a pipe (not shown). The concentration chamber 34 is formed by filling an anion exchange resin in a space formed by disposing the deionization module 20 apart. Further, a concentrated water inflow line C1 and a concentrated water outflow line C2 are connected to the concentrating chamber 34.

脱イオンモジュール20は、カチオン交換膜22とアニオン交換膜30とが対向して配置されて形成された空間に、イオン交換体が充填されて脱塩室Dが形成されている。該脱塩室Dは、前記カチオン交換膜22と前記アニオン交換膜30との間に配置された中間イオン交換膜26によって、脱塩室Dの厚さ方向に二分され、カチオン交換膜22側に第一小脱塩室D1が形成され、アニオン交換膜30側に第二小脱塩室D2が形成されている。
脱イオンモジュール20について、図2を用いてさらに詳細に説明する。脱イオンモジュール20は、カチオン交換膜22、枠体24、中間イオン交換膜26、枠体28、アニオン交換膜30の順で配置されている。枠体24は、くりぬかれた内部空間を略二等分するリブ24aを有する。枠体28も同様に、くりぬかれた内部空間を略二等分するリブ28aを有する。枠体24の一側には、カチオン交換膜22が、枠体24およびリブ24aと密着するように配置され、枠体24の他側に中間イオン交換膜26が、枠体24およびリブ24aと密着するように配置されている。こうして、枠体24内部に形成された空間に、カチオン交換樹脂が充填されて、第一小脱塩室第一脱塩区D11と第一小脱塩室第二脱塩区D12とが、形成されている。また、枠体28の一側には中間イオン交換膜26が、枠体28およびリブ28aと密着するように配置され、枠体28の他側にアニオン交換膜30が、枠体28およびリブ28aと密着するように配置されている。こうして、枠体28内部に形成された空間に、アニオン樹脂が充填されて、第二小脱塩室第一脱塩区D21と第二小脱塩室第二脱塩区D22とが、形成されている。
また、脱イオンモジュール20は、被処理水流入ラインA1と、脱イオン水流出ラインA2が接続されている。そして、カチオン交換膜22、枠体24、中間イオン交換膜26、枠体28、アニオン交換膜30には、被処理水が流通する連通孔21a〜21d、23a〜23f、25a〜25d、27a〜27f、29a〜29dが、それぞれ設けられている。加えて、枠体24、28には、連通孔23a、23b、23d、23e、27b、27c、27e、27fと、脱塩区とを連通する、被処理水の流路が設けられている。
In the deionization module 20, a deionization chamber D is formed by filling an ion exchanger in a space formed by arranging the cation exchange membrane 22 and the anion exchange membrane 30 to face each other. The desalting chamber D is divided into two in the thickness direction of the desalting chamber D by an intermediate ion exchange membrane 26 disposed between the cation exchange membrane 22 and the anion exchange membrane 30, and is placed on the cation exchange membrane 22 side. A first small desalting chamber D1 is formed, and a second small desalting chamber D2 is formed on the anion exchange membrane 30 side.
The deionization module 20 will be described in more detail with reference to FIG. The deionization module 20 is arranged in the order of a cation exchange membrane 22, a frame body 24, an intermediate ion exchange membrane 26, a frame body 28, and an anion exchange membrane 30. The frame body 24 has ribs 24a that bisect the hollowed interior space. Similarly, the frame body 28 has a rib 28a that bisects the hollowed interior space. The cation exchange membrane 22 is disposed on one side of the frame body 24 so as to be in close contact with the frame body 24 and the rib 24a, and the intermediate ion exchange membrane 26 is disposed on the other side of the frame body 24 with the frame body 24 and the rib 24a. It arrange | positions so that it may closely_contact | adhere. Thus, the space formed inside the frame body 24 is filled with the cation exchange resin to form the first small desalting chamber first desalting zone D11 and the first small desalting chamber second desalting zone D12. Has been. Further, the intermediate ion exchange membrane 26 is disposed on one side of the frame body 28 so as to be in close contact with the frame body 28 and the rib 28a, and the anion exchange membrane 30 is disposed on the other side of the frame body 28 with the frame body 28 and the rib 28a. It is arranged to be in close contact with. Thus, the space formed inside the frame body 28 is filled with the anion resin, and the second small desalting chamber first desalting zone D21 and the second small desalting chamber second desalting zone D22 are formed. ing.
Further, the deionized module 20 is connected to the treated water inflow line A1 and the deionized water outflow line A2. The cation exchange membrane 22, the frame body 24, the intermediate ion exchange membrane 26, the frame body 28, and the anion exchange membrane 30 have communication holes 21a-21d, 23a-23f, 25a-25d, 27a- 27f and 29a to 29d are provided, respectively. In addition, the frames 24 and 28 are provided with water passages for water to be communicated with the communication holes 23a, 23b, 23d, 23e, 27b, 27c, 27e, and 27f and the desalted zone.

イオン交換膜としては大別すると、原料モノマー液を補強体に含浸させた後に重合させ、全体を均質に形成した均質膜と、イオン交換樹脂を溶解成型可能なポリオレフィン系樹脂と共に粉砕成型した不均質膜の2種類がある。本実施形態におけるカチオン交換膜22、アニオン交換膜30はいずれも特に限定されず、EDIの製造の簡便さや、被処理水の水質、脱イオン水に求める水質、処理量等に応じて選択することができる。   Roughly classified as ion exchange membranes, a homogenous membrane formed by impregnating a raw material monomer solution into a reinforcing body and then polymerized to form a homogeneous whole, and a non-homogeneous material obtained by grinding and pulverizing together with a polyolefin resin capable of dissolving and molding the ion exchange resin There are two types of membranes. The cation exchange membrane 22 and the anion exchange membrane 30 in this embodiment are not particularly limited, and should be selected according to the ease of production of EDI, the quality of water to be treated, the quality of water required for deionized water, the amount of treatment, and the like. Can do.

本実施形態における中間イオン交換膜は、アニオン交換膜である。中間イオン交換膜26は特に限定されることなく、アニオン交換膜30と同様のものを用いることができる。   The intermediate ion exchange membrane in this embodiment is an anion exchange membrane. The intermediate ion exchange membrane 26 is not particularly limited, and the same one as the anion exchange membrane 30 can be used.

第一小脱塩室D1に充填されるカチオン交換樹脂は、特に限定されることはなく、被処理水の水質や処理量、脱イオン水の水質等に合わせて選択することができ、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂を挙げることができる。例えば、市販品としてローム・アンド・ハース社製のアンバーライト(商品名)を挙げることができる。
第二小脱塩室D2に充填されるアニオン交換樹脂は、特に限定されることはなく、被処理水の水質や処理量、脱イオン水の水質等に合わせて選択することができ、最強塩基性アニオン交換樹脂、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂が挙げられる。例えば、市販品としてローム・アンド・ハース社製のアンバーライト(商品名)を挙げることができる。
濃縮室34に充填されるアニオン交換樹脂は特に限定されることはなく、被処理水や脱イオン水の水質等に合わせて選択することができ、第二小脱塩室D2に充填されるアニオン交換樹脂と同様のものを用いることができる。
The cation exchange resin filled in the first small desalting chamber D1 is not particularly limited, and can be selected according to the quality and amount of water to be treated, the quality of deionized water, and the like. Mention may be made of cation exchange resins and weakly acidic cation exchange resins. For example, as a commercial product, Amberlite (trade name) manufactured by Rohm and Haas can be cited.
The anion exchange resin filled in the second small desalting chamber D2 is not particularly limited, and can be selected according to the quality and amount of treated water, the quality of deionized water, etc. Anionic exchange resins, strong basic anion exchange resins, and weak basic anion exchange resins. For example, as a commercial product, Amberlite (trade name) manufactured by Rohm and Haas can be cited.
The anion exchange resin filled in the concentration chamber 34 is not particularly limited, and can be selected according to the quality of the water to be treated or deionized water, and the anion charged in the second small desalting chamber D2. The same as the exchange resin can be used.

枠体24、28は、絶縁性を有し、被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製の枠体を挙げることができる。
枠体24、26の厚さは特に限定されることなく、所望する第一小脱塩室D1と第二小脱塩室D2との厚さに応じて設定することができる。
リブ24aは、第一小脱塩室第一脱塩区D11と、第一小脱塩室第二脱塩区D12とを仕切り、両脱塩区間における被処理水の往来を防ぎ、かつ絶縁性を有する材質であれば特に限定されることはなく、枠体24、28と同様の材質を使用することができる。リブ28aは、リブ24aと同様のものを用いることができる。
また、各脱塩区の面積が大きい場合には、枠体24、28のくりぬかれた空間に支持体を設けても良い。支持体を設けることで、カチオン交換膜22、中間イオン交換膜26、アニオン交換膜30が湾曲して、各脱塩区内のイオン交換樹脂の充填量が不均一になることを防止できるためである。前記支持体は、絶縁性を有し、被処理水の流通を妨げない素材であれば特に限定されず、例えば、スリットが設けられた、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製の支持体を挙げることができる。
The frames 24 and 28 are not particularly limited as long as they have insulating properties and do not leak treated water. For example, frames made of resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl, etc. Can be mentioned.
The thickness of the frames 24 and 26 is not particularly limited, and can be set according to the desired thickness of the first small desalting chamber D1 and the second small desalting chamber D2.
The rib 24a partitions the first small desalting chamber first desalting zone D11 and the first small desalting chamber second desalting zone D12, prevents the passage of treated water in both desalting zones, and is insulative. If it is the material which has this, it will not specifically limit, The material similar to the frame bodies 24 and 28 can be used. The rib 28a can be the same as the rib 24a.
Moreover, when the area of each desalting zone is large, you may provide a support body in the space where the frame bodies 24 and 28 were hollowed out. By providing the support, it is possible to prevent the cation exchange membrane 22, the intermediate ion exchange membrane 26, and the anion exchange membrane 30 from being curved and the amount of ion exchange resin in each desalting zone from becoming uneven. is there. The support is not particularly limited as long as it is a material that has insulating properties and does not hinder the flow of water to be treated. For example, polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl, etc., provided with slits. The resin-made support body can be mentioned.

