WO2016143540A1 - Electrolytic water generating apparatus - Google Patents

Electrolytic water generating apparatus Download PDF

Info

Publication number
WO2016143540A1
WO2016143540A1 PCT/JP2016/055622 JP2016055622W WO2016143540A1 WO 2016143540 A1 WO2016143540 A1 WO 2016143540A1 JP 2016055622 W JP2016055622 W JP 2016055622W WO 2016143540 A1 WO2016143540 A1 WO 2016143540A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
anode
cathode
case piece
feeder
Prior art date
Application number
PCT/JP2016/055622
Other languages
French (fr)
Japanese (ja)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Publication of WO2016143540A1 publication Critical patent/WO2016143540A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • the present invention relates to an electrolyzed water generating apparatus for electrolyzing water to generate electrolyzed hydrogen water.
  • an electrolyzed water generating apparatus that includes an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water is known.
  • an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water.
  • Electrolyzed hydrogen water in which hydrogen gas produced in the cathode chamber of the electrolyzed water generator is dissolved is expected to exert an excellent effect on improving gastrointestinal symptoms.
  • electrolytic hydrogen water generated by an electrolyzed water generating apparatus has been attracting attention as being suitable for removal of active oxygen.
  • the diaphragm is formed thin in order to efficiently pass ions between the anode chamber and the cathode chamber.
  • the pressure difference generated between the anode chamber and the cathode chamber is excessive. If it becomes too large, the diaphragm may be damaged.
  • the electrolyzed water generating apparatus of Patent Document 1 employs a structure in which a laminated body composed of an anode feeder, a diaphragm, and a cathode feeder is sandwiched and supported by convex portions of case pieces constituting the electrolytic cell.
  • the edge portions of the anode feeder and the cathode feeder are not supported by the case pieces and are free ends. Therefore, it is difficult to ensure a sufficient contact pressure between the edge portions of the anode power supply body and the cathode power supply body and the diaphragm, and the contact resistance between them increases. As a result, the electrolysis current supplied to the edge portions of the anode power supply body and the cathode power supply body may decrease, and electrolysis may be hindered.
  • the present invention has been devised in view of the above-described circumstances, and is capable of easily increasing the dissolved hydrogen concentration by promoting electrolysis at the edge portions of the anode feeder and the cathode feeder.
  • the main purpose is to provide a water generator.
  • the present invention includes an electrolytic cell in which an electrolysis chamber to which water to be electrolyzed is formed, an anode power feeding body and a cathode power feeding body arranged to face each other in the electrolysis chamber, the anode power feeding body, and the An electrolyzed water generating device provided with a diaphragm disposed between a cathode power supply and dividing the electrolysis chamber into an anode chamber on the anode power supply side and a cathode chamber on the cathode power supply side, A diaphragm is sandwiched between the anode power supply body and the cathode power supply body, and the electrolytic cell is formed by fixing the first case piece on the anode power supply side and the second case piece on the cathode power supply side.
  • a first convex portion that is in contact with the anode feeder is provided on an inner surface of the first case piece facing the electrolysis chamber side, and an inner surface of the second case piece facing the electrolysis chamber side Is provided with a second convex portion in contact with the cathode power supply body, Convex portion includes an edge portion abutting the first protrusion of the anode current collector, the second convex portion, characterized in that it comprises an edge portion abutting the second projection of the cathode current collector.
  • a plurality of the first protrusions are provided along an edge portion of the anode power supply body, and the second protrusions are provided along an edge edge portion of the cathode power supply body. It is desirable to provide a plurality.
  • the second protrusion is disposed between the adjacent first protrusions.
  • the first protrusion and the second protrusion include a vertically long protrusion along a flow of water in the electrolysis chamber, and the vertically long protrusion is the anode feeder.
  • the cathode power supply body be in contact with a lateral end edge in a lateral direction perpendicular to the longitudinal direction.
  • the first protrusion and the second protrusion include a laterally long protrusion in a lateral direction perpendicular to the longitudinal direction, and the laterally elongated protrusion is the anode power supply or the cathode power supply. It is desirable to contact the longitudinal edge of the body in the longitudinal direction.
  • the top portion of the first convex portion includes a curved surface having a center on the first case piece side, and the top portion of the second convex portion is the second case piece. It is desirable to include a curved surface having a center on the side.
  • the inner surface of the first case piece facing the electrolysis chamber faces the second convex portion with the diaphragm, the anode power supply body, and the cathode power supply body interposed therebetween.
  • a first small protrusion having a height smaller than that of the first convex portion is disposed at a position, and the diaphragm, the anode power supply, and the cathode power supply are formed on the inner surface of the second case piece facing the electrolysis chamber. It is desirable that a plurality of second small protrusions having a height smaller than that of the second convex portion be disposed at a position facing the first convex portion across the body.
  • the first small protrusion does not contact with the anode power supply, and the second small protrusion does not contact with the cathode power supply.
  • a plurality of first convex portions that contact the anode power feeder are disposed on the inner surface of the first case piece facing the electrolysis chamber side, And a first protrusion abutting against the edge of the anode power feeder.
  • a plurality of second convex portions that contact the cathode power supply body are disposed, and the second convex portions are in contact with the edge portions of the cathode power supply body.
  • the edge part of a cathode electric power feeder is pressed to the diaphragm side by a 2nd convex part, and the contact pressure of the edge part of a cathode electric power feeder and a diaphragm is raised. Therefore, the electrolytic current flowing through the edge portions of the anode power supply body and the cathode power supply body is increased, and electrolysis at each edge portion is promoted. Therefore, it is possible to easily increase the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the cathode chamber.
  • FIG. 5 is an assembled cross-sectional view of the electrolytic cell including the AA cross section and the BB cross section of FIG. 4. It is sectional drawing of the electrolytic cell in the same cross section as FIG. It is a perspective view which shows the modification of the 1st case piece of FIG. It is a perspective view which shows the modification of the 2nd case piece of FIG. It is a perspective view which shows another modification of the 1st case piece of FIG. 3, and a 2nd case piece. It is a perspective view which shows another modification of the 1st case piece and 2nd case piece of FIG.
  • FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment.
  • the electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.
  • the electrolyzed water generating apparatus 1 includes an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, and an anode power supply 41 and a cathode power supply 42 that are disposed to face each other in the electrolysis chamber 40. And a diaphragm 43 disposed between the anode power supply 41 and the cathode power supply 42.
  • Another electrolytic cell may be provided upstream or downstream of the electrolytic cell 4. Further, another electrolytic cell may be provided in parallel with the electrolytic cell 4. A configuration equivalent to that of the electrolytic cell 4 can also be applied to the electrolytic cell provided separately.
  • the diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. Water is supplied to both the anode chamber 40 ⁇ / b> A and the cathode chamber 40 ⁇ / b> B of the electrolysis chamber 40, and a DC voltage is applied to the anode power supply 41 and the cathode power supply 42, whereby water is electrolyzed in the electrolysis chamber 40.
  • the diaphragm 43 allows ions generated by electrolysis to pass therethrough, and the anode feeder 41 and the cathode feeder 42 are electrically connected through the diaphragm 43.
  • a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used for the diaphragm 43.
  • electrolytic cell 4 having the diaphragm 43 using a solid polymer material
  • neutral electrolytic hydrogen water and electrolytic oxygen water are generated.
  • electrolytic hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40B
  • electrolytic oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40A.
  • the electrolyzed water generating apparatus 1 further includes a control means 6 for controlling the electrolyzer 4, a water inlet 7 provided on the upstream side of the electrolyzer 4, and a water outlet 8 provided on the downstream side of the electrolyzer 4. ing.
  • the control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
  • a CPU Central Processing Unit
  • a program that controls the operation of the CPU
  • a memory that stores various information.
  • Current detection means 44 is provided on the current supply line between the anode power supply 41 and the control means 6.
  • the current detection unit 44 may be provided in a current supply line between the cathode power supply 42 and the control unit 6.
  • the current detection unit 44 detects the electrolytic current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control unit 6.
  • the control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 44. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.
  • the water inlet 7 has a water supply pipe 71, a flow rate sensor 72, a branching portion 73, a flow rate adjustment valve 74, and the like.
  • the water supply pipe 71 guides the water supplied to the electrolyzed water generating device 1 to the electrolysis chamber 40.
  • the flow rate sensor 72 is provided in the water supply pipe 71.
  • the flow rate sensor 72 periodically detects the flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter sometimes simply referred to as “flow rate”) F, and outputs a signal corresponding to the value F to the control means 6. Output to.
  • the branch part 73 branches the water supply pipe 71 into two directions of the water supply pipes 71a and 71b.
  • the flow rate adjusting valve 74 connects the water supply pipes 71a and 71b to the anode chamber 40A or the cathode chamber 40B.
  • the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B is adjusted by the flow rate adjusting valve 74 under the control of the control means 6.
  • the flow rate adjusting valve 74 adjusts the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B in order to increase the use efficiency of water. This may cause a pressure difference between the anode chamber 40A and the cathode chamber 40B.
  • the flow rate sensor 72 is provided on the upstream side of the branching portion 73, the sum of the flow rate of water supplied to the anode chamber 40A and the flow rate of water supplied to the cathode chamber 40B, that is, A flow rate F of water supplied to the electrolysis chamber 40 is detected.
  • the water outlet 8 includes a flow path switching valve 81, a water discharge pipe 82, a drain pipe 83, and the like.
  • the flow path switching valve 81 selectively connects the anode chamber 40A and the cathode chamber 40B to the water discharge pipe 82 or the drain pipe 83.
  • the electrolyzed hydrogen water generated in the cathode chamber 40B dilutes the reverse osmosis membrane module for filtration and the dialysate stock solution through the water discharge pipe 82. Supplied to a dilution device or the like.
  • the control means 6 controls the polarity of the DC voltage applied to the anode power supply 41 and the cathode power supply 42.
  • the control means 6 integrates the flow rate F of water supplied to the electrolysis chamber 40 based on the signal input from the flow rate sensor 72, and when it reaches a predetermined flow rate, the control unit 6 applies to the anode power supply 41 and the cathode power supply 42. Switch the polarity of the DC voltage to be applied.
  • the control means 6 operates the flow rate adjustment valve 74 and the flow path switching valve 81 in synchronization. Thereby, the cathode chamber 40B and the water discharge pipe 82 are always connected, and the electrolytic hydrogen water generated in the cathode chamber 40B is discharged from the water discharge pipe 82.
  • FIG. 2 is an assembled perspective view of the electrolytic cell 4.
  • the electrolytic cell 4 includes a first case piece 50 on the anode power supply 41 side and a second case piece 60 on the cathode power supply 42 side.
  • the first case piece 50 and the second case piece 60 arranged to face each other are fixed to each other, so that the electrolysis chamber 40 (see FIG. 1) is formed therein.
  • the electrolytic cell 4 accommodates a laminated body 45 in which an anode power supply 41, a diaphragm 43 and a cathode power supply 42 are stacked in an electrolysis chamber 40.
  • the anode power supply 41, the diaphragm 43, and the cathode power supply 42 are each formed in a rectangular shape.
  • the anode power supply body 41 and the cathode power supply body 42 are configured such that water can travel in the thickness direction.
  • a net-like metal such as an expanded metal can be applied.
  • Such a net-like anode power supply 41 and cathode power supply 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40.
  • a platinum plating layer is formed on the surface of a titanium expanded metal is applied as the anode power supply body 41 and the cathode power supply body 42. The platinum plating layer prevents the oxidation of titanium.
  • the anode power supply body 41 is provided with a terminal 41 a that penetrates the first case piece 50 and protrudes outside the electrolytic cell 4.
  • the cathode power supply 42 is also provided with a terminal 42 a that penetrates the second case piece 60 and protrudes outside the electrolytic cell 4.
  • a DC voltage is applied to the anode power supply 41 and the cathode power supply 42 via the terminals 41a and 42a.
  • the diaphragm 43 for example, a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used.
  • the electrolytic cell 4 having the diaphragm 43 using a solid polymer material neutral electrolyzed water is generated.
  • plating layers 43a made of platinum are formed on both surfaces of the diaphragm 43. The plating layer 43a, the anode power supply 41, and the cathode power supply 42 are in contact with each other and are electrically connected.
  • the diaphragm 43 is sandwiched between the anode power supply 41 and the cathode power supply 42 in the electrolysis chamber 40. Therefore, the shape of the diaphragm 43 is held by the anode power supply 41 and the cathode power supply 42. According to such a structure for holding the diaphragm 43, most of the stress caused by the pressure difference generated between the anode chamber 40A and the cathode chamber 40B is borne by the anode feeder 41 and the cathode feeder 42. The stress on 43 decreases.
  • the diaphragm 43 is sandwiched between the anode power feeding body 41 and the cathode power feeding body 42, the contact between the plating layer 43 a and the anode power feeding body 41 of the diaphragm 43 and between the plating layer 43 a and the cathode power feeding body 42.
  • the resistance is reduced and the voltage drop is suppressed.
  • electrolysis in the electrolysis chamber 40 is promoted, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.
  • a sealing member 46 for preventing water leakage from the mating surface of the first case piece 50 and the second case piece 60 is provided outside the outer peripheral edges of the anode power supply body 41 and the cathode power supply body 42. .
  • the outer peripheral portion of the diaphragm 43 is sandwiched by the sealing member 46.
  • Each case piece 50 and 60 is formed in a rectangular shape that is long in the vertical direction V along the flow of water in the electrolysis chamber 40. Accordingly, the electrolytic chamber 40 is formed in a rectangular shape that is long in the vertical direction V. Such a vertically long electrolytic chamber 40 makes the flow path in the electrolytic cell 4 long. As a result, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the water in the cathode chamber 40B, and the dissolved hydrogen concentration can be increased.
  • the electrolytic cell 4 is provided with L-shaped joints 91, 92, 93, 94.
  • the joints 91 and 92 are attached to the lower part of the first case piece 50 and the second case piece 60 and connected to the flow rate adjusting valve 74.
  • the joints 93 and 94 are attached to the upper portions of the first case piece 50 and the second case piece 60 and connected to the flow path switching valve 81.
  • the hydrogen gas generated in the cathode chamber 40B moves as a minute bubble above the cathode chamber 40B.
  • the movement direction of hydrogen gas and the direction in which water flows generally coincide with each other, so that hydrogen molecules easily dissolve in water and the dissolved hydrogen concentration is increased.
  • FIG. 3 is a perspective view of the first case piece 50 and the second case piece 60 viewed from the inner surface side facing the electrolysis chamber 40 side.
  • FIG. 4A is a front view of the first case piece 50 viewed from the inner surface side
  • FIG. 4B is a front view of the second case piece 60 viewed from the inner surface side.
  • FIG. 5 is an assembled cross-sectional view of the electrolytic cell 4 including the AA cross section and the BB cross section of FIG. 6 is a cross-sectional view of the electrolytic cell 4 in the same cross section as FIG.
  • Alignment surfaces 51 and 61 for fixing the first case piece 50 and the second case piece 60 are formed on the outer edge portions of the inner surfaces of the first case piece 50 and the second case piece 60. Inside the mating surfaces 51, 61, the inner walls are recessed from the mating surfaces 51, 61 in the thickness direction of the first case piece 50 and the second case piece 60, so that the electrolysis parts 52, 62 are provided.
  • the electrolysis unit 52 configures the anode chamber 40A
  • the electrolysis unit 62 configures the cathode chamber 40B.
  • a plurality of first protrusions 53 are disposed on the inner surface of the first case piece 50.
  • the 1st convex part 53 contains the 1986
  • the main part 52A is an area that occupies most of the electrolysis part 52 located inside the end edge part 41e of the anode power supply body 41 and the end edge part 42e of the cathode power supply body 42. (Hereinafter, the same applies to the main part 62A of the electrolysis unit 62.)
  • the first convex portions 53 are arranged in a matrix (matrix) in the vertical direction V and the horizontal direction H perpendicular to the vertical direction V. It is arranged.
  • the “matrix” means an arrangement in which m protrusions are arranged in the vertical direction V and n protrusions are arranged in the horizontal direction H (an arrangement such as a matrix of m rows ⁇ n columns). An integer greater than or equal to 2. The same shall apply hereinafter).
  • a plurality of second convex portions 63 are disposed on the inner surface of the second case piece 60.
  • the second convex portion 63 includes a protrusion 63 ⁇ / b> P that is discretely arranged on the main portion 62 ⁇ / b> A of the electrolysis portion 62.
  • the second convex portions 63 are arranged in a matrix in the vertical direction V and the horizontal direction H.
  • Each first convex portion 53 is in contact with the anode power supply body 41 in the anode chamber 40A, and presses the anode power supply body 41 toward the second case piece 60 side.
  • each 2nd convex part 63 is contact
  • 1st convex part 53 contains the 1st protrusion 56 contact
  • the first protrusions 56 are provided around the protrusions arranged discretely in the main part of the electrolysis part 52 in the first protrusion 53.
  • the edge 41e of the anode power supply 41 is pressed toward the diaphragm 43 by the first protrusion 56, the contact pressure between the edge 41e of the anode power supply 41 and the diaphragm 43 is increased, and the gap between the two is increased. Contact resistance is reduced.
  • the second convex portion 63 includes a second protrusion 66 that comes into contact with the end edge portion 42e (see FIGS. 2 and 6) of the cathode power supply body 42.
  • the second protrusions 66 are provided around the protrusions that are discretely arranged in the main part of the electrolysis part 62 in the second convex part 63.
  • the electrolysis current flowing through the edge 41e of the anode power supply 41 and the edge 42e of the cathode power supply 42 is increased, and the electrolysis at each edge 41e, 42e is promoted. Therefore, it is possible to easily increase the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the cathode chamber 40B.
  • a plurality of the first protrusions 56 are provided along the edge 41e of the anode power feeder 41.
  • a plurality of second protrusions 66 are provided along the edge part 42 e of the cathode power supply body 42.
  • the sealing member 46 is disposed outside the first protrusion 56 and the second protrusion 66. . Water is also supplied to the inside of the sealing member 46, that is, the edge 41 e of the anode power supply 41 and 42 e of the cathode power supply 42.
  • the second protrusions 66 are spaced between the adjacent first protrusions 56.
  • each first protrusion 56 is spaced between adjacent second protrusions 66.
  • the edge 41 e of the anode power supply 41 and the edge 42 e of the cathode power supply 42 are separated from the first case piece 50 side and the second case piece 60 side by the first protrusion 56 and the second protrusion 66. Pressed alternately and supported.
  • the hydrogen gas generated at the edge portion 42e is easily dissolved in the water flowing between the adjacent second protrusions 66, and the dissolved hydrogen concentration is further increased.
  • the heights of the first protrusion 56 and the second protrusion 66 are set to such an extent that the edge 41 e of the anode power supply 41 and the edge 42 e of the cathode power supply 42 can be corrected to a waveform. It is preferable. Since the edge 41e and the cathode power supply 42 of the anode power supply 41 having such a waveform have a large bending rigidity, even if the laminated body 45 receives a large stress due to a pressure difference in the electrolytic chamber 40. The deformation is suppressed and damage to the diaphragm 43 is suppressed.