脱塩室Dの厚さは特に限定されず、第一小脱塩室D1、または第二小脱塩室D2に充填されるイオン交換体の種類と充填形態とによって、最適な厚さを決定することが好ましい。本実施形態のEDI10では、従来のEDIと比較して、脱塩室Dを厚く設定することができる。第一小脱塩室D1および第二小脱塩室D2を、カチオン交換体の単床形態、アニオン交換体の単床形態としているため、脱塩室D内での電気抵抗が低く抑えられる。このため、脱塩室Dの厚さを厚くすれば、電気抵抗の増大を抑えたまま、被処理水中のイオン成分に対する電流効率を向上できるためである。
上記のような観点より、例えば、脱塩室Dの厚さは、12〜36mmの範囲で決定されることが好ましく、16〜28mmの範囲で適宜決定されることが好適である。
The thickness of the desalting chamber D is not particularly limited, and the optimum thickness is determined according to the type and filling form of the ion exchanger filled in the first small desalting chamber D1 or the second small desalting chamber D2. It is preferable to do. In EDI10 of this embodiment, compared with the conventional EDI, the desalting chamber D can be set thickly. Since the first small desalting chamber D1 and the second small desalting chamber D2 have a single bed form of the cation exchanger and a single bed form of the anion exchanger, the electrical resistance in the desalting chamber D can be kept low. For this reason, if the thickness of the desalting chamber D is increased, the current efficiency for the ionic components in the water to be treated can be improved while suppressing an increase in electrical resistance.
From the above viewpoint, for example, the thickness of the desalting chamber D is preferably determined in the range of 12 to 36 mm, and is preferably determined as appropriate in the range of 16 to 28 mm.

第一小脱塩室D1と第二小脱塩室D2との厚さは、被処理水や脱イオン水の水質等を勘案して決定することができ、両者は同一の厚さでも良く、異なっていても良い。第一小脱塩室D1と第二小脱塩室D2との厚さを異なるものとする場合には、アニオン交換樹脂を充填した第二小脱塩室D2を厚くすることが好ましい。被処理水となる通常の原水には、カチオン成分よりもアニオン成分の方が多く含有されており、被処理水中のアニオン成分を効率的に除去することが、高い水質の脱イオン水を得、濃縮室34内でのスケール発生防止に効果的なためである。
第一小脱塩室D1の厚さは特に限定されないが、4〜16mmの範囲で設定されることが好ましい。4mm未満であると、滞留時間を充分に確保できず、水質が悪化する傾向となる。また、16mmを超えると、電気抵抗の増大が顕著となり、電流効率の向上効果が小さくなるばかりでなく、脱イオンモジュールの成型が困難になるためである。
また、第二小脱塩室D2の厚さは特に限定されないが、8〜22mmの範囲で設定されることが好ましい。8mm未満であると、滞留時間を充分に確保できず、水質が悪化する傾向となる。また、22mmを超えると、電気抵抗の増大が顕著となり、電流効率の向上効果が小さくなるばかりでなく、脱イオンモジュールの成型が困難になるためである。
The thicknesses of the first small desalting chamber D1 and the second small desalting chamber D2 can be determined in consideration of the quality of the water to be treated and deionized water, and the both may be the same thickness. It may be different. When the thicknesses of the first small desalting chamber D1 and the second small desalting chamber D2 are different, it is preferable to increase the thickness of the second small desalting chamber D2 filled with the anion exchange resin. Normal raw water to be treated water contains more anion components than cation components, and efficiently removing the anion components in the treated water provides high-quality deionized water, This is because it is effective in preventing the occurrence of scale in the concentration chamber 34.
Although the thickness of the 1st small desalination chamber D1 is not specifically limited, It is preferable to set in the range of 4-16 mm. If it is less than 4 mm, sufficient residence time cannot be secured, and the water quality tends to deteriorate. On the other hand, if it exceeds 16 mm, the increase in electrical resistance becomes remarkable, and not only the effect of improving the current efficiency is reduced, but also the deionization module becomes difficult to mold.
The thickness of the second small desalting chamber D2 is not particularly limited, but is preferably set in the range of 8 to 22 mm. If it is less than 8 mm, sufficient residence time cannot be secured, and the water quality tends to deteriorate. On the other hand, if it exceeds 22 mm, the increase in electrical resistance becomes remarkable, and not only the effect of improving the current efficiency is reduced, but also the deionization module becomes difficult to mold.

陰極電極14は、陰極としての機能を発揮するものであれば特に限定されず、例えば、板状のステンレスや網状のステンレスを挙げることができる。陽極電極18は、陽極として機能を発揮するものであれば特に限定されないが、陽極には塩素発生が起きるため、耐塩素性能を有するものが好ましい。例えば、白金、パラジウム、イリジウム等の貴金属、あるいは前記貴金属をチタン等に被覆した網状あるいは板状の電極を挙げることができる。
また、陰極電極14と陽極電極18とは、それぞれ1枚ずつ設置されていても良いし、各脱塩区の大きさに合わせて、二対以上に分割されていても良い。
The cathode electrode 14 is not particularly limited as long as it functions as a cathode, and examples thereof include plate-like stainless steel and mesh-like stainless steel. The anode 18 is not particularly limited as long as it functions as an anode. However, since chlorine is generated at the anode, one having chlorine resistance is preferable. For example, a noble metal such as platinum, palladium, iridium, or a net-like or plate-like electrode obtained by coating the noble metal on titanium or the like can be given.
Moreover, the cathode electrode 14 and the anode electrode 18 may each be installed one each, and may be divided | segmented into 2 or more pairs according to the magnitude | size of each desalination zone.

スペーサ13は、電極水を流通させ、かつ所望する幅の陰極室12を形成することができれば特に限定されることはなく、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製のメッシュや、通水性を有する格子状の枠材等が挙げられる。
また、スペーサ13の厚さは特に限定されることはないが、所望する陰極室12のスペースに合わせて選択することができる。例えば、0.3〜4mmの範囲で選択することが好ましい。スペーサ17は、スペーサ13と同様のものを使用することができる。
The spacer 13 is not particularly limited as long as the electrode water can be circulated and the cathode chamber 12 having a desired width can be formed. The spacer 13 is made of a resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl. Examples thereof include a mesh and a lattice-like frame material having water permeability.
The thickness of the spacer 13 is not particularly limited, but can be selected according to the desired space of the cathode chamber 12. For example, it is preferable to select in the range of 0.3 to 4 mm. The spacer 17 can be the same as the spacer 13.

仕切り膜32は、イオン交換膜であれば特に限定されず、被処理水の水質や、EDI10の運転条件等を考慮して、選択することができ、カチオン交換膜、アニオン交換膜のいずれを用いても良い。この内、酸化剤耐性の面で有利な、カチオン交換膜を選択することが好ましい。   The partition membrane 32 is not particularly limited as long as it is an ion exchange membrane, and can be selected in consideration of the quality of water to be treated, the operating conditions of the EDI 10, and the like. Either a cation exchange membrane or an anion exchange membrane is used. May be. Among these, it is preferable to select a cation exchange membrane that is advantageous in terms of resistance to oxidizing agents.

EDI10を用いた脱イオン水製造方法について、図1、2を用いて説明する。なお、本発明は、以下の実施形態に限定されるものではない。
電極水流入ラインB1から、電極水を陰極室12へ流入させると共に、陰極電極14、陽極電極18の間に直流電圧を印加する。次に、濃縮水流入ラインC1から、濃縮水を濃縮室34へ、上昇流で流入させる。次いで、被処理水流入ラインA1から、被処理水を脱イオンモジュール20へ流入させる。脱イオンモジュール20内に流入した被処理水は、脱塩室D内のイオン交換樹脂内を拡散しながら流通し、そして、イオン成分が除去された脱イオン水は、脱イオン水流出ラインA2から流出する。
A method for producing deionized water using EDI 10 will be described with reference to FIGS. In addition, this invention is not limited to the following embodiment.
Electrode water is caused to flow into the cathode chamber 12 from the electrode water inflow line B 1, and a DC voltage is applied between the cathode electrode 14 and the anode electrode 18. Next, the concentrated water is introduced into the concentration chamber 34 from the concentrated water inflow line C1 in an upward flow. Next, the water to be treated is caused to flow into the deionization module 20 from the water to be treated inflow line A1. The treated water that has flowed into the deionization module 20 circulates through the ion exchange resin in the demineralization chamber D, and the deionized water from which the ionic components have been removed flows from the deionized water outflow line A2. leak.

脱イオンモジュール20内における被処理水の流通経路を、図2を用いて詳細に説明する。被処理水は、被処理水流入ラインA1から、カチオン交換膜22に設けられた連通孔21aを流通し、枠体24に設けられた連通孔23aに至り、第一小脱塩室第一脱塩区D11へ流入する。第一小脱塩室第一脱塩区D11に流入した被処理水は、カチオン交換樹脂内を拡散しながら流通し、主にカチオン成分(Na、Ca2+、Mg2+等)がカチオン交換樹脂に吸着される。吸着されたカチオン成分は、陰極側に引き寄せられ、カチオン交換膜22を透過して、濃縮室34に移動する。ここで、被処理水中のカチオン成分の除去が進むと、被処理水中のpHが酸性側に移行して、カチオン成分の競合イオンであるH濃度が高くなる。その結果、カチオン成分に対する電流効率が低下し、カチオン成分は、一定濃度以下に到達し難くなる。そして、被処理水は、ある程度のカチオン成分が残存した状態で、第一小脱塩室第一脱塩区D11を流通して、連通孔23bに至る。被処理水は、連通孔23bから、中間イオン交換膜26に設けられた連通孔25a、枠体28に設けられた連通孔27a、アニオン交換膜30に設けられた連通孔29aを流通し、図示されない配管により連通孔29bに至る。
次いで、被処理水は、連通孔29bから連通孔27bに至り、第二小脱塩室第一脱塩区D21へ流入する。流入した被処理水は、アニオン交換樹脂内を拡散しながら流通し、主にアニオン成分(Cl、HCO 、CO 2−、SiO(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする。以降において同じ。)等)がアニオン交換樹脂に吸着される。吸着されたアニオン成分は、陽極側に引き寄せられ、アニオン交換膜30を透過して、濃縮室34へ移動する。この際、被処理水は、pHが酸性側に移行した状態で第二小脱塩室第一脱塩区D21に流入するため、アニオン成分の競合イオンであるOH濃度が低い。このため、アニオン成分の除去は、非常に良好に行われる。第二小脱塩室第一脱塩区D21を流通した被処理水は、連通孔27cから、連通孔25b、23c、21bを流通し、図示されない配管により連通孔21cに至る。なお、第二小脱塩室第二脱塩区D21を流通した段階で、被処理水のpHは、中性領域となっている。
The flow path of the water to be treated in the deionization module 20 will be described in detail with reference to FIG. The treated water flows from the treated water inflow line A1 through the communication hole 21a provided in the cation exchange membrane 22, and reaches the communication hole 23a provided in the frame body 24. It flows into the salt zone D11. The treated water that has flowed into the first small desalting chamber first desalting zone D11 circulates while diffusing in the cation exchange resin, and the cation components (Na + , Ca 2+ , Mg 2+ etc.) are mainly contained in the cation exchange resin. To be adsorbed. The adsorbed cation component is attracted to the cathode side, passes through the cation exchange membrane 22, and moves to the concentration chamber 34. Here, when the removal of the cation component in the for-treatment water proceeds, the pH in the for-treatment water shifts to the acidic side, and the H + concentration that is a competing ion of the cation component increases. As a result, the current efficiency with respect to the cation component is lowered, and the cation component hardly reaches a certain concentration or less. And to-be-processed water distribute | circulates the 1st small desalination chamber 1st desalination zone D11 in the state in which a certain amount of cation component remained, and reaches the communicating hole 23b. The treated water flows from the communication hole 23b through the communication hole 25a provided in the intermediate ion exchange membrane 26, the communication hole 27a provided in the frame body 28, and the communication hole 29a provided in the anion exchange membrane 30. The communication hole 29b is reached by a pipe that is not connected.
Next, the water to be treated reaches the communication hole 27b from the communication hole 29b and flows into the second small desalination chamber first desalination zone D21. The treated water that has flowed in flows through the anion exchange resin while diffusing and mainly contains anion components (Cl , HCO 3 , CO 3 2− , SiO 2 (silica often takes a special form). , And so on, which are different from general ions. The adsorbed anion component is attracted to the anode side, passes through the anion exchange membrane 30 and moves to the concentration chamber 34. At this time, since the water to be treated flows into the second small desalting chamber first desalting zone D21 in a state where the pH is shifted to the acidic side, the concentration of OH which is a competitive ion of the anion component is low. For this reason, the anion component is removed very well. The treated water that circulated through the second small desalting chamber first desalting zone D21 circulates from the communication hole 27c to the communication holes 25b, 23c, and 21b, and reaches the communication hole 21c through a pipe (not shown). In addition, in the stage which distribute | circulated the 2nd small desalination chamber 2nd desalting zone D21, pH of to-be-processed water is a neutral area | region.