  • the first protrusion 56 includes a first vertical protrusion 57 that is long in the vertical direction V along the flow of water in the anode chamber 40A.
  • the first vertically long protrusions 57 are in contact with the lateral edge 41 h in the lateral direction H of the anode power feeding body 41.
  • the lateral edge 41h is pressed toward the diaphragm 43 by the first vertically long protrusion 57, and the contact pressure with the diaphragm 43 is increased.
  • the horizontal edge 41h of the anode power supply 41 is, for example, a region that is 2% or less of the length in the horizontal direction H of the anode power supply 41 on the inner side from the edge in the horizontal direction H of the anode power supply 41. (Hereinafter, the same applies to the lateral edge 42h of the cathode power supply 42).
  • the second protrusion 66 includes a second vertical protrusion 67 that is long in the vertical direction V along the flow of water in the cathode chamber 40B.
  • Each of the second vertically long protrusions 67 is provided between the adjacent first vertically long protrusions 57 in a side view when the electrolytic cell 4 is viewed from the lateral direction H.
  • the second vertically long protrusion 67 contacts the horizontal end edge portion 42 h in the horizontal direction H of the cathode power supply body 42.
  • the lateral edge 42h is pressed toward the diaphragm 43 by the second vertically long projection 67, and the contact pressure with the diaphragm 43 is increased.
  • the second vertically long protrusions 67 may be provided alternately in the vertical direction V with respect to the first vertically long protrusions 57.
  • first case piece 50 and the second case piece 60 are fixed, they are adjacent to each other. It may be provided at a position shifted in the horizontal direction H from the matching first vertically long protrusion 57.
  • the top 53a of the first convex portion 53 is configured to include a convex curved surface 53b having a center on the first case piece 50 side.
  • the convex curved surface 53b includes a convex curved surface 57b formed at the top 57a of the first vertically long protrusion 57 shown in FIG.
  • the convex curved surface 53b may be a quadratic curved surface such as a part of a side surface of a cylinder, or may be a cubic curved surface such as a part of the surface of a sphere.
  • the stacked body 45 is curved with a gentle curvature, so that stress concentration on the diaphragm 43 is alleviated and damage to the diaphragm 43 is suppressed.
  • the top portion 63a of the second convex portion 63 is configured to include a convex curved surface 63b having a center on the second case piece 60 side.
  • the convex curved surface 63b includes a convex curved surface 67b formed on the top 67a of the second vertically long projection 67 shown in FIG.
  • the convex curved surface 63b is the same as the convex curved surface 53b.
  • the second convex portion 63 when the first case piece 50 and the second case piece 60 are fixed, the second convex portion 63 is located between the first convex portions 53 and 53 adjacent to each other at a distance closest to the vertical direction V. Has been placed. Accordingly, the second convex portion 63 is provided in one line fewer than the first convex portion 53. Further, the second convex portion 63 is disposed between the first convex portions 53 and 53 adjacent to each other at a distance closest to the horizontal direction H.
  • the second protrusions 63 are discretely and evenly distributed in the vertical direction V and the horizontal direction H in the cathode chamber 40B. Will be scattered. As a result, water having a large flow velocity flows between the second convex portions 63 scattered in the vertical direction V and the horizontal direction H in the cathode chamber 40 ⁇ / b> B, and sufficient water is supplied to the surface of the cathode power supply 42. Therefore, for example, even when the electrolytic current supplied to each of the power feeders 41 and 42 is increased to generate a large amount of hydrogen gas on the surface of the cathode power feeder 42, the dissolved hydrogen concentration of the electrolytic hydrogen water is locally increased.
  • the dissolved hydrogen concentration in the entire cathode chamber 40B is improved. Further, for example, even when the flow rate of water supplied to the cathode chamber 40B is small, the dissolved hydrogen concentration of the electrolytic hydrogen water is suppressed from locally approaching a saturation value, and dissolved hydrogen in the entire cathode chamber 40B. Concentration is improved.
  • the first convex portions 53 are scattered in the vertical direction V and the horizontal direction H in a discrete and even manner, and the first convex portions 53 are scattered in the vertical direction V and the horizontal direction H in the anode chamber 40A.
  • Water having a high flow velocity flows also between the one convex portion 53, and sufficient water is supplied to the surface of the anode power feeding body 41. Therefore, like the cathode chamber 40B described above, the dissolved oxygen concentration in the entire anode chamber 40A is improved. Thereby, the oxygen gas generated in the anode chamber 40A can be easily dissolved in the water in the anode chamber 40A and discharged.
  • the first convex portion 53 and the second convex portion 63 are formed in a vertically long shape that is long in the vertical direction V.
  • the vertically long first convex portion 53 and the second convex portion 63 rectify the water in the anode chamber 40A and the cathode chamber 40B, and the laminated body 45 can be formed without hindering the general water flow in the vertical direction V. It can be firmly supported over a wide area. Therefore, the contact resistance between each of the power feeding bodies 41 and 42 and the plating layer 43a of the diaphragm 43 is reduced, and the water in the electrolysis chamber 40 can be efficiently electrolyzed.
  • an elliptical columnar protrusion is employed as the vertically long first convex portion 53, but it may be a long cylindrical protrusion or a rectangular parallelepiped protrusion.
  • Each first convex portion 53 comes into contact with the anode power feeding body 41 at the top portion 53a.
  • the top 53a protrudes to the same height as the mating surface 51, for example.
  • the anode power feeding body 41 is pressed and protrudes toward the second case piece 60 at the contact point with the top 53a.
  • the cathode power supply body 42 is pressed and protrudes toward the first case piece 50 at a contact portion with the top 63a.
  • the laminate 45 is corrected to have a waveform in a cross section along the vertical direction V. Yes. Furthermore, since the 2nd convex part 63 is arrange
  • each first small protrusion 54 blocks part of the water flowing in the vertical direction V between the first convex portions 53 and 53 adjacent in the horizontal direction H, so that both ends of the first small protrusion 54 in the horizontal direction H, that is, It guides between the 1st convex parts 53 and 53 adjacent to the vertical direction V.
  • the water in the anode chamber 40 ⁇ / b> A is locally stirred around the first small protrusion 54. Therefore, the flow of water supplied to the surface of the anode power supply 41 is further increased by the fusion of the global water flow in the vertical direction V by the first convex portion 53 and the local water flow by the first small protrusion 54. More uniform and dissolved hydrogen concentration is increased.
  • the first small protrusions 54 are preferably formed in a horizontally long shape in the horizontal direction H.
  • Such a first small protrusion 54 has a high effect of guiding water between the first convex portions 53 and 53 adjacent in the vertical direction V, and the flow of water supplied to the surface of the anode power supply 41 is further increased. Homogenized and dissolved hydrogen concentration is increased.
  • an elliptical columnar protrusion is adopted as the horizontally long first convex portion 53, but it may be a long columnar or rectangular parallelepiped protrusion.
  • the height of the first small protrusion 54 is smaller than that of the first convex portion 53 and does not contact the anode power supply body 41. For this reason, a flow path is formed between the first small protrusion 54 and the anode power feeder 41, and the flow of water supplied to the surface of the anode power feeder 41 is made more uniform.
  • the second small protrusion 64 provided in the vicinity of the second protrusion 66 guides the water in the cathode chamber 40 ⁇ / b> B toward the lateral edge 42 h of the cathode power supply 42.
  • Water can be sufficiently supplied also to the surface of the horizontal end edge portion 42h. Therefore, the hydrogen gas generated by the action of promoting electrolysis at the edge portion 42e by the first protrusion 56 and the second protrusion 66 described above is easily dissolved in water, and the dissolved hydrogen concentration is easily increased.
  • the first small protrusion 54 is preferably formed with a groove 55 penetrating the first small protrusion 54 in the vertical direction V.
  • the number, width, and depth of the groove 55 for one first small protrusion 54 can be set as appropriate.
  • one groove 55 is provided in the central portion in the lateral direction H of the first small protrusion 54.
  • the depth of the groove 55 is equal to the height of the first small protrusion 54.
  • the groove 55 guides a part of the water flowing between the first convex portions 53 and 53 adjacent in the horizontal direction H in the vertical direction V and allows the first small protrusions 54 to pass therethrough.
  • the groove 55 makes the flow of water supplied to the surface of the anode power supply body 41 even more uniform.
  • the second small protrusion 64 is formed with a groove 65 penetrating the second small protrusion 64 in the vertical direction V.
  • the number of grooves 65 is the same as that of the groove 55.
  • the groove 65 guides a part of the water flowing between the second convex portions 63, 63 adjacent in the horizontal direction H in the vertical direction V and allows the second small protrusion 64 to pass therethrough.
  • the groove 65 makes the flow of water supplied to the surface of the cathode power supply 42 even more uniform.
  • the first small protrusion 54 and the second small protrusion 64 may impede the flow of water in the anode chamber 40A and the cathode chamber 40B.
  • the height of the first small protrusion 54 is smaller than the height of the first convex portion 53, and the first small protrusion 54 does not contact the anode feeder 41. Therefore, a flow path is formed between the first small protrusion 54 and the anode power supply body 41, and the possibility that the first small protrusion 54 hinders the flow of water in the anode chamber 40A is limited.
  • the possibility that the flow of water in the cathode chamber 40B is hindered by the second small protrusion 64 is limited.
  • a first water diversion channel 58 ⁇ / b> D is formed at the lower part of the inner surface of the first case piece 50.
  • the first diversion channel 58 ⁇ / b> D extends along the lateral direction H of the first case piece 50 and communicates with the electrolysis unit 52.
  • the water flowing in from the joint 91 flows into the electrolysis unit 52 via the first diversion channel 58D, and flows upward through the gap such as the first convex portion 53.
  • a second water diversion channel 68 ⁇ / b> D is formed in the lower part of the inner surface of the second case piece 60.
  • the second diversion channel 68 ⁇ / b> D extends along the lateral direction H of the second case piece 60 and communicates with the electrolysis unit 62.
  • the water flowing in from the joint 92 flows into the electrolysis unit 62 via the second diversion channel 68D and flows upward through the gap such as the second convex portion 63.
  • a first water collecting channel 58 ⁇ / b> C is formed in the upper part of the inner surface of the first case piece 50.
  • the first water collecting channel 58 ⁇ / b> C extends along the lateral direction H of the first case piece 50 and communicates with the electrolysis unit 52.
  • the water that has moved above the electrolysis unit 52 is collected by the first water collecting channel 58 ⁇ / b> C and flows out of the electrolytic cell 4 from the joint 93.
  • a second water collecting channel 68 ⁇ / b> C is formed in the upper part of the inner surface of the second case piece 60.
  • the second water collection channel 68 ⁇ / b> C extends along the lateral direction H of the second case piece 60 and communicates with the electrolysis unit 62.
  • the water that has moved above the electrolysis unit 62 is collected by the second water collecting channel 68C and flows out of the electrolytic cell 4 from the joint 94.
  • the depth of the electrolysis unit 52 is smaller than that of the first water diversion channel 58D and the first water collection channel 58C.
  • the speed of the water which flows through the electrolysis part 52 is raised, and it becomes easy to melt
  • a slope 59 is formed at the step between the electrolysis unit 52 and the first water diversion channel 58D and the first water collection channel 58C. The slope 59 smoothes the flow of water in the anode chamber 40A and suppresses a decrease in the speed of water flowing through the electrolysis unit 52.
  • the depth of the electrolysis unit 62 is smaller than that of the second water diversion channel 68D and the second water collection channel 68C.
  • a slope 69 is formed at the step between the electrolytic unit 62 and the second water diversion channel 68D and the second water collection channel 68C. The slope 69 smoothes the flow of water in the cathode chamber 40B and suppresses a decrease in the speed of the water flowing through the electrolysis unit 62.
  • FIG. 7 shows a first case piece 50 ⁇ / b> A that is a modification of the first case piece 50.
  • FIG. 8 shows a second case piece 60 ⁇ / b> A that is a modification of the second case piece 60.
  • the first case piece 50A is different from the first case piece 50 in that a first protrusion 56 is provided around the first water diversion channel 58D (see FIG. 3) and the first water collection channel 58C.
  • the second case piece 60A is different from the second case piece 60 in that a second protrusion 66 is provided around the second water diversion channel 68D (see FIG. 3) and the second water collection channel 68C.
  • the configuration of the first case piece 50 and the second case piece 60 can be adopted for portions not described below.
  • the first protrusion 56 includes a first horizontally long protrusion 57A that is long in the lateral direction H.
  • a plurality of first lateral protrusions 57A are provided along the lower end of the first water diversion channel 58D and the upper end of the first water collection channel 58C in FIG. 3, and the vertical end edge portion 41v in the vertical direction V of the anode feeder 41 (FIG. 2). Contact).
  • the vertical end edge portion 41v of the anode power feeding body 41 is supported by the first horizontally long protrusion 57A.
  • the vertical edge 41v of the anode power supply 41 is, for example, a region of 2% or less of the length of the anode power supply 41 in the vertical direction V on the inner side from the edge in the vertical direction V of the anode power supply 41. (Hereinafter, the same applies to the vertical edge portion 42v of the cathode power supply body 42).
  • the second protrusion 66 includes a second horizontally long protrusion 67 ⁇ / b> A that is long in the horizontal direction H.
  • the second horizontally long protrusions 67A are spaced between adjacent first horizontally long protrusions 57A in a top view when the electrolytic cell 4 is viewed from the vertical direction V.
  • a plurality of second horizontally long projections 67A are provided along the lower end of the second water diversion channel 68D and the upper end of the second water collecting channel 68C in FIG. 3, and the vertical end edge portion 42v in the vertical direction V of the cathode feeder 42 (FIG. 2). Contact).
  • the second lateral projections 67A need only be provided alternately in the lateral direction H with respect to the first lateral projections 57A. When the first case pieces 50 and the second case pieces 60 are fixed, they are adjacent to each other. It may be provided at a position shifted in the vertical direction V from the first laterally long projection 57A.
  • the electrolyzed water generating apparatus 1 includes at least an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, an anode feeder 41 disposed opposite to each other in the electrolysis chamber 40, and The separator 43 is provided between the cathode feeder 42, the anode feeder 41 and the cathode feeder 42 and separates the electrolysis chamber 40 into an anode chamber 40A and a cathode chamber 40B.
  • the electrolytic cell 4 is sandwiched between the anode power supply 41 and the cathode power supply 42, and the electrolytic cell 4 is electrolyzed by fixing the first case piece 50 on the anode power supply 41 side and the second case piece 60 on the cathode power supply 42 side.
  • a chamber 40 is formed, and a first convex portion 53 that contacts the anode power supply body 41 is disposed on the inner surface of the first case piece 50, and an inner surface of the second case piece 60 contacts the cathode power supply body 42.
  • the second convex portion 63 is disposed, and the first convex portion 53 is the anode power feeding body 4.
  • the second convex portion 63 may include at edge 42e and the second protrusion 66 that abuts the cathode current collector 42.
  • the 1st convex part 53 and the 2nd convex part 63 which are provided in the principal part of the electrolysis parts 52 and 62 are restricted to the convex part of the form scattered in the longitudinal direction V of the 1st case piece 50 discretely.
  • various forms may be used.
  • FIG. 9 shows a first case piece 50B, which is another modification of the first case piece 50, and a second case piece 60B, which is another modification of the second case piece 60.
  • the first case piece 50B is a convex shape indicated by reference numeral 32 in FIG. 6 of Patent Document 1 above, instead of the first convex portion 53 provided in the main portion 52A (see FIG. 3) of the electrolysis portion 52. It differs from the 1st case piece 50 by the point by which the 1st convex part 53B equivalent to a part is applied.
  • the configuration of the first case piece 50 can be adopted for portions not described below.
  • the first convex portion 53 includes a first convex portion 53B and a first protrusion 56.
  • the first convex portion 53B extends continuously in the vertical direction V from the upper end of the first water diversion channel 58D to the lower end of the first water collecting channel 58C.
  • the 1st groove part 54B is provided between the adjacent 1st convex parts 53B.
  • the second case piece 60B a second convex portion 63B equivalent to the first convex portion 53B is applied instead of the second convex portion 63 provided in the main portion 62A (see FIG. 3) of the electrolysis portion 62. This is different from the second case piece 60.
  • the configuration of the second case piece 60 can be adopted for portions not described below.
  • the second convex portion 63 includes a second convex portion 63B and a second protrusion 66.
  • the second convex portion 63B extends continuously in the vertical direction V from the upper end of the second water diversion channel 68D to the lower end of the second water collecting channel 68C.
  • a second groove portion 64B is provided between the adjacent second convex portions 63B.
  • 1st convex part 53B and 2nd convex part 63B are provided so that it may be located in the horizontal direction V alternately. Accordingly, when the first case piece 50B and the second case piece 60B are fixed, the first convex portion 53B and the second groove portion 64B face each other with the stacked body 45 interposed therebetween, and the second convex portion 63B and the second convex portion 63B The one groove portion 54B faces.
  • the first case piece 50B and the second case piece 60B can be suitably applied. .
  • first case piece 50B and the second case piece 60B a part of the first convex part 53 and the second convex part 63 may be replaced with the first convex part 53B and the second convex part 63B.
  • first case piece 50B is provided with a mixture of first protrusions 53 that are discretely arranged in the main part of the electrolysis part 52 and first groove parts 54B that extend continuously in the vertical direction V. May be.
  • second case piece 60B is provided with a mixture of second convex portions 63 arranged discretely at the main part of the electrolysis unit 62 and second groove portions 64B extending continuously in the vertical direction V. It may be.
  • the features of the first case piece 50B and the second case piece 60B can be applied in appropriate combination with the first case piece 50A and the second case piece 60A shown in FIGS.
  • FIG. 10 shows a first case piece 50C, which is another modification of the first case piece 50, and a second case piece 60C, which is another modification of the second case piece 60.
  • the first case piece 50C is different from the first case piece 50 in that the first convex portion 53 does not exist in the main part 52A (see FIG. 3) of the electrolysis part 52.
  • the second case piece 60 ⁇ / b> C is different from the second case piece 60 in that the main part 62 ⁇ / b> A (see FIG. 3) of the electrolysis part 62 does not have the second convex part 63.
  • the configurations of the first case piece 50 and the second case piece 60 can be adopted for portions not described below.
  • the first protrusion 53 includes a first protrusion 56
  • the second protrusion 63 includes a second protrusion 66.
  • the first case piece 50C and the second case piece 60C can be suitably applied.
  • the features of the first case piece 50C and the second case piece 60C can be applied in appropriate combination with the first case piece 50A and the second case piece 60A shown in FIGS.
  • first case piece 50, 50A, 50B, or 50C a pair that continues from the outer edge of the first water diversion channel 58D to the outer edge of the first water collecting channel 58C along the lateral edge 41h of the anode power feeder 41.
  • the first protrusion 56 that contacts the lateral end edge portion 41h may be formed by the convex portion. Such first protrusions 56 are applied in place of the plurality of discrete first longitudinal protrusions 57.
  • second case piece 60, 60A, 60B, or 60C it continues from the outer edge of the second water diversion channel 68D to the outer edge of the second water collecting channel 68C along the lateral end edge 42h of the cathode power feeder 42.