続いて、被処理水は、連通孔21cから連通孔23dに至り、第一小脱塩室第二脱塩区D12へ流入する。第一小脱塩室第二脱塩区D12に流入した被処理水は、カチオン交換樹脂内を拡散しながら流通し、主にカチオン成分が、再度除去される。ここで、被処理水中のカチオン成分除去が進んでも、Hの濃度は、第一小脱塩室第一脱塩区D11よりも低くなる。このため、電流効率が高くなり、被処理水中のカチオン成分の除去が良好に行われる。そして、第一小脱塩室第二脱塩区D12を流通した被処理水は、連通孔23eから連通孔25c、27d、29cを流通し、図示されない配管によって、連通孔29dに至る。この段階で、被処理水中に含まれていたイオン成分は、概ね除去される。しかし、第二小脱塩室第一脱塩区D21で除去されたアニオン成分の中でも、炭酸イオンは、濃縮室34内でガス化して、カチオン交換膜22を透過し、第一小脱塩室D1に逆移動してくることがある。このため、再度アニオン成分の除去を、第二小脱塩室第二脱塩区D22にて行う。
被処理水は、連通孔29dから連通孔27eに至り、第二小脱塩室第二脱塩区D22へ流入する。第二小脱塩室第二脱塩区D22へ流入した被処理水は、アニオン交換樹脂内を拡散しながら流通し、主にアニオン成分が、再度除去されて、連通孔27fに至る。こうして、被処理水は、カチオン成分とアニオン成分とが除去され、連通孔27fから連通孔25d、23f、21dを流通し、脱イオン水流出ラインA2より脱イオン水となって流出する。
Subsequently, the water to be treated reaches from the communication hole 21c to the communication hole 23d and flows into the first small desalting chamber second desalting zone D12. The treated water that has flowed into the first small desalting chamber second desalting zone D12 flows while diffusing in the cation exchange resin, and mainly the cation component is removed again. Here, even if the removal of the cation component in the for-treatment water proceeds, the concentration of H + is lower than that in the first small desalting chamber first desalting zone D11. For this reason, current efficiency becomes high and the removal of the cation component in to-be-processed water is performed favorably. And the to-be-processed water which distribute | circulated the 1st small desalination chamber 2nd desalination area D12 distribute | circulates the communication holes 25c, 27d, and 29c from the communication hole 23e, and reaches the communication hole 29d by piping which is not shown in figure. At this stage, ionic components contained in the water to be treated are generally removed. However, among the anion components removed in the second small desalination chamber first desalination zone D21, carbonate ions are gasified in the concentration chamber 34 and permeate through the cation exchange membrane 22 to form the first small desalination chamber. It may move backward to D1. For this reason, the anion component is removed again in the second small desalting chamber second desalting zone D22.
The treated water reaches the communication hole 27e from the communication hole 29d and flows into the second small desalination chamber second desalting zone D22. The treated water that has flowed into the second small desalting chamber second desalting zone D22 flows while diffusing in the anion exchange resin, mainly the anion component is removed again, and reaches the communication hole 27f. In this way, the cation component and the anion component are removed from the water to be treated and flows from the communication hole 27f through the communication holes 25d, 23f, and 21d, and flows out from the deionized water outflow line A2 as deionized water.

一方、濃縮水流入ラインC1から、それぞれの濃縮室34に流入した濃縮水は、濃縮室34内に充填されたイオン交換体内を拡散しながら上昇流で流通し、各脱塩区から移動されたイオン成分を取り込んで、濃縮水流出ラインC2から排出される。   On the other hand, the concentrated water flowing into the respective concentration chambers 34 from the concentrated water inflow line C1 circulates in an upward flow while diffusing through the ion exchanger filled in the concentration chamber 34, and is moved from each desalting zone. An ionic component is taken in and discharged from the concentrated water outflow line C2.

電極水流入ラインB1から、陰極室12に流入した電極水は、陰極室12内を上昇流で流通し、電極水流出ラインB2へ流れる。そして、電極水流出ラインB2に流された電極水は、図示されない配管を経由して、電極水流入ラインB3から陽極室16に流入し、陽極室16内を上昇流で流通した後、電極水流出ラインB4から排出される。この間、電極水は、陰極電極14から発生したH等と、陽極電極18から発生するCl、O等とを取り込んで、EDI10外へ排出する。 The electrode water that has flowed into the cathode chamber 12 from the electrode water inflow line B1 flows in the cathode chamber 12 in an upward flow and flows to the electrode water outflow line B2. Then, the electrode water that has flowed into the electrode water outflow line B2 flows into the anode chamber 16 from the electrode water inflow line B3 via a pipe (not shown), and circulates in the anode chamber 16 in an upward flow. It is discharged from the outflow line B4. During this time, the electrode water takes in H 2 and the like generated from the cathode electrode 14 and Cl 2 and O 2 and the like generated from the anode electrode 18 and discharges them outside the EDI 10.

被処理水は特に限定されることはないが、工業用水や井水の濁質成分を除濁膜にて除去した水を、逆浸透(RO)膜にて処理した水等が挙げられる。
被処理水の脱塩室D内における通液量は特に限定されることはなく、EDI10の能力や被処理水の水質を勘案して決定することができる。通液量は空間速度(SV)で表され、SVの単位は、イオン交換樹脂の単位体積(L−R)に対して1時間に流通させる流量(L)であるL/L−R・h−1で表される(以降において同じ)。本実施形態ではSV=30〜300L/L−R・h−1が好ましい。SVが高すぎると、イオン除去性能が低下したり、SVの増加と共に発生する通液速度(LV)の増加によって差圧が高くなり、脱イオンモジュール20の破損を招いたり、運転上の困難を起こしたりするので好ましくない。ここで、LVとは、単位面積当たりの流量で、m/hで表される線速度である。
一方、SVが低すぎると、各脱イオンモジュールへの流量分配が適切に行われず、脱塩処理が充分な脱イオンモジュールと、脱塩処理が不充分な脱イオンモジュールとが生じ、EDI10全体としての性能に悪影響を与える場合がある。
Although the to-be-processed water is not specifically limited, The water etc. which processed the water which removed the turbid component of industrial water and well water with the turbidity membrane with the reverse osmosis (RO) membrane, etc. are mentioned.
The amount of liquid passing through the desalting chamber D of the water to be treated is not particularly limited, and can be determined in consideration of the ability of the EDI 10 and the quality of the water to be treated. The liquid flow rate is represented by space velocity (SV), and the unit of SV is the flow rate (L) circulated in one hour with respect to the unit volume (LR) of the ion exchange resin. -1 (same in the following). In the present embodiment, SV = 30 to 300 L / LR · h −1 is preferable. If the SV is too high, the ion removal performance will decrease, the differential pressure will increase due to the increase in the liquid flow rate (LV) that occurs with the increase in SV, which will cause damage to the deionization module 20, and will cause operational difficulties. It is not preferable because it causes it. Here, LV is a flow rate per unit area, which is a linear velocity expressed in m / h.
On the other hand, if the SV is too low, the flow distribution to each deionization module is not performed properly, resulting in deionization modules with sufficient demineralization treatment and deionization modules with insufficient demineralization treatment. May adversely affect performance.

濃縮室34内における、濃縮水の流量は特に限定されることはなく、EDI10の能力や、被処理水の水質や処理量を勘案して決定することができる。濃縮水は、濃縮室34に移動してきたイオンを濃縮水内に拡散して、EDI10外へ流出させるという目的を有する。このことから、濃縮水の流量は、被処理水の通液量や、被処理水のイオン濃度、脱イオン水の回収率との関係で決定することが好ましく、例えば、下記(1)式で表される濃縮倍率が3〜20となるように、濃縮水の流量を決定することが好ましい。なお、下記(1)式による濃縮倍率は、被処理水と濃縮水に同一の原水を用いて、かつ脱塩室D中のイオンが全て濃縮室34に移行すると仮定し定義付けられる。   The flow rate of the concentrated water in the concentration chamber 34 is not particularly limited, and can be determined in consideration of the ability of the EDI 10, the quality of the water to be treated, and the treatment amount. The concentrated water has the purpose of diffusing ions that have moved to the concentration chamber 34 into the concentrated water and flowing out of the EDI 10. From this, it is preferable to determine the flow rate of the concentrated water in relation to the flow rate of the treated water, the ion concentration of the treated water, and the recovery rate of the deionized water. For example, the following formula (1) It is preferable to determine the flow rate of the concentrated water so that the expressed concentration ratio is 3 to 20. The concentration ratio according to the following equation (1) is defined on the assumption that the same raw water is used for the water to be treated and the concentrated water, and all the ions in the desalting chamber D are transferred to the concentration chamber 34.