  • a second protrusion 66 that contacts the lateral edge 42h may be formed by a pair of convex portions. Such second protrusions 66 are applied in place of the plurality of discrete second longitudinal protrusions 67.
  • the contact resistance with the diaphragm 43 in the vicinity of the horizontal end edge 41h and the horizontal end edge 42h is reduced.
  • the electrolytic current flowing in the vicinity of the portion 41h and the side edge portion 42h is increased, and electrolysis is further promoted.
  • the heights of the first protrusion 56 and the second protrusion 66 due to such convex portions are set to such an extent that the diaphragm 43 is not damaged by the contact pressure between the diaphragm 43 and the anode feeder 41 and the cathode feeder 42. It is desirable to be done.
  • abutted with the edge part 41v may be comprised.
  • a first protrusion 56 is applied in place of a plurality of discrete first lateral protrusions 57A.
  • a second protrusion 66 that contacts the vertical end edge portion 42v may be configured by a pair of convex portions that continue along the vertical end edge portion 42v of the cathode power supply 42. .
  • Such a second protrusion 66 is applied in place of the plurality of discretized second horizontally long protrusions 67A.
  • the diaphragm 43 can be firmly supported in the vicinity of the vertical edge 41v and the vertical edge 42v, so that a large gap is formed between the anode chamber 40A and the cathode chamber 40B. Even when a pressure difference occurs, deformation of the laminated body 45 is suppressed, and damage to the diaphragm 43 is suppressed. Note that the heights of the first protrusion 56 and the second protrusion 66 due to such convex portions are set to such an extent that the diaphragm 43 is not damaged by the contact pressure between the diaphragm 43 and the anode feeder 41 and the cathode feeder 42. It is desirable to be done.

Abstract

In an electrolytic cell 4 of this electrolytic water generating apparatus, an electrolytic chamber is formed by fixing a first case piece 50 and a second case piece 60. A first protrusion section 53 contacting a positive electrode feeder 41 is disposed on the inner surface of the first case piece 50, and a second protrusion section 63 contacting a negative electrode feeder 42 is disposed on the inner surface of the second case piece 60. The first protrusion section 53 includes a first protrusion 56 contacting an end edge section 41e of the positive electrode feeder 41, and the second protrusion section 63 includes a second protrusion 66 contacting an end edge section 42e of the negative electrode feeder 42. Thus, the contact pressure between each of the end edge sections 41e, 42e of the feeders 41, 42 and a separation membrane 43 is increased, and electrolytic current flowing through the end edge sections 41e, 42e is increased, thereby accelerating electrolysis.

Description

電解水生成装置Electrolyzed water generator
 本発明は、水を電気分解して電解水素水を生成する電解水生成装置に関する。 The present invention relates to an electrolyzed water generating apparatus for electrolyzing water to generate electrolyzed hydrogen water.
 従来から、隔膜で仕切られた陽極室と陰極室を有する電解槽を備え、電解槽内に導入された水道水等の原水を電気分解して電解水素水を生成する電解水生成装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, an electrolyzed water generating apparatus that includes an electrolyzer having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer to generate electrolyzed hydrogen water is known. (For example, refer to Patent Document 1).
 電解水生成装置の陰極室で生成される水素ガスが溶け込んだ電解水素水は、胃腸症状の改善に優れた効果を発揮することが期待されている。また、近年、電解水生成装置で生成された電解水素水は、活性酸素の除去に適しているとして注目されている。 Electrolyzed hydrogen water in which hydrogen gas produced in the cathode chamber of the electrolyzed water generator is dissolved is expected to exert an excellent effect on improving gastrointestinal symptoms. In recent years, electrolytic hydrogen water generated by an electrolyzed water generating apparatus has been attracting attention as being suitable for removal of active oxygen.
特許第5639724号公報Japanese Patent No. 569724
 電解水生成装置において、隔膜は、陽極室と陰極室との間でイオンを効率よく通過させるために薄く形成されていることから、例えば、陽極室と陰極室との間で生ずる圧力差が過度に大きくなると、隔膜が損傷を受けるおそれがある。そこで、上記特許文献1の電解水生成装置では、陽極給電体、隔膜及び陰極給電体からなる積層体を電解槽を構成するケース片の凸状部によって挟み込んで支持する構造が採用されている。 In the electrolyzed water generating apparatus, the diaphragm is formed thin in order to efficiently pass ions between the anode chamber and the cathode chamber. For example, the pressure difference generated between the anode chamber and the cathode chamber is excessive. If it becomes too large, the diaphragm may be damaged. In view of this, the electrolyzed water generating apparatus of Patent Document 1 employs a structure in which a laminated body composed of an anode feeder, a diaphragm, and a cathode feeder is sandwiched and supported by convex portions of case pieces constituting the electrolytic cell.
 上記電解水生成装置では、凸状部によって積層体が押圧される箇所においては、各給電体と隔膜との間で十分な接触圧力が得られるため、両者間での接触抵抗が低下し、各給電体に供給される電解電流が十分に確保されうる。 In the electrolyzed water generating device, at the location where the laminate is pressed by the convex portion, a sufficient contact pressure is obtained between each power feeder and the diaphragm, so that the contact resistance between the two decreases, The electrolytic current supplied to the power feeder can be sufficiently secured.
 しかしながら、同文献中図4に示されるように、陽極給電体及び陰極給電体の端縁部は、ケース片によって支持されておらず自由端である。従って、陽極給電体及び陰極給電体の端縁部と隔膜との接触圧力を十分に確保することが困難であり、両者間の接触抵抗が増大する。その結果、陽極給電体及び陰極給電体の端縁部に供給される電解電流が低下して、電気分解が阻害されるおそれがある。 However, as shown in FIG. 4 in the same document, the edge portions of the anode feeder and the cathode feeder are not supported by the case pieces and are free ends. Therefore, it is difficult to ensure a sufficient contact pressure between the edge portions of the anode power supply body and the cathode power supply body and the diaphragm, and the contact resistance between them increases. As a result, the electrolysis current supplied to the edge portions of the anode power supply body and the cathode power supply body may decrease, and electrolysis may be hindered.
 本発明は、以上のような実状に鑑み案出されたもので、陽極給電体及び陰極給電体の端縁部での電気分解を促進することにより、溶存水素濃度を容易に高めることができる電解水生成装置を提供することを主たる目的としている。 The present invention has been devised in view of the above-described circumstances, and is capable of easily increasing the dissolved hydrogen concentration by promoting electrolysis at the edge portions of the anode feeder and the cathode feeder. The main purpose is to provide a water generator.
 本発明は、電気分解される水が供給される電解室が形成された電解槽と、前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、前記陽極給電体と前記陰極給電体との間に配され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とを備えた電解水生成装置であって、前記隔膜が、前記陽極給電体及び前記陰極給電体で挟持され、前記電解槽は、前記陽極給電体側の第1ケース片と、前記陰極給電体側の第2ケース片とが固着されることにより前記電解室を形成し、前記第1ケース片の前記電解室側を向く内面には、前記陽極給電体に当接する第1凸部が配設され、前記第2ケース片の前記電解室側を向く内面には、前記陰極給電体に当接する第2凸部が配設され、前記第1凸部は、前記陽極給電体の端縁部と当接する第1突起を含み、前記第2凸部は、前記陰極給電体の端縁部と当接する第2突起を含むことを特徴とする。 The present invention includes an electrolytic cell in which an electrolysis chamber to which water to be electrolyzed is formed, an anode power feeding body and a cathode power feeding body arranged to face each other in the electrolysis chamber, the anode power feeding body, and the An electrolyzed water generating device provided with a diaphragm disposed between a cathode power supply and dividing the electrolysis chamber into an anode chamber on the anode power supply side and a cathode chamber on the cathode power supply side, A diaphragm is sandwiched between the anode power supply body and the cathode power supply body, and the electrolytic cell is formed by fixing the first case piece on the anode power supply side and the second case piece on the cathode power supply side. A first convex portion that is in contact with the anode feeder is provided on an inner surface of the first case piece facing the electrolysis chamber side, and an inner surface of the second case piece facing the electrolysis chamber side Is provided with a second convex portion in contact with the cathode power supply body, Convex portion includes an edge portion abutting the first protrusion of the anode current collector, the second convex portion, characterized in that it comprises an edge portion abutting the second projection of the cathode current collector.
 本発明に係る前記電解水生成装置において、前記第1突起は、前記陽極給電体の端縁部に沿って複数個設けられ、前記第2突起は、前記陰極給電体の端縁部に沿って複数個設けられていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, a plurality of the first protrusions are provided along an edge portion of the anode power supply body, and the second protrusions are provided along an edge edge portion of the cathode power supply body. It is desirable to provide a plurality.
 本発明に係る前記電解水生成装置において、前記第2突起は、隣り合う前記第1突起の間に配設されていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, it is preferable that the second protrusion is disposed between the adjacent first protrusions.
 本発明に係る前記電解水生成装置において、前記第1突起及び前記第2突起は、前記電解室内での水の流れに沿う縦方向に長い縦長突起を含み、前記縦長突起は、前記陽極給電体又は前記陰極給電体の前記縦方向に垂直な横方向の横端縁部と当接することが望ましい。 In the electrolyzed water generating device according to the present invention, the first protrusion and the second protrusion include a vertically long protrusion along a flow of water in the electrolysis chamber, and the vertically long protrusion is the anode feeder. Alternatively, it is desirable that the cathode power supply body be in contact with a lateral end edge in a lateral direction perpendicular to the longitudinal direction.