Figure 2009142724
Figure 2009142724

濃縮水の流量が少なすぎると、濃縮室34に移行したイオンの濃度拡散にむらが生じ、イオン交換膜面の濃度分極層が厚くなり、スケール生成のおそれがある。一方、濃縮水の流量が多すぎると、脱イオン水の回収率が低下するため好ましくないためである。
濃縮水は、特に限定されることはなく、被処理水と同じ水源の水を濃縮水として使用しても良いし、脱イオン水や純水等を使用しても良い。
If the flow rate of the concentrated water is too small, the concentration diffusion of ions transferred to the concentration chamber 34 becomes uneven, the concentration polarization layer on the surface of the ion exchange membrane becomes thick, and scale may be generated. On the other hand, if the flow rate of the concentrated water is too large, the recovery rate of deionized water decreases, which is not preferable.
The concentrated water is not particularly limited, and water from the same water source as the water to be treated may be used as the concentrated water, or deionized water or pure water may be used.

印加する電流は特に限定されることはなく、被処理水の水質や、EDI10の規模等を勘案して決定することが好ましい。加えて、陰極電極14と、陽極電極18とが、各脱塩区に応じて2以上に分割されている場合には、分割された電極対毎に、異なる電流値で印加されても良い。被処理水の水質等に応じて、最適な電流値を選択することで、水質の向上が図れるためである。
電極水の流量は特に限定されず、印加電圧等に応じて決定することが好ましい。例えば、5〜200L/h、好適には30〜100L/hの範囲で設定することが好ましい。電極水の流量が少なすぎると、発生したH、O、Clガスを充分に排出することが困難となり、電極水の流量が多すぎると、回収率が低下するため、好ましくない。
The current to be applied is not particularly limited and is preferably determined in consideration of the quality of the water to be treated, the scale of the EDI 10, and the like. In addition, when the cathode electrode 14 and the anode electrode 18 are divided into two or more according to each desalting zone, the divided electrode pairs may be applied with different current values. This is because the water quality can be improved by selecting an optimal current value according to the quality of the water to be treated.
The flow rate of the electrode water is not particularly limited, and is preferably determined according to the applied voltage or the like. For example, it is preferable to set in the range of 5 to 200 L / h, preferably 30 to 100 L / h. If the flow rate of the electrode water is too small, it will be difficult to sufficiently discharge the generated H 2 , O 2 , and Cl 2 gases, and if the flow rate of the electrode water is too large, the recovery rate is lowered, which is not preferable.

本実施形態のEDI10によれば、第一小脱塩室D1と第二小脱塩室D2とを、更に二分して脱塩区を形成させることで、各脱塩区に異なる機能を持たせる事が可能となる。この結果、脱イオンモジュール20の数を増加させずに、4段処理が行えるため、高い水質を得ることができる。また、第一小脱塩室D1の両脱塩区のイオン交換樹脂が統一され、第二小脱塩室D2の両脱塩区のイオン交換樹脂が統一されていることで、電流の直交方向に対する片寄りを防止できる。
また、濃縮室34にはアニオン交換体が充填されていることで、濃縮室34のカチオン成分が、第二小脱塩室D2に逆移動することを抑制できる。一方で、濃縮室34のアニオン成分の、脱塩室Dへの逆移動は発生してしまうが、逆移動する場所が、第一小脱塩室第一脱塩区D11、または第一小脱塩室第二脱塩区D12である。従って、その後に被処理水が流通する、第二小脱塩室第一脱塩区D21、または第二小脱塩室第二脱塩区D22にて、アニオン成分を充分に除去することができるため、水質の向上を図ることができる。
中間イオン交換膜26にアニオン交換膜を用いることで、第一小脱塩室D1内のカチオン交換樹脂と中間イオン交換膜26のアニオン交換膜の接点で発生したOHとHは、それぞれ第一小脱塩室D1および第二小脱塩室D2の再生に寄与できるので、電流効率の面で無駄が少ない。この点について、図3の脱イオンモジュール20の模式図を用いて説明する。図3に示すとおり、被処理水を脱塩室Dに通水すると、中間イオン交換膜26と第一小脱塩室D1のカチオン交換樹脂との界面では、第一小脱塩室D1側にH、第二小脱塩室側D2にOHが発生する。第一小脱塩室D1側に発生したHは、第一脱塩室D1のカチオン交換樹脂の再生に寄与し、第二脱塩室D2側に発生したOHは、第二脱塩室D2のアニオン交換樹脂の再生に寄与する。そして、カチオン交換樹脂、アニオン交換樹脂の再生に当たっての余剰のH、OHが、対極側の濃縮室34へ移動することとなる。このようにして、電流効率の面でも無駄を少なくできるため、水質の向上を図ることができる。
According to the EDI 10 of this embodiment, the first small desalting chamber D1 and the second small desalting chamber D2 are further divided into two to form a desalting zone, whereby each desalting zone has a different function. Things will be possible. As a result, high water quality can be obtained because four-stage treatment can be performed without increasing the number of deionization modules 20. Further, the ion exchange resins in both desalting zones of the first small desalting chamber D1 are unified, and the ion exchange resins in both desalting zones of the second small desalting chamber D2 are unified, so that the current orthogonal directions Can be prevented from being displaced.
Moreover, it can suppress that the cation component of the concentration chamber 34 reversely moves to the 2nd small desalination chamber D2 because the concentration chamber 34 is filled with the anion exchanger. On the other hand, although the reverse movement of the anion component of the concentration chamber 34 to the desalting chamber D occurs, the place of reverse movement is the first small desalting chamber first desalting zone D11 or the first small desalting zone. It is a salt chamber second desalting zone D12. Accordingly, the anion component can be sufficiently removed in the second small desalting chamber first desalting zone D21 or the second small desalting chamber second desalting zone D22 through which the water to be treated flows thereafter. Therefore, the water quality can be improved.
By using an anion exchange membrane for the intermediate ion exchange membrane 26, OH and H + generated at the contact point between the cation exchange resin in the first small desalting chamber D1 and the anion exchange membrane of the intermediate ion exchange membrane 26 are respectively Since it can contribute to the regeneration of the first small desalting chamber D1 and the second small desalting chamber D2, there is little waste in terms of current efficiency. This point will be described with reference to a schematic diagram of the deionization module 20 of FIG. As shown in FIG. 3, when the water to be treated is passed through the desalting chamber D, at the interface between the intermediate ion exchange membrane 26 and the cation exchange resin of the first small desalting chamber D1, the first small desalting chamber D1 is located. H + and OH are generated on the second small desalting chamber side D2. H + generated on the first small desalting chamber D1 side contributes to the regeneration of the cation exchange resin in the first desalting chamber D1, and OH generated on the second desalting chamber D2 side is the second desalting chamber. It contributes to the regeneration of the anion exchange resin of D2. Then, surplus H + and OH − in the regeneration of the cation exchange resin and the anion exchange resin move to the concentration chamber 34 on the counter electrode side. In this way, waste can be reduced in terms of current efficiency, so that water quality can be improved.

濃縮室34では、脱塩室Dから移動して来たMg2+、Ca2+等の硬度成分が、アニオン交換膜30近傍のpHが高い部分に滞留し、隣接する脱イオンモジュール20の脱塩室Dから移動してきた炭酸イオンと反応してスケール発生をおこす場合がある。しかし、本実施形態では、濃縮室34に、アニオン交換樹脂が充填されているため、Mg2+、Ca2+等の硬度成分は濃縮水中を移動する一方、炭酸イオン等のアニオン成分は、アニオン交換樹脂層中を移動する。このため、濃縮室34内において、硬度成分と炭酸イオンが、高濃度に接触する箇所がなく、スケール発生の防止効果が高い。
また、カチオン交換樹脂が充填された第一小脱塩室D1、アニオン交換樹脂が充填された第二小脱塩室D2の厚さを適正に設定することで、低い電気抵抗、高い電流効率、低い圧力損失を実現できる。そして、上述のとおり、被処理水中のイオン成分の循環を防止でき、原水耐性の向上を図ることができる。
さらに、本実施形態においては、1つの脱イオンモジュール20内で、4段処理を行うことができるため、複数の脱イオンモジュール20を多段で用いるよりも、格段のコストダウンを実現できる。
In the concentration chamber 34, hardness components such as Mg 2+ and Ca 2+ that have moved from the demineralization chamber D stay in a portion with high pH near the anion exchange membrane 30, and the demineralization chamber of the adjacent deionization module 20. There is a case where scale is generated by reacting with carbonate ions that have moved from D. However, in this embodiment, since the concentration chamber 34 is filled with an anion exchange resin, hardness components such as Mg 2+ and Ca 2+ move in the concentrated water, while anion components such as carbonate ions are anion exchange resin. Move through the layers. For this reason, in the concentration chamber 34, the hardness component and carbonate ions are not in contact with a high concentration, and the effect of preventing the generation of scale is high.
In addition, by appropriately setting the thickness of the first small desalination chamber D1 filled with the cation exchange resin and the second small desalination chamber D2 filled with the anion exchange resin, low electrical resistance, high current efficiency, Low pressure loss can be realized. And as above-mentioned, the circulation of the ionic component in to-be-processed water can be prevented, and the improvement of raw | natural water resistance can be aimed at.
Furthermore, in the present embodiment, since four-stage processing can be performed in one deionization module 20, a significant cost reduction can be realized as compared to using a plurality of deionization modules 20 in multiple stages.