 本発明に係る前記電解水生成装置において、前記第1突起及び前記第2突起は、前記縦方向に垂直な横方向に長い横長突起を含み、前記横長突起は、前記陽極給電体又は前記陰極給電体の前記縦方向の縦端縁部と当接することが望ましい。 In the electrolyzed water generating apparatus according to the present invention, the first protrusion and the second protrusion include a laterally long protrusion in a lateral direction perpendicular to the longitudinal direction, and the laterally elongated protrusion is the anode power supply or the cathode power supply. It is desirable to contact the longitudinal edge of the body in the longitudinal direction.
 本発明に係る前記電解水生成装置において、前記第1凸部の頂部は、前記第1ケース片の側に中心を有する曲面を含み、前記第2凸部の頂部は、前記第2ケース片の側に中心を有する曲面を含むことが望ましい。 In the electrolyzed water generating apparatus according to the present invention, the top portion of the first convex portion includes a curved surface having a center on the first case piece side, and the top portion of the second convex portion is the second case piece. It is desirable to include a curved surface having a center on the side.
 本発明に係る前記電解水生成装置において、前記第1ケース片の前記電解室側を向く内面には、前記隔膜、前記陽極給電体及び前記陰極給電体を挟んで前記第2凸部と対向する位置に、前記第1凸部よりも高さの小さい第1小突起が配設され、前記第2ケース片の前記電解室側を向く内面には、前記隔膜、前記陽極給電体及び前記陰極給電体を挟んで前記第1凸部と対向する位置に、前記第2凸部よりも高さの小さい複数の第2小突起が配設されていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, the inner surface of the first case piece facing the electrolysis chamber faces the second convex portion with the diaphragm, the anode power supply body, and the cathode power supply body interposed therebetween. A first small protrusion having a height smaller than that of the first convex portion is disposed at a position, and the diaphragm, the anode power supply, and the cathode power supply are formed on the inner surface of the second case piece facing the electrolysis chamber. It is desirable that a plurality of second small protrusions having a height smaller than that of the second convex portion be disposed at a position facing the first convex portion across the body.
 本発明に係る前記電解水生成装置において、前記第1小突起は、前記陽極給電体とは当接せず、前記第2小突起は、前記陰極給電体とは当接しないことが望ましい。 In the electrolyzed water generating apparatus according to the present invention, it is preferable that the first small protrusion does not contact with the anode power supply, and the second small protrusion does not contact with the cathode power supply.
 本発明の第1発明の電解水生成装置は、第1ケース片の前記電解室側を向く内面には、陽極給電体に当接する複数の第1凸部が配設され、第1凸部は、陽極給電体の端縁部と当接する第1突起を含む。これにより、陽極給電体の端縁部が第1凸部によって隔膜の側に押圧され、陽極給電体の端縁部と隔膜との接触圧力が高められる。一方、第2ケース片の電解室側を向く内面には、陰極給電体に当接する複数の第2凸部が配設され、第2凸部は、陰極給電体の端縁部と当接する第2突起を含む。これにより、陰極給電体の端縁部が第2凸部によって隔膜の側に押圧され、陰極給電体の端縁部と隔膜との接触圧力が高められる。従って、陽極給電体及び陰極給電体の端縁部を流れる電解電流が増大し、各端縁部での電気分解が促進される。よって、陰極室で生成される電解水素水の溶存水素濃度を容易に高めることが可能となる。 In the electrolyzed water generating device according to the first aspect of the present invention, a plurality of first convex portions that contact the anode power feeder are disposed on the inner surface of the first case piece facing the electrolysis chamber side, And a first protrusion abutting against the edge of the anode power feeder. Thereby, the edge part of an anode electric power feeding body is pressed to the diaphragm side by the 1st convex part, and the contact pressure of the edge part of an anode electric power feeding body and a diaphragm is raised. On the other hand, on the inner surface of the second case piece facing the electrolysis chamber side, a plurality of second convex portions that contact the cathode power supply body are disposed, and the second convex portions are in contact with the edge portions of the cathode power supply body. Includes two protrusions. Thereby, the edge part of a cathode electric power feeder is pressed to the diaphragm side by a 2nd convex part, and the contact pressure of the edge part of a cathode electric power feeder and a diaphragm is raised. Therefore, the electrolytic current flowing through the edge portions of the anode power supply body and the cathode power supply body is increased, and electrolysis at each edge portion is promoted. Therefore, it is possible to easily increase the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the cathode chamber.
本発明の電解水生成装置の一実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. 図1の電解槽の組立て斜視図である。It is an assembly perspective view of the electrolytic cell of FIG. 図2の第1ケース片及び第2ケース片を示す斜視図である。It is a perspective view which shows the 1st case piece and 2nd case piece of FIG. 図2の第1ケース片及び第2ケース片を示す正面図である。It is a front view which shows the 1st case piece and 2nd case piece of FIG. 図4のA-A断面及びB-B断面を含む電解槽の組立断面図である。FIG. 5 is an assembled cross-sectional view of the electrolytic cell including the AA cross section and the BB cross section of FIG. 4. 図5と同一の断面における電解槽の断面図である。It is sectional drawing of the electrolytic cell in the same cross section as FIG. 図3の第1ケース片の変形例を示す斜視図である。It is a perspective view which shows the modification of the 1st case piece of FIG. 図3の第2ケース片の変形例を示す斜視図である。It is a perspective view which shows the modification of the 2nd case piece of FIG. 図3の第1ケース片及び第2ケース片の別の変形例を示す斜視図である。It is a perspective view which shows another modification of the 1st case piece of FIG. 3, and a 2nd case piece. 図3の第1ケース片及び第2ケース片のさらに別の変形例を示す斜視図である。It is a perspective view which shows another modification of the 1st case piece and 2nd case piece of FIG.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本実施形態の電解水生成装置1の概略構成を示している。電解水生成装置1は、家庭の飲料用及び料理用の水の生成や血液透析の透析液の生成に用いられてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment. The electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.
 電解水生成装置1は、電気分解される水が供給される電解室40が形成された電解槽4と、電解室40内で、互いに対向して配置された陽極給電体41及び陰極給電体42と、陽極給電体41と陰極給電体42との間に配された隔膜43とを備えている。電解槽4の上流側又は下流側に、別の電解槽が設けられていてもよい。また、電解槽4と並列に、別の電解槽が設けられていてもよい。別に設けられた電解槽についても、電解槽4と同等の構成が適用されうる。 The electrolyzed water generating apparatus 1 includes an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, and an anode power supply 41 and a cathode power supply 42 that are disposed to face each other in the electrolysis chamber 40. And a diaphragm 43 disposed between the anode power supply 41 and the cathode power supply 42. Another electrolytic cell may be provided upstream or downstream of the electrolytic cell 4. Further, another electrolytic cell may be provided in parallel with the electrolytic cell 4. A configuration equivalent to that of the electrolytic cell 4 can also be applied to the electrolytic cell provided separately.
 隔膜43は、電解室40を陽極給電体41側の陽極室40Aと、陰極給電体42側の陰極室40Bとに区分する。電解室40の陽極室40A及び陰極室40Bの両方に水が供給され、陽極給電体41及び陰極給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。 The diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40A on the anode feeder 41 side and a cathode chamber 40B on the cathode feeder 42 side. Water is supplied to both the anode chamber 40 </ b> A and the cathode chamber 40 </ b> B of the electrolysis chamber 40, and a DC voltage is applied to the anode power supply 41 and the cathode power supply 42, whereby water is electrolyzed in the electrolysis chamber 40.
 隔膜43は、電気分解で生じたイオンを通過させ、隔膜43を介して陽極給電体41と、陰極給電体42とが電気的に接続される。隔膜43には、例えば、スルホン酸基を有するフッ素系の樹脂材料からなる固体高分子材料が用いられている。 The diaphragm 43 allows ions generated by electrolysis to pass therethrough, and the anode feeder 41 and the cathode feeder 42 are electrically connected through the diaphragm 43. For the diaphragm 43, for example, a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used.
 固体高分子材料を用いた隔膜43を有する電解槽4では、中性の電解水素水及び電解酸素水が生成される。電解室40内で水が電気分解されることにより、陰極室40Bでは、水素ガスが溶け込んだ電解水素水が得られ、陽極室40Aでは酸素ガスが溶け込んだ電解酸素水が得られる。 In the electrolytic cell 4 having the diaphragm 43 using a solid polymer material, neutral electrolytic hydrogen water and electrolytic oxygen water are generated. By electrolyzing water in the electrolytic chamber 40, electrolytic hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40B, and electrolytic oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40A.
 電解水生成装置1は、電解槽4を制御する制御手段6と、電解槽4の上流側に設けられた入水部7と、電解槽4の下流側に設けられた出水部8とをさらに備えている。 The electrolyzed water generating apparatus 1 further includes a control means 6 for controlling the electrolyzer 4, a water inlet 7 provided on the upstream side of the electrolyzer 4, and a water outlet 8 provided on the downstream side of the electrolyzer 4. ing.
 制御手段6は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。 The control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.
 陽極給電体41と制御手段6との間の電流供給ラインには、電流検出手段44が設けられている。電流検出手段44は、陰極給電体42と制御手段6との間の電流供給ラインに設けられていてもよい。電流検出手段44は、給電体41、42に供給する電解電流を検出し、その値に相当する信号を制御手段6に出力する。 Current detection means 44 is provided on the current supply line between the anode power supply 41 and the control means 6. The current detection unit 44 may be provided in a current supply line between the cathode power supply 42 and the control unit 6. The current detection unit 44 detects the electrolytic current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control unit 6.
 制御手段6は、電流検出手段44から入力される信号に基づいて、陽極給電体41と陰極給電体42との間に印加する電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御手段6は、上記電圧を減少させ、電解電流が過小である場合、制御手段6は、上記電圧を増加させる。これにより、給電体41、42に供給する電解電流が適切に制御されうる。 The control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 44. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.
 入水部7は、給水管71と、流量センサー72と、分岐部73と、流量調整弁74等を有している。給水管71は、電解水生成装置1に供給された水を電解室40に導く。流量センサー72は、給水管71に設けられている。流量センサー72は、電解室40に供給される水の単位時間あたりの流量(以下、単に「流量」と記すこともある)Fを定期的に検出し、その値に相当する信号を制御手段6に出力する。 The water inlet 7 has a water supply pipe 71, a flow rate sensor 72, a branching portion 73, a flow rate adjustment valve 74, and the like. The water supply pipe 71 guides the water supplied to the electrolyzed water generating device 1 to the electrolysis chamber 40. The flow rate sensor 72 is provided in the water supply pipe 71. The flow rate sensor 72 periodically detects the flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter sometimes simply referred to as “flow rate”) F, and outputs a signal corresponding to the value F to the control means 6. Output to.
 分岐部73は、給水管71を給水管71a、71bの二方に分岐する。流量調整弁74は、給水管71a、71bを陽極室40A又は陰極室40Bに接続する。陽極室40A及び陰極室40Bに供給される水の流量は、制御手段6の管理下で、流量調整弁74によって調整される。流量調整弁74は、水の利用効率を高めるために、陽極室40A及び陰極室40Bに供給される水の流量を調整する。これにより、陽極室40Aと陰極室40Bとの間で圧力差が生ずる場合がある。 The branch part 73 branches the water supply pipe 71 into two directions of the water supply pipes 71a and 71b. The flow rate adjusting valve 74 connects the water supply pipes 71a and 71b to the anode chamber 40A or the cathode chamber 40B. The flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B is adjusted by the flow rate adjusting valve 74 under the control of the control means 6. The flow rate adjusting valve 74 adjusts the flow rate of water supplied to the anode chamber 40A and the cathode chamber 40B in order to increase the use efficiency of water. This may cause a pressure difference between the anode chamber 40A and the cathode chamber 40B.
 本実施形態では、流量センサー72は、分岐部73の上流側に設けられているので、陽極室40Aに供給される水の流量と陰極室40Bに供給される水の流量との総和、すなわち、電解室40に供給される水の流量Fを検出する。 In the present embodiment, since the flow rate sensor 72 is provided on the upstream side of the branching portion 73, the sum of the flow rate of water supplied to the anode chamber 40A and the flow rate of water supplied to the cathode chamber 40B, that is, A flow rate F of water supplied to the electrolysis chamber 40 is detected.
 出水部8は、流路切替弁81と、吐水管82と、排水管83等を有している。流路切替弁81は、陽極室40A、陰極室40Bを吐水管82又は排水管83に選択的に接続する。電解水生成装置1が血液透析の透析液の生成に用いられる場合、陰極室40Bで生成された電解水素水が吐水管82を介して、濾過処理用の逆浸透膜モジュール及び透析原液を希釈する希釈装置等に供給される。 The water outlet 8 includes a flow path switching valve 81, a water discharge pipe 82, a drain pipe 83, and the like. The flow path switching valve 81 selectively connects the anode chamber 40A and the cathode chamber 40B to the water discharge pipe 82 or the drain pipe 83. When the electrolyzed water generating apparatus 1 is used for generating a dialysate for hemodialysis, the electrolyzed hydrogen water generated in the cathode chamber 40B dilutes the reverse osmosis membrane module for filtration and the dialysate stock solution through the water discharge pipe 82. Supplied to a dilution device or the like.
 制御手段6は、陽極給電体41及び陰極給電体42に印加する直流電圧の極性を制御する。例えば、制御手段6は、流量センサー72から入力される信号に基づいて、電解室40に供給される水の流量Fを積算し、所定の流量に達すると陽極給電体41及び陰極給電体42に印加する直流電圧の極性を切り替える。これに伴い、陽極室40Aと陰極室40Bとが相互に入れ替わる。直流電圧の極性の切り替えにあたっては、制御手段6は、流量調整弁74及び流路切替弁81を同期して動作させる。これにより、陰極室40Bと吐水管82とが常に接続され、陰極室40Bで生成された電解水素水が吐水管82から吐出される。 The control means 6 controls the polarity of the DC voltage applied to the anode power supply 41 and the cathode power supply 42. For example, the control means 6 integrates the flow rate F of water supplied to the electrolysis chamber 40 based on the signal input from the flow rate sensor 72, and when it reaches a predetermined flow rate, the control unit 6 applies to the anode power supply 41 and the cathode power supply 42. Switch the polarity of the DC voltage to be applied. Along with this, the anode chamber 40A and the cathode chamber 40B are interchanged. In switching the polarity of the DC voltage, the control means 6 operates the flow rate adjustment valve 74 and the flow path switching valve 81 in synchronization. Thereby, the cathode chamber 40B and the water discharge pipe 82 are always connected, and the electrolytic hydrogen water generated in the cathode chamber 40B is discharged from the water discharge pipe 82.
 図2は、電解槽4の組立て斜視図である。電解槽4は、陽極給電体41側の第1ケース片50と、陰極給電体42側の第2ケース片60とを有している。互いに対向して配置された第1ケース片50と第2ケース片60とが固着されることにより、その内部に電解室40(図1参照)が形成される。 FIG. 2 is an assembled perspective view of the electrolytic cell 4. The electrolytic cell 4 includes a first case piece 50 on the anode power supply 41 side and a second case piece 60 on the cathode power supply 42 side. The first case piece 50 and the second case piece 60 arranged to face each other are fixed to each other, so that the electrolysis chamber 40 (see FIG. 1) is formed therein.
 電解槽4は、電解室40内に、陽極給電体41、隔膜43及び陰極給電体42が重ねられてなる積層体45を収容している。陽極給電体41、隔膜43及び陰極給電体42は、それぞれ矩形状に形成されている。 The electrolytic cell 4 accommodates a laminated body 45 in which an anode power supply 41, a diaphragm 43 and a cathode power supply 42 are stacked in an electrolysis chamber 40. The anode power supply 41, the diaphragm 43, and the cathode power supply 42 are each formed in a rectangular shape.
 陽極給電体41及び陰極給電体42は、それぞれ、その板厚方向で水が行き来可能に構成されている。陽極給電体41及び陰極給電体42には、例えば、エクスパンドメタル等の網状の金属が適用されうる。このような、網状の陽極給電体41及び陰極給電体42は、隔膜43を挟持しながら、隔膜43の表面に水を行き渡らせることができ、電解室40内での電気分解を促進する。本実施形態では、陽極給電体41及び陰極給電体42として、チタニウム製のエクスパンドメタルの表面に白金のめっき層が形成されたものが適用されている。白金のめっき層は、チタニウムの酸化を防止する。 The anode power supply body 41 and the cathode power supply body 42 are configured such that water can travel in the thickness direction. For the anode feeder 41 and the cathode feeder 42, for example, a net-like metal such as an expanded metal can be applied. Such a net-like anode power supply 41 and cathode power supply 42 can distribute water to the surface of the diaphragm 43 while sandwiching the diaphragm 43, and promote electrolysis in the electrolytic chamber 40. In the present embodiment, as the anode power supply body 41 and the cathode power supply body 42, one in which a platinum plating layer is formed on the surface of a titanium expanded metal is applied. The platinum plating layer prevents the oxidation of titanium.
 陽極給電体41には、第1ケース片50を貫通して電解槽4の外部に突出する端子41aが設けられている。同様に、陰極給電体42にも、第2ケース片60を貫通して電解槽4の外部に突出する端子42aが設けられている。端子41a、42aを介して、陽極給電体41及び陰極給電体42に直流電圧が印加される。 The anode power supply body 41 is provided with a terminal 41 a that penetrates the first case piece 50 and protrudes outside the electrolytic cell 4. Similarly, the cathode power supply 42 is also provided with a terminal 42 a that penetrates the second case piece 60 and protrudes outside the electrolytic cell 4. A DC voltage is applied to the anode power supply 41 and the cathode power supply 42 via the terminals 41a and 42a.
 本実施形態では、隔膜43には、例えば、スルホン酸基を有するフッ素系の樹脂材料からなる固体高分子材料が用いられている。固体高分子材料を用いた隔膜43を有する電解槽4では、中性の電解水が生成される。隔膜43の両面には、白金からなるめっき層43aが形成されている。めっき層43aと陽極給電体41及び陰極給電体42とは、当接し、電気的に接続される。 In the present embodiment, for the diaphragm 43, for example, a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used. In the electrolytic cell 4 having the diaphragm 43 using a solid polymer material, neutral electrolyzed water is generated. On both surfaces of the diaphragm 43, plating layers 43a made of platinum are formed. The plating layer 43a, the anode power supply 41, and the cathode power supply 42 are in contact with each other and are electrically connected.
 隔膜43は、電解室40内で、陽極給電体41及び陰極給電体42によって挟持されている。従って、隔膜43の形状は陽極給電体41及び陰極給電体42によって保持されている。このような、隔膜43の保持構造によれば、陽極室40Aと陰極室40Bとの間に生ずる圧力差に起因する応力の大部分は、陽極給電体41及び陰極給電体42によって負担され、隔膜43にかかる応力は減少する。これにより、陽極室40Aと陰極室40Bとの間で大きな圧力差が生ずる状態で電解水生成装置1を動作させても、隔膜43には大きな応力が生じない。従って、隔膜43の損傷を抑制し、水の利用効率を容易に高めることが可能となる。 The diaphragm 43 is sandwiched between the anode power supply 41 and the cathode power supply 42 in the electrolysis chamber 40. Therefore, the shape of the diaphragm 43 is held by the anode power supply 41 and the cathode power supply 42. According to such a structure for holding the diaphragm 43, most of the stress caused by the pressure difference generated between the anode chamber 40A and the cathode chamber 40B is borne by the anode feeder 41 and the cathode feeder 42. The stress on 43 decreases. Thereby, even if the electrolyzed water generating apparatus 1 is operated in a state where a large pressure difference is generated between the anode chamber 40A and the cathode chamber 40B, no large stress is generated in the diaphragm 43. Therefore, it is possible to suppress damage to the diaphragm 43 and easily increase the water use efficiency.