本発明のEDIならびに脱イオン水製造方法は、上述の実施形態に限定されるものではない。
上述の実施形態では、脱塩室Dにイオン交換樹脂を充填しているが、各小脱塩室に充填するイオン交換体は特に限定されず、イオン交換機能を有するものであれば良い。イオン交換樹脂の他、例えばイオン交換繊維、モノリス状多孔質イオン交換体等を挙げることができる。この内、最も汎用的であり、イオン交換膜にしわ等が生じても、膜とイオン交換体との隙間が生じにくいイオン交換樹脂が好ましい。これらは単独で用いても良く、2種以上を組み合わせて用いても良い。
また、上述の実施形態では、第一小脱塩室D1にはカチオン交換樹脂の単床形態にて充填し、第二小脱塩室D2にはアニオン交換樹脂の単床形態にて充填しているが、充填されるイオン交換体の充填形態は、特に限定されない。従って、イオン交換体の充填形態は、アニオン交換体単床、カチオン交換体単床、またはアニオン交換体とカチオン交換体との混床、およびこれらを組み合わせたもののいずれも用いることができる。さらに、小脱塩室に設けられた脱塩区毎に、異なる形態のイオン交換体を充填しても良い。ただし、電流密度分布のむらを抑え、高い水質を得る観点からは、小脱塩室毎のイオン交換体の充填形態は統一されていることが好ましい。
The EDI and the deionized water production method of the present invention are not limited to the above-described embodiment.
In the above-described embodiment, the ion exchange resin is filled in the desalting chamber D, but the ion exchanger filled in each small desalting chamber is not particularly limited as long as it has an ion exchange function. In addition to ion exchange resins, for example, ion exchange fibers, monolithic porous ion exchangers and the like can be mentioned. Among these, an ion exchange resin that is most versatile and hardly causes a gap between the membrane and the ion exchanger even when wrinkles or the like occur in the ion exchange membrane is preferable. These may be used alone or in combination of two or more.
In the above-described embodiment, the first small desalting chamber D1 is filled in a single bed form of cation exchange resin, and the second small desalting chamber D2 is filled in a single bed form of anion exchange resin. However, the filling form of the ion exchanger to be filled is not particularly limited. Therefore, the ion exchanger can be packed in any form of an anion exchanger single bed, a cation exchanger single bed, a mixed bed of an anion exchanger and a cation exchanger, or a combination thereof. Further, different forms of ion exchangers may be filled in each desalting zone provided in the small desalting chamber. However, from the viewpoint of suppressing the unevenness of the current density distribution and obtaining a high water quality, it is preferable that the filling form of the ion exchanger for each small desalting chamber is unified.

上述の実施形態では、中間イオン交換膜26にアニオン交換膜を使用しているが、中間イオン交換膜は、カチオン交換膜、あるいはアニオン交換膜とカチオン交換膜の両方を配置した複式膜であっても良い。複式膜とは、イオン交換膜が厚さ方向と平行に分割されて、分割された領域の極性が異なるものをいう。例えば、イオン交換膜を二分し、装置上部側にはアニオン膜を配し、装置下部側にはカチオン膜を配したものが挙げられる。複式膜における、アニオン交換膜とカチオン交換膜との面積比率は、被処理水の水質や処理目的等によって、適宜決定することができる。なお、中間イオン交換膜の種類は、被処理水の水質や、脱イオン水に求める水質に応じて選択することが好ましい。   In the above-described embodiment, an anion exchange membrane is used for the intermediate ion exchange membrane 26. However, the intermediate ion exchange membrane is a cation exchange membrane or a dual membrane in which both an anion exchange membrane and a cation exchange membrane are arranged. Also good. The dual membrane means a membrane in which the ion exchange membrane is divided in parallel with the thickness direction and the polarities of the divided regions are different. For example, an ion exchange membrane is divided into two, an anion membrane is provided on the upper side of the device, and a cation membrane is provided on the lower side of the device. The area ratio between the anion exchange membrane and the cation exchange membrane in the duplex membrane can be appropriately determined depending on the quality of the water to be treated and the purpose of treatment. In addition, it is preferable to select the kind of intermediate ion exchange membrane according to the water quality of to-be-processed water and the water quality calculated | required by deionized water.

上述の実施形態では、濃縮室34にはアニオン交換樹脂が充填されているが、これに限られることはない。例えば、イオン交換繊維、モノリス状多孔質イオン交換体等が充填されていても良いし、カチオン交換体の単床形態、カチオン交換体・アニオン交換体の混床形態で充填されていても良い。さらに、イオン交換体を充填せずに、スペーサを配置しても良い。ただし、濃縮室でのスケール生成抑制の観点からは、イオン交換体を充填することが好ましく、特にアニオン交換体を充填することが、スケール生成抑制に効果的である。   In the above-described embodiment, the concentration chamber 34 is filled with an anion exchange resin, but is not limited thereto. For example, an ion exchange fiber, a monolithic porous ion exchanger, or the like may be filled, or a single bed form of a cation exchanger or a mixed bed form of a cation exchanger / anion exchanger may be filled. Furthermore, a spacer may be disposed without filling the ion exchanger. However, from the viewpoint of suppression of scale formation in the concentrating chamber, it is preferable to fill with an ion exchanger, and it is particularly effective to suppress scale generation by filling with an anion exchanger.

上述の実施形態では、陰極室12および陽極室16には、スペーサを配置しているが、イオン交換体を充填しても良い。充填されるイオン交換体は特に限定されず、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられる。また、カチオン交換体あるいはアニオン交換体を単床形態、またはカチオン交換体・アニオン交換体の混床形態で充填されていても良い。さらには、陰極14もしくは陽極18と、仕切り膜32との間に、アニオン交換体層とカチオン交換体層とからなる積層体が配列されていても良い。イオン交換体を陰極室12および陽極室16に充填することで、電気抵抗を低減することができるためである。   In the above embodiment, the cathode chamber 12 and the anode chamber 16 are provided with spacers, but may be filled with an ion exchanger. The ion exchanger to be filled is not particularly limited, and examples thereof include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers. The cation exchanger or anion exchanger may be packed in a single bed form or a mixed bed form of a cation exchanger / anion exchanger. Furthermore, a laminate composed of an anion exchanger layer and a cation exchanger layer may be arranged between the cathode 14 or the anode 18 and the partition film 32. This is because the electrical resistance can be reduced by filling the cathode chamber 12 and the anode chamber 16 with the ion exchanger.

上述の実施形態では、被処理水を、第一小脱塩室第一脱塩区D11(カチオン交換樹脂)、第二小脱塩室第一脱塩区D21(アニオン交換樹脂)、第一小脱塩室第二脱塩区D12(カチオン交換樹脂)、第二小脱塩室第二脱塩区D22(アニオン交換樹脂)の順で流通させているが、流通経路はこれに限定されるものではない。例えば、第二小脱塩室第一脱塩区D21(アニオン交換樹脂)、第一小脱塩室第一脱塩区D11(カチオン交換樹脂)、第二小脱塩室第二脱塩区D22(アニオン交換樹脂)、第一小脱塩室第二脱塩区D12(カチオン交換樹脂)の順に、被処理水を流通させても良い。ただし、高い水質を得る観点からは、上述の実施形態のように、被処理水を流通させることが好ましい。
また、各脱塩区における被処理水の流通方向は、上昇流であっても下降流であっても良い。
In the above-described embodiment, the water to be treated is divided into the first small desalting chamber first desalting zone D11 (cation exchange resin), the second small desalting chamber first desalting zone D21 (anion exchange resin), and the first small desalting zone. The desalting chamber second desalting zone D12 (cation exchange resin) and the second small desalting chamber second desalting zone D22 (anion exchange resin) are circulated in this order, but the distribution route is limited to this. is not. For example, the second small desalting chamber first desalting zone D21 (anion exchange resin), the first small desalting chamber first desalting zone D11 (cation exchange resin), the second small desalting chamber second desalting zone D22. The treated water may be circulated in the order of (anion exchange resin) and first small desalting chamber second desalting zone D12 (cation exchange resin). However, from the viewpoint of obtaining high water quality, it is preferable to distribute the water to be treated as in the above-described embodiment.
Moreover, the distribution direction of the water to be treated in each desalting zone may be an upward flow or a downward flow.

上述の実施形態では、濃縮水を上昇流にて流通させているが、濃縮水の流通方向は特に制限されず、下降流であっても良い。また、被処理水の流通方向との関係においても、特に限定されることはなく、被処理水の流通方向と同じであっても良いし、対向する方向であっても良く、直交する方向であっても良い。   In the above-described embodiment, the concentrated water is circulated in the upward flow. However, the flow direction of the concentrated water is not particularly limited, and may be a downward flow. Further, the relationship with the flow direction of the water to be treated is not particularly limited, and may be the same as the flow direction of the water to be treated, or may be in the opposite direction, or in a direction orthogonal to each other. There may be.

上述の実施形態では、電極水を上昇流としているが、下降流としても良い。また、電極水は、陰極室12を流通させた後に、陽極室16に流通させることに限られず、陽極室16から陰極室12へ流通させても良いし、電極水流出ラインB2から電極水を排出し、電極水流入ラインB3には、別の水源から電極水を供給しても良い。   In the above-described embodiment, the electrode water is an upward flow, but it may be a downward flow. In addition, the electrode water is not limited to flowing into the anode chamber 16 after flowing through the cathode chamber 12, but may flow from the anode chamber 16 to the cathode chamber 12, or the electrode water may be supplied from the electrode water outflow line B2. The electrode water may be discharged and supplied to the electrode water inflow line B3 from another water source.

上述の実施形態では、各小脱塩室を略二等分して、脱塩区を形成させているが、各脱塩区の大きさは同じであっても、異なっても良く、目的に応じて設定することができる。
また、上述の実施形態では、各小脱塩室を二分して脱塩区を形成しているが、各小脱塩室に形成される脱塩区は3以上であっても良い。
In the above-described embodiment, each small desalting chamber is approximately divided into two to form a desalting zone. However, the size of each desalting zone may be the same or different. It can be set accordingly.
In the above-described embodiment, each small desalting chamber is divided into two to form a desalting zone, but the number of desalting zones formed in each small desalting chamber may be three or more.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
<導電率・比抵抗>
水質評価には導電率ならびに比抵抗を用いた。不純物を全く含んでいない水の場合、25℃の水における導電率の理論値は0.055μS/cm、比抵抗の理論値は18.2MΩ・cmとなる。脱イオン水の水質は、比抵抗が18.2MΩ・cmに近づき、かつ高ければ高いほど水質としては清浄であると評価できる。脱イオン水の水質評価は、比抵抗をもって行った。
導電率は、導電率計(873CC、FOXBORO社製)を用いて測定した。また、比抵抗は、比抵抗計(873RS、FOXBORO社製)を用いて測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
<Conductivity / specific resistance>
For water quality evaluation, conductivity and specific resistance were used. In the case of water containing no impurities, the theoretical value of conductivity in water at 25 ° C. is 0.055 μS / cm, and the theoretical value of specific resistance is 18.2 MΩ · cm. As for the water quality of deionized water, the specific resistance approaches 18.2 MΩ · cm, and the higher, the higher the water quality. Deionized water quality was evaluated with specific resistance.
The conductivity was measured using a conductivity meter (873CC, manufactured by FOXBORO). The specific resistance was measured using a specific resistance meter (873RS, manufactured by FOXBORO).