 また、隔膜43が陽極給電体41及び陰極給電体42で挟持されているので、隔膜43のめっき層43aと陽極給電体41との間及びめっき層43aと陰極給電体42との間での接触抵抗が減少し、電圧降下が抑制される。これにより、電解室40内での電気分解が促進され、高い溶存水素濃度の電解水素水が生成可能となる。 Further, since the diaphragm 43 is sandwiched between the anode power feeding body 41 and the cathode power feeding body 42, the contact between the plating layer 43 a and the anode power feeding body 41 of the diaphragm 43 and between the plating layer 43 a and the cathode power feeding body 42. The resistance is reduced and the voltage drop is suppressed. Thereby, electrolysis in the electrolysis chamber 40 is promoted, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.
 陽極給電体41及び陰極給電体42の外周縁の外側には、第1ケース片50と第2ケース片60との合わせ面からの水漏れを防止するための封止部材46が設けられている。隔膜43の外周部は、封止部材46によって挟持されている。 A sealing member 46 for preventing water leakage from the mating surface of the first case piece 50 and the second case piece 60 is provided outside the outer peripheral edges of the anode power supply body 41 and the cathode power supply body 42. . The outer peripheral portion of the diaphragm 43 is sandwiched by the sealing member 46.
 各ケース片50及び60は、電解室40内での水の流れに沿う縦方向Vに長い長方形状に形成されている。これに伴い、電解室40は、縦方向Vに長い長方形状に形成されている。このような縦長形状の電解室40によって、電解槽4内での流路が長くなる。その結果、陰極室40Bで発生した水素ガスが、陰極室40B内の水に溶け込みやすくなり、溶存水素濃度を高めることができる。 Each case piece 50 and 60 is formed in a rectangular shape that is long in the vertical direction V along the flow of water in the electrolysis chamber 40. Accordingly, the electrolytic chamber 40 is formed in a rectangular shape that is long in the vertical direction V. Such a vertically long electrolytic chamber 40 makes the flow path in the electrolytic cell 4 long. As a result, the hydrogen gas generated in the cathode chamber 40B is easily dissolved in the water in the cathode chamber 40B, and the dissolved hydrogen concentration can be increased.
 電解槽4には、L字状の継手91、92、93、94が設けられている。継手91、92は、第1ケース片50、第2ケース片60の下部に装着され、上記流量調整弁74と接続される。継手93、94は、第1ケース片50、第2ケース片60の上部に装着され、上記流路切替弁81と接続される。電解水生成装置1への通水を開始することにより、陽極室40A及び陰極室40Bの下部から上部に向かって、大局的な水の流れが生ずる。 The electrolytic cell 4 is provided with L-shaped joints 91, 92, 93, 94. The joints 91 and 92 are attached to the lower part of the first case piece 50 and the second case piece 60 and connected to the flow rate adjusting valve 74. The joints 93 and 94 are attached to the upper portions of the first case piece 50 and the second case piece 60 and connected to the flow path switching valve 81. By starting water flow to the electrolyzed water generator 1, a general flow of water is generated from the lower part to the upper part of the anode chamber 40A and the cathode chamber 40B.
 陰極室40Bにて発生した水素ガスは、微小な気泡となって陰極室40Bの上方に移動する。本実施形態では、水素ガスの移動方向と大局的に水が流れる方向が一致するため、水素分子が水に溶け込み易くなり、溶存水素濃度が高められる。 The hydrogen gas generated in the cathode chamber 40B moves as a minute bubble above the cathode chamber 40B. In the present embodiment, the movement direction of hydrogen gas and the direction in which water flows generally coincide with each other, so that hydrogen molecules easily dissolve in water and the dissolved hydrogen concentration is increased.
 図3は、電解室40側を向く内面側から視た第1ケース片50及び第2ケース片60の斜視図である。図4(a)は、内面側から視た第1ケース片50の正面図であり、図4(b)は、内面側から視た第2ケース片60の正面図である。図5は、図4のA-A断面及びB-B断面を含む電解槽4の組立断面図である。さらに、図6は、図5と同一の断面における電解槽4の断面図である。 FIG. 3 is a perspective view of the first case piece 50 and the second case piece 60 viewed from the inner surface side facing the electrolysis chamber 40 side. FIG. 4A is a front view of the first case piece 50 viewed from the inner surface side, and FIG. 4B is a front view of the second case piece 60 viewed from the inner surface side. FIG. 5 is an assembled cross-sectional view of the electrolytic cell 4 including the AA cross section and the BB cross section of FIG. 6 is a cross-sectional view of the electrolytic cell 4 in the same cross section as FIG.
 第1ケース片50及び第2ケース片60の内面の外縁部には、第1ケース片50と第2ケース片60とを固着するための合わせ面51、61が形成されている。合わせ面51、61の内側には、内壁が合わせ面51、61から第1ケース片50、第2ケース片60の厚さ方向に陥没することにより、電解部52、62が設けられている。電解部52は陽極室40Aを構成し、電解部62は陰極室40Bを構成する。 Alignment surfaces 51 and 61 for fixing the first case piece 50 and the second case piece 60 are formed on the outer edge portions of the inner surfaces of the first case piece 50 and the second case piece 60. Inside the mating surfaces 51, 61, the inner walls are recessed from the mating surfaces 51, 61 in the thickness direction of the first case piece 50 and the second case piece 60, so that the electrolysis parts 52, 62 are provided. The electrolysis unit 52 configures the anode chamber 40A, and the electrolysis unit 62 configures the cathode chamber 40B.
 第1ケース片50の内面には、複数の第1凸部53が配設されている。本実施形態では、第1凸部53は、電解部52の主要部52Aに離散化して配置された突起53Pを含む。主要部52Aとは、陽極給電体41の端縁部41e及び陰極給電体42の端縁部42eの内側に位置される電解部52の大部分を占める領域である。(以下、電解部62の主要部62Aについても同様とする。)各第1凸部53は、縦方向Vと、縦方向Vに垂直な横方向Hとに、行列状(マトリックス状)に並べて配設されている。突起の配置に関して「行列状」とは、突起が縦方向Vにm個、横方向Hにn個並べられた配置(m行×n列の行列のような配置)をいう(m、nは2以上の整数である。以下、同様とする)。 A plurality of first protrusions 53 are disposed on the inner surface of the first case piece 50. In this embodiment, the 1st convex part 53 contains the processus | protrusion 53P arrange | positioned discretely by 52 A of main parts of the electrolysis part 52. As shown in FIG. The main part 52A is an area that occupies most of the electrolysis part 52 located inside the end edge part 41e of the anode power supply body 41 and the end edge part 42e of the cathode power supply body 42. (Hereinafter, the same applies to the main part 62A of the electrolysis unit 62.) The first convex portions 53 are arranged in a matrix (matrix) in the vertical direction V and the horizontal direction H perpendicular to the vertical direction V. It is arranged. With respect to the arrangement of the protrusions, the “matrix” means an arrangement in which m protrusions are arranged in the vertical direction V and n protrusions are arranged in the horizontal direction H (an arrangement such as a matrix of m rows × n columns). An integer greater than or equal to 2. The same shall apply hereinafter).
 一方、第2ケース片60の内面には、複数の第2凸部63が配設されている。本実施形態では、第2凸部63は、電解部62の主要部62Aに離散化して配置された突起63Pを含む。各第2凸部63は、縦方向Vと横方向Hとに、行列状に並べて配設されている。 On the other hand, a plurality of second convex portions 63 are disposed on the inner surface of the second case piece 60. In the present embodiment, the second convex portion 63 includes a protrusion 63 </ b> P that is discretely arranged on the main portion 62 </ b> A of the electrolysis portion 62. The second convex portions 63 are arranged in a matrix in the vertical direction V and the horizontal direction H.
 各第1凸部53は、陽極室40Aで陽極給電体41と当接し、陽極給電体41を第2ケース片60の側に押圧する。一方、各第2凸部63は、陰極室40Bで陰極給電体42と当接し、陰極給電体42を第1ケース片50の側に押圧する。従って、各第1凸部53及び各第2凸部63によって、積層体45は、その両面から挟持される。 Each first convex portion 53 is in contact with the anode power supply body 41 in the anode chamber 40A, and presses the anode power supply body 41 toward the second case piece 60 side. On the other hand, each 2nd convex part 63 is contact | abutted with the cathode electric power feeding body 42 in the cathode chamber 40B, and presses the cathode electric power feeding body 42 to the 1st case piece 50 side. Therefore, the stacked body 45 is sandwiched from both surfaces by the first convex portions 53 and the second convex portions 63.
 第1凸部53は、陽極給電体41の端縁部41e(図2、6参照)と当接する第1突起56を含む。第1突起56は、第1凸部53のうち、電解部52の主要部に離散化して配置された突起の周辺に設けられている。これにより、陽極給電体41の端縁部41eが第1突起56によって隔膜43の側に押圧され、陽極給電体41の端縁部41eと隔膜43との接触圧力が高められ、両者の間の接触抵抗が低減される。 1st convex part 53 contains the 1st protrusion 56 contact | abutted with the edge part 41e (refer FIG. 2, 6) of the anode electric power feeding body 41. As shown in FIG