<シリカ濃度>
EDIの処理性能の一指標となる、シリカ濃度を測定することにより、水質評価を行った。シリカ濃度は、分光光度計(U−3010、株式会社日立ハイテクノロジー製)を用い、モリブデン青吸光光度法により測定した。
<Silica concentration>
Water quality was evaluated by measuring the silica concentration, which is an index of EDI processing performance. The silica concentration was measured by molybdenum blue absorptiometry using a spectrophotometer (U-3010, manufactured by Hitachi High-Technology Corporation).

(実施例1)
下記仕様にて、図1に示すEDI10と同様のEDI−1を製造した。なお、EDI−1には3個の脱イオンモジュールを配置し、各脱イオンモジュールは、図2に示す脱イオンモジュール20と同様のものを用いた。
得られたEDI−1を用いて、下記運転条件下にて、脱イオン水の製造を2000時間行った。2000時間連続運転後に、得られた脱イオン水の比抵抗、シリカ濃度、EDI−1の平均印加電圧を測定し、その結果を表1に示す。なお、被処理水の硬度は原子吸光分光光度計(SpectrAA、VARIAN社製)での測定値であり、全炭酸濃度は湿式紫外線酸化TOC分析計(900型、SIEVERS社製)での測定値である。
<EDI−1仕様>
(1)カチオン交換膜:株式会社アストム製
(2)中間イオン交換膜:株式会社アストム製アニオン交換膜
(3)アニオン交換膜:株式会社アストム製
(4)第一脱小塩室厚さ:8mm
(5)第二脱小塩室厚さ:12mm
(6)脱塩区寸法:幅100mm×高さ140mm
(7)第一小脱塩室充填イオン交換体:カチオン交換樹脂(ローム・アンド・ハース社製)単床形態
(8)第二小脱塩室充填イオン交換体:アニオン交換樹脂(ローム・アンド・ハース社製)単床形態
(9)濃縮室充填イオン交換体:アニオン交換樹脂(ローム・アンド・ハース社製)単床形態
Example 1
EDI-1 similar to EDI10 shown in FIG. In addition, three deionization modules were arrange | positioned in EDI-1, and the thing similar to the deionization module 20 shown in FIG. 2 was used for each deionization module.
Using the obtained EDI-1, deionized water was produced for 2000 hours under the following operating conditions. After 2000 hours of continuous operation, the specific resistance, silica concentration, and average applied voltage of EDI-1 obtained were measured, and the results are shown in Table 1. The hardness of the water to be treated is a value measured with an atomic absorption spectrophotometer (SpectrAA, manufactured by Varian), and the total carbonic acid concentration is a value measured with a wet ultraviolet oxidation TOC analyzer (model 900, manufactured by SIEVERS). is there.
<EDI-1 specification>
(1) Cation exchange membrane: Astom Co., Ltd. (2) Intermediate ion exchange membrane: Astom Co., Ltd. anion exchange membrane (3) Anion exchange membrane: Astom Co., Ltd. (4) First demineralized salt chamber thickness: 8 mm
(5) Second desalination chamber thickness: 12 mm
(6) Desalted zone dimensions: width 100mm x height 140mm
(7) Ion exchanger filled with the first small desalting chamber: Cation exchange resin (Rohm and Haas) single bed configuration (8) Ion exchanger filled with the second small desalting chamber: Anion exchange resin (Rohm and Haas) (Heas) Single bed configuration (9) Concentration chamber filled ion exchanger: Anion exchange resin (Rohm and Haas) Single bed configuration

<運転条件>
(1)被処理水:工業用水を逆浸透膜装置で処理して得た水
(2)被処理水の導電率:6.2μS/cm
(3)被処理水の比抵抗:0.16MΩ・cm
(4)被処理水中のシリカ濃度:719μg/L
(5)被処理水中硬度:0.4mgCaCO/L
(6)被処理水中全炭酸濃度:7.2mgCO/L
(7)被処理水流量:0.3m/h
(8)濃縮水流量:0.1m/h
(9)電極水流量:10L/h
(10)運転電流値:2.4A
<Operating conditions>
(1) Water to be treated: Water obtained by treating industrial water with a reverse osmosis membrane device (2) Conductivity of water to be treated: 6.2 μS / cm
(3) Specific resistance of water to be treated: 0.16 MΩ · cm
(4) Silica concentration in treated water: 719 μg / L
(5) Hardness in water to be treated: 0.4 mg CaCO 3 / L
(6) Total carbonic acid concentration in treated water: 7.2 mg CO 2 / L
(7) Flow rate of water to be treated: 0.3 m 3 / h
(8) Concentrated water flow rate: 0.1 m 3 / h
(9) Electrode water flow rate: 10 L / h
(10) Operating current value: 2.4A

(実施例2)
被処理水を変え、下記運転条件とした以外は、実施例1と同様にしてEDI−1にて脱イオン水の製造を行った。下記運転条件にて、2000時間連続運転後に、得られた脱イオン水の比抵抗、シリカ濃度、EDI−1の平均印加電圧を測定し、その結果を表1に示す。
<運転条件>
(1)被処理水:工業用水を逆浸透膜装置で処理して得た水
(2)被処理水の導電率:9.8μS/cm
(3)被処理水の比抵抗:0.10MΩ・cm
(4)被処理水中のシリカ濃度:1021μg/L
(5)被処理水中硬度:0.7mgCaCO/L
(6)被処理水中全炭酸濃度:12.1mgCO/L
(7)被処理水流量:0.3m/h
(8)濃縮水流量:0.1m/h
(9)電極水流量:10L/h
(10)運転電流値:2.4A
(Example 2)
Deionized water was produced with EDI-1 in the same manner as in Example 1 except that the water to be treated was changed to the following operating conditions. Under the following operating conditions, after 2000 hours of continuous operation, the specific resistance, silica concentration, and average applied voltage of EDI-1 obtained were measured, and the results are shown in Table 1.
<Operating conditions>
(1) Water to be treated: Water obtained by treating industrial water with a reverse osmosis membrane device (2) Conductivity of water to be treated: 9.8 μS / cm
(3) Specific resistance of water to be treated: 0.10 MΩ · cm
(4) Silica concentration in treated water: 1021 μg / L
(5) Hardness in water to be treated: 0.7 mg CaCO 3 / L
(6) Total carbonic acid concentration in treated water: 12.1 mg CO 2 / L
(7) Flow rate of water to be treated: 0.3 m 3 / h
(8) Concentrated water flow rate: 0.1 m 3 / h
(9) Electrode water flow rate: 10 L / h
(10) Operating current value: 2.4A

(比較例1)
脱イオンモジュール20を、図5に示す脱イオンモジュール120とした他は、実施例1と同様にして、EDI−2を製造した。図5を用いて、脱イオンモジュール120と、EDI−2における被処理水の流通方法について、説明する。
図5に示すとおり、脱イオンモジュール120は、枠体124の一側にカチオン交換膜122が配置され、枠体124のくりぬかれた部分に、カチオン交換樹脂が充填されて第一小脱塩室D1’が形成され、枠体124の他側に、中間イオン交換膜126としてアニオン交換膜が配置されている。さらに、中間イオン交換膜126を挟み込むように枠体128が配置され、枠体128のくりぬかれた部分に、アニオン交換樹脂が充填されて、第二小脱塩室D2’が形成され、枠体128の他側にアニオン交換膜130が配置されている。
また、脱イオンモジュール120には、被処理水流入ラインA1’と脱イオン水流出ラインA2’とが、接続されている。そして、カチオン交換膜122、枠体124、中間イオン交換膜126、枠体128、アニオン交換膜130には、被処理水が流通する連通孔121a、121b、123a〜123c、125a、125b、127a〜127c、129a、129bが、設けられている。加えて、枠体124、128には、連通孔123a、123b、127b、127cと、脱塩区とを連通する、被処理水の流路が設けられている。
(Comparative Example 1)
EDI-2 was produced in the same manner as in Example 1 except that the deionization module 20 was changed to the deionization module 120 shown in FIG. The deionization module 120 and the distribution method of the to-be-processed water in EDI-2 are demonstrated using FIG.
As shown in FIG. 5, the deionization module 120 includes a cation exchange membrane 122 disposed on one side of a frame body 124, and a cation exchange resin is filled in a hollowed portion of the frame body 124 so that a first small desalination chamber is formed. D1 ′ is formed, and an anion exchange membrane is disposed as an intermediate ion exchange membrane 126 on the other side of the frame 124. Further, a frame body 128 is disposed so as to sandwich the intermediate ion exchange membrane 126, and a hollow portion of the frame body 128 is filled with an anion exchange resin to form a second small desalting chamber D2 ′. An anion exchange membrane 130 is arranged on the other side of 128.
In addition, to-be-treated water inflow line A1 ′ and deionized water outflow line A2 ′ are connected to deionization module 120. The cation exchange membrane 122, the frame body 124, the intermediate ion exchange membrane 126, the frame body 128, and the anion exchange membrane 130 have communication holes 121a, 121b, 123a to 123c, 125a, 125b, 127a to which treated water flows. 127c, 129a, and 129b are provided. In addition, the frames 124 and 128 are provided with a flow path of water to be treated that communicates the communication holes 123a, 123b, 127b, and 127c with the desalted zone.

被処理水は、被処理水流入ラインA1’から、連通孔121aを流通し、連通孔123aに至り、カチオン交換樹脂が充填された第一小脱塩室D1’へ流入する。第一小脱塩室D1’へ流入した被処理水は、カチオン交換樹脂内を拡散しながら流通し、連通孔123bに至る。この間、主に、被処理水中のカチオン交換樹脂が除去される。次いで、被処理水は連通孔123bから、連通孔125a、127a、129aを流通した後、図示されない配管を経由して、連通孔129bに至る。そして、被処理水は、連通孔129bから、連通孔127bに至り、第二小脱塩室D2’内へ流入する。第二小脱塩室D2’に流入した被処理水は、アニオン交換樹脂内を拡散しながら流通し、連通孔127cに至る。この間、主に、被処理水中のアニオン成分が除去される。こうして、被処理水は、カチオン成分とアニオン成分が除去されて、連通孔127cから、連通孔125b、123c、121bを流通し、脱イオン水流出ラインA2’より、脱イオン水となって流出する。   The treated water flows from the treated water inflow line A1 'through the communication hole 121a, reaches the communication hole 123a, and flows into the first small desalination chamber D1' filled with the cation exchange resin. The treated water that has flowed into the first small desalting chamber D1 'flows while diffusing in the cation exchange resin, and reaches the communication hole 123b. During this time, the cation exchange resin in the water to be treated is mainly removed. Next, the water to be treated flows from the communication hole 123b through the communication holes 125a, 127a, and 129a, and then reaches the communication hole 129b via a pipe (not shown). Then, the water to be treated reaches the communication hole 127b from the communication hole 129b and flows into the second small desalination chamber D2 '. The treated water that has flowed into the second small desalting chamber D2 'flows while diffusing in the anion exchange resin and reaches the communication hole 127c. During this time, the anion component in the water to be treated is mainly removed. In this way, the cation component and the anion component are removed from the water to be treated, and it flows from the communication hole 127c through the communication holes 125b, 123c, 121b, and flows out from the deionized water outflow line A2 ′ as deionized water. .

上記のEDI−2の仕様、および運転条件は以下のとおりである。下記運転条件にて、2000時間連続運転後に、得られた脱イオン水の比抵抗、シリカ濃度、EDI−2の平均印加電圧を測定し、その結果を表1に示す。
<EDI−2仕様>
(1)カチオン交換膜:株式会社アストム製
(2)中間イオン交換膜:株式会社アストム製アニオン交換膜
(3)アニオン交換膜:株式会社アストム製
(4)第一脱小塩室厚さ:8mm
(5)第二脱小塩室厚さ:12mm
(6)小脱塩室寸法:幅200mm×高さ140mm
(7)第一小脱塩室充填イオン交換体:カチオン交換樹脂(ローム・アンド・ハース社製)単床形態
(8)第二小脱塩室充填イオン交換体:アニオン交換樹脂(ローム・アンド・ハース社製)単床形態
(9)濃縮室充填イオン交換体:アニオン交換樹脂(ローム・アンド・ハース社製)単床形態
The specifications of EDI-2 and the operating conditions are as follows. Under the following operating conditions, after 2000 hours of continuous operation, the specific resistance of the obtained deionized water, the silica concentration, and the average applied voltage of EDI-2 were measured, and the results are shown in Table 1.
<EDI-2 specification>
(1) Cation exchange membrane: Astom Co., Ltd. (2) Intermediate ion exchange membrane: Astom Co., Ltd. anion exchange membrane (3) Anion exchange membrane: Astom Co., Ltd. (4) First demineralized salt chamber thickness: 8 mm
(5) Second desalination chamber thickness: 12 mm
(6) Small desalination chamber dimensions: Width 200mm x Height 140mm
(7) Ion exchanger filled with the first small desalting chamber: Cation exchange resin (Rohm and Haas) single bed configuration (8) Ion exchanger filled with the second small desalting chamber: Anion exchange resin (Rohm and Haas) (Heas) Single bed configuration (9) Concentration chamber filled ion exchanger: Anion exchange resin (Rohm and Haas) Single bed configuration

<運転条件>
(1)被処理水:工業用水を逆浸透膜装置で処理して得た水
(2)被処理水の導電率:6.2μS/cm
(3)被処理水の比抵抗:0.16MΩ・cm
(4)被処理水中のシリカ濃度:719μg/L
(5)被処理水中硬度:0.4mgCaCO/L
(6)被処理水中全炭酸濃度:7.2mgCO/L
(7)被処理水流量:0.3m/h
(8)濃縮水流量:0.1m/h
(9)電極水流量:10L/h
(10)運転電流値:2.4A
<Operating conditions>
(1) Water to be treated: Water obtained by treating industrial water with a reverse osmosis membrane device (2) Conductivity of water to be treated: 6.2 μS / cm
(3) Specific resistance of water to be treated: 0.16 MΩ · cm
(4) Silica concentration in treated water: 719 μg / L
(5) Hardness in water to be treated: 0.4 mg CaCO 3 / L
(6) Total carbonic acid concentration in treated water: 7.2 mg CO 2 / L
(7) Flow rate of water to be treated: 0.3 m 3 / h
(8) Concentrated water flow rate: 0.1 m 3 / h
(9) Electrode water flow rate: 10 L / h
(10) Operating current value: 2.4A

(比較例2)
被処理水を変え、下記運転条件とした以外は、比較例1と同様にしてEDI−2にて脱イオン水の製造を行った。下記運転条件にて、2000時間連続運転後に、得られた脱イオン水の比抵抗、シリカ濃度、EDI−2の平均印加電圧を測定し、その結果を表1に示す。
<運転条件>
(1)被処理水:工業用水を逆浸透膜装置で処理して得た水
(2)被処理水の導電率:9.8μS/cm
(3)被処理水の比抵抗:0.10MΩ・cm
(4)被処理水中のシリカ濃度:1021μg/L
(5)被処理水中硬度:0.7mgCaCO/L
(6)被処理水中全炭酸濃度:12.1mgCO/L
(7)被処理水流量:0.3m/h
(8)濃縮水流量:0.1m/h
(9)電極水流量:10L/h
(10)運転電流値:2.4A
(Comparative Example 2)
Deionized water was produced with EDI-2 in the same manner as in Comparative Example 1 except that the water to be treated was changed to the following operating conditions. Under the following operating conditions, after 2000 hours of continuous operation, the specific resistance of the obtained deionized water, the silica concentration, and the average applied voltage of EDI-2 were measured, and the results are shown in Table 1.
<Operating conditions>
(1) Water to be treated: Water obtained by treating industrial water with a reverse osmosis membrane device (2) Conductivity of water to be treated: 9.8 μS / cm
(3) Specific resistance of water to be treated: 0.10 MΩ · cm
(4) Silica concentration in treated water: 1021 μg / L
(5) Hardness in water to be treated: 0.7 mg CaCO 3 / L
(6) Total carbonic acid concentration in treated water: 12.1 mg CO 2 / L
(7) Flow rate of water to be treated: 0.3 m 3 / h
(8) Concentrated water flow rate: 0.1 m 3 / h
(9) Electrode water flow rate: 10 L / h
(10) Operating current value: 2.4A

Figure 2009142724
Figure 2009142724

表1に示すとおり、実施例1と、比較例1とでは、印加電圧の差異は、殆ど見られなかった。しかし、実施例1では、比抵抗が16.1MΩ・cm、シリカ濃度1.2μg/Lという、極めて高い水質の脱イオン水が得られた。これに対し、比較例1では、比抵抗4.0MΩ・cm、シリカ濃度106μg/Lという低い水質の脱イオン水が得られた。このことから、小脱塩室に脱塩区を設けて多段処理をすることで、大幅な水質の向上が実現できることがわかった。脱イオン水製造開始から2000時間経過した時点で、EDI−1およびEDI−2を解体したところ、目視では濃縮室にスケールの生成は認められなかった。
また、実施例2では、実施例1よりもシリカ濃度、全炭酸濃度が高い被処理水を用いたが、比抵抗14.4MΩ・cmという高い水質を得ることができた。一方、実施例2と同じ被処理液を用いた比較例2では、脱イオン水の比抵抗は1.3MΩ・cm、シリカ濃度320μgLという、極めて低い水質であった。
As shown in Table 1, there was almost no difference in applied voltage between Example 1 and Comparative Example 1. However, in Example 1, deionized water with extremely high water quality having a specific resistance of 16.1 MΩ · cm and a silica concentration of 1.2 μg / L was obtained. On the other hand, in Comparative Example 1, deionized water having a low water quality with a specific resistance of 4.0 MΩ · cm and a silica concentration of 106 μg / L was obtained. From this, it was found that a large improvement in water quality can be realized by providing a desalting zone in the small desalting chamber and performing multi-stage treatment. When 2000 hours passed from the start of the production of deionized water, EDI-1 and EDI-2 were disassembled. As a result, generation of scale was not visually recognized in the concentration chamber.
In Example 2, water to be treated having higher silica concentration and total carbonic acid concentration than Example 1 was used, but a high water quality with a specific resistance of 14.4 MΩ · cm could be obtained. On the other hand, in Comparative Example 2 using the same liquid to be treated as in Example 2, the specific resistance of deionized water was 1.3 MΩ · cm and the silica concentration was 320 μgL, and the water quality was extremely low.

本発明の実施形態にかかるEDIの模式図である。It is a schematic diagram of EDI concerning the embodiment of the present invention. 本発明の実施形態にかかる脱イオンモジュールの斜視図である。It is a perspective view of the deionization module concerning the embodiment of the present invention. 本発明の実施形態にかかる脱イオンモジュールの模式図である。It is a schematic diagram of the deionization module concerning embodiment of this invention. 1セル構造のEDIの脱イオンモジュールの模式図である。It is a schematic diagram of the deionization module of EDI of 1 cell structure. 比較例に用いた脱イオンモジュールの斜視図である。It is a perspective view of the deionization module used for the comparative example.

符号の説明Explanation of symbols

10 電気式脱イオン水製造装置
12 陰極室
14 陰極電極
16 陽極室
18 陽極電極
22、122、222 カチオン交換膜
26、126 中間イオン交換膜
30、130、230 アニオン交換膜
34、134、234 濃縮室
D、224 脱塩室
D1、D1’ 第一小脱塩室
D2、D2’ 第二小脱塩室
D11 第一小脱塩室第一脱塩区
D12 第一小脱塩室第二脱塩区
D21 第二小脱塩室第一脱塩区
D22 第二小脱塩室第二脱塩区
DESCRIPTION OF SYMBOLS 10 Electric deionized water production apparatus 12 Cathode chamber 14 Cathode electrode 16 Anode chamber 18 Anode electrode 22, 122, 222 Cation exchange membrane 26, 126 Intermediate ion exchange membrane 30, 130, 230 Anion exchange membrane 34, 134, 234 Concentration chamber D, 224 Desalination chamber D1, D1 ′ First small desalination chamber D2, D2 ′ Second small desalination chamber D11 First small desalination chamber first desalination zone D12 First small desalination chamber second desalination zone D21 2nd small desalination chamber 1st desalination zone D22 2nd small desalination chamber 2nd desalination zone

Claims (10)

一側のカチオン交換膜と、他側のアニオン交換膜とで区画される空間にイオン交換体が充填されて脱塩室が設けられ、
前記カチオン交換膜および前記アニオン交換膜を介して、前記脱塩室の両側に濃縮室が設けられ、
前記脱塩室と前記濃縮室とが、陽極電極を備えた陽極室と陰極電極を備えた陰極室との間に配置された電気式脱イオン水製造装置であって、
前記脱塩室には、前記カチオン交換膜と前記アニオン交換膜との間に配置された中間イオン交換膜によって、脱塩室の厚さ方向に区画された第一小脱塩室と第二小脱塩室が形成され、
かつ前記第一小脱塩室と第二小脱塩室とには、脱塩室の厚さ方向と平行に、多段に区画された脱塩区が形成されていることを特徴とする、電気式脱イオン水製造装置。
A space partitioned by the cation exchange membrane on one side and the anion exchange membrane on the other side is filled with an ion exchanger to provide a desalting chamber,
A concentration chamber is provided on both sides of the desalting chamber via the cation exchange membrane and the anion exchange membrane,
The demineralized chamber and the concentrating chamber are an electrical deionized water production apparatus disposed between an anode chamber having an anode electrode and a cathode chamber having a cathode electrode,
In the desalting chamber, a first small desalting chamber and a second small desalting chamber partitioned in the thickness direction of the desalting chamber by an intermediate ion exchange membrane disposed between the cation exchange membrane and the anion exchange membrane. A desalination chamber is formed,
In addition, the first small desalting chamber and the second small desalting chamber are formed with a multi-stage desalting zone parallel to the thickness direction of the desalting chamber. Type deionized water production equipment.
前記中間イオン交換膜は、カチオン交換膜あるいはアニオン交換膜の単一膜、またはカチオン交換膜およびアニオン交換膜の両方を配置した複式膜であることを特徴とする、請求項1に記載の電気式脱イオン水製造装置。   The electric system according to claim 1, wherein the intermediate ion exchange membrane is a single membrane of a cation exchange membrane or an anion exchange membrane, or a dual membrane in which both a cation exchange membrane and an anion exchange membrane are arranged. Deionized water production equipment. 前記第一小脱塩室には、カチオン交換体が単床形態で充填され、第二小脱塩室には、アニオン交換体が単床形態で充填されていることを特徴とする、請求項1または2に記載の電気式脱イオン水製造装置。   The first small desalting chamber is filled with a cation exchanger in a single bed form, and the second small desalting chamber is filled with an anion exchanger in a single bed form. The electric deionized water production apparatus according to 1 or 2. 前記第一小脱塩室の厚さは、前記第二小脱塩室の厚さよりも薄いことを特徴とする、請求項3に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 3, wherein the thickness of the first small desalting chamber is smaller than the thickness of the second small desalting chamber. 前記第一小脱塩室の厚さは4〜16mmであって、かつ前記第二小脱塩室の厚さは8〜22mmであることを特徴とする、請求項3または4に記載の電気式脱イオン水製造装置。   5. The electricity according to claim 3, wherein the first small desalting chamber has a thickness of 4 to 16 mm, and the second small desalting chamber has a thickness of 8 to 22 mm. Type deionized water production equipment. 前記第一小脱塩室は、脱塩室の厚さ方向と平行に二分されて、第一小脱塩室第一脱塩区と第一小脱塩室第二脱塩区とが形成され、前記第二小脱塩室は、脱塩室の厚さ方向と平行に二分されて、第二小脱塩室第一脱塩区と第二小脱塩室第二脱塩区とが形成され、被処理水が、第一小脱塩室第一脱塩区、第二小脱塩室第一脱塩区、第一小脱塩室第二脱塩区、第二小脱塩室第二脱塩区の順に、流れるように制御されていることを特徴とする、請求項1〜5のいずれか1項に記載の電気式脱イオン水製造装置。   The first small desalting chamber is divided into two in parallel with the thickness direction of the desalting chamber to form a first small desalting chamber first desalting zone and a first small desalting chamber second desalting zone. The second small desalting chamber is divided into two in parallel with the thickness direction of the desalting chamber, so that a second small desalting chamber first desalting zone and a second small desalting chamber second desalting zone are formed. Water to be treated is a first small desalting chamber, a first desalting zone, a second small desalting chamber, a first desalting zone, a first small desalting chamber, a second desalting zone, and a second small desalting chamber. The electric deionized water production apparatus according to any one of claims 1 to 5, wherein the apparatus is controlled to flow in the order of two demineralized zones. 前記濃縮室には、アニオン交換体が単床形態で充填されていることを特徴とする、請求項1〜6のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 6, wherein the concentration chamber is filled with an anion exchanger in a single-bed form. 前記陰極室および前記陽極室には、イオン交換体が、アニオン交換体もしくはカチオン交換体の単床形態、あるいはアニオン交換体およびカチオン交換体の混床形態で充填され、または陰極もしくは陽極と、仕切り膜との間に、アニオン交換体層とカチオン交換体層とからなる積層体が配列されていることを特徴とする、請求項1〜7のいずれか1項に記載の電気式脱イオン水製造装置。   The cathode chamber and the anode chamber are filled with an ion exchanger in a single bed form of an anion exchanger or a cation exchanger, or in a mixed bed form of an anion exchanger and a cation exchanger, or separated from a cathode or an anode. The electric deionized water production according to any one of claims 1 to 7, wherein a laminate composed of an anion exchanger layer and a cation exchanger layer is arranged between the membrane and the membrane. apparatus. 前記陰極電極および/または前記陽極電極は、対応する脱塩区毎に分割され、各電極に印加する電流が別々に制御されることを特徴とする、請求項1〜8のいずれか1項に記載の電気式脱イオン水製造装置。   The said cathode electrode and / or said anode electrode are divided | segmented for every corresponding desalination zone, The electric current applied to each electrode is controlled separately, The any one of Claims 1-8 characterized by the above-mentioned. The electric deionized water production apparatus as described. 請求項1〜9に記載の電気式脱イオン水製造装置を用いた脱イオン水の製造方法であって、複数の脱塩区に被処理水を流通させることを特徴とする、脱イオン水の製造方法。   A method for producing deionized water using the electric deionized water production apparatus according to claim 1, wherein treated water is circulated through a plurality of demineralized zones. Production method.
JP2007320644A 2007-12-12 2007-12-12 Electric deionized water production apparatus and deionized water production method Expired - Fee Related JP4819026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320644A JP4819026B2 (en) 2007-12-12 2007-12-12 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320644A JP4819026B2 (en) 2007-12-12 2007-12-12 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2009142724A true JP2009142724A (en) 2009-07-02
JP4819026B2 JP4819026B2 (en) 2011-11-16

Family

ID=40914002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320644A Expired - Fee Related JP4819026B2 (en) 2007-12-12 2007-12-12 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP4819026B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189320A (en) * 2010-03-16 2011-09-29 Japan Organo Co Ltd Electric type deionized water producing apparatus
JP2015199039A (en) * 2014-04-09 2015-11-12 オルガノ株式会社 deionized water production apparatus
JP2015199038A (en) * 2014-04-09 2015-11-12 オルガノ株式会社 deionized water production apparatus
WO2019067007A1 (en) * 2016-09-30 2019-04-04 Curion Research Corporation Dialysate free artificial kidney device
CN112340917A (en) * 2020-11-04 2021-02-09 江汉大学 Method and system for treating radioactive wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616904A (en) * 1979-07-31 1981-02-18 Pioneer Electronic Corp Construction of door for electronic apparatus
JPS5710306A (en) * 1980-06-18 1982-01-19 Tokuyama Soda Co Ltd Electrodialysis process
JPH07328395A (en) * 1994-06-15 1995-12-19 Japan Organo Co Ltd Electrodialytic apparatus
JP2001239270A (en) * 1999-03-25 2001-09-04 Japan Organo Co Ltd Device for electrically manufacturing deionized water and method for manufacturing deionized water
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616904A (en) * 1979-07-31 1981-02-18 Pioneer Electronic Corp Construction of door for electronic apparatus
JPS5710306A (en) * 1980-06-18 1982-01-19 Tokuyama Soda Co Ltd Electrodialysis process
JPH07328395A (en) * 1994-06-15 1995-12-19 Japan Organo Co Ltd Electrodialytic apparatus
JP2001239270A (en) * 1999-03-25 2001-09-04 Japan Organo Co Ltd Device for electrically manufacturing deionized water and method for manufacturing deionized water
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189320A (en) * 2010-03-16 2011-09-29 Japan Organo Co Ltd Electric type deionized water producing apparatus
JP2015199039A (en) * 2014-04-09 2015-11-12 オルガノ株式会社 deionized water production apparatus
JP2015199038A (en) * 2014-04-09 2015-11-12 オルガノ株式会社 deionized water production apparatus
JP2020535014A (en) * 2016-09-30 2020-12-03 ユーエス キドニー リサーチ コーポレイション Artificial kidney device without dialysate
KR20200083460A (en) * 2016-09-30 2020-07-08 유에스 키드니 리서치 코퍼레이션 Artificial kidney device without dialysis fluid
CN111629813A (en) * 2016-09-30 2020-09-04 美国肾脏研究公司 Dialysis-liquid-free artificial kidney device
WO2019067007A1 (en) * 2016-09-30 2019-04-04 Curion Research Corporation Dialysate free artificial kidney device
US10933184B2 (en) 2016-09-30 2021-03-02 Us Kidney Research Corporation Dialysate free artificial kidney device
CN111629813B (en) * 2016-09-30 2022-05-06 美国肾脏研究公司 Dialysis-liquid-free artificial kidney device
JP7213563B2 (en) 2016-09-30 2023-01-27 ユーエス キドニー リサーチ コーポレイション Dialysate-free artificial kidney device
KR102545002B1 (en) 2016-09-30 2023-06-21 유에스 키드니 리서치 코퍼레이션 artificial kidney device without dialysate
AU2018341989B2 (en) * 2016-09-30 2024-02-08 Us Kidney Research Corporation Dialysate free artificial kidney device
CN112340917A (en) * 2020-11-04 2021-02-09 江汉大学 Method and system for treating radioactive wastewater
CN112340917B (en) * 2020-11-04 2023-12-22 江汉大学 Method and system for treating radioactive wastewater

Also Published As

Publication number Publication date
JP4819026B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
WO2004002898A1 (en) Electric deionizer
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP2017070947A (en) Electric purifier and method for manufacturing electric purifier
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP4400218B2 (en) Electric deionization apparatus and deionization method
JP5015990B2 (en) Electric deionized water production equipment
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP3966103B2 (en) Operation method of electrodeionization equipment
JP5114307B2 (en) Electric deionized water production equipment
JP2009208046A (en) Apparatus for producing electrodeionization water
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2006159064A (en) Electric deionized liquid production apparatus and method for producing deionized liquid
JP2001259646A (en) Electric deionized water producer
JP2009112925A (en) Spiral type deionized water production device
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP4397089B2 (en) Operation method of electric deionized water production equipment
JP4453972B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JP4979677B2 (en) Electric deionized water production equipment
JP4819020B2 (en) Spiral type electric deionized water production equipment
JP4869297B2 (en) Electric deionized water production equipment
JP5058217B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001321773A (en) Apparatus and method for making electro-deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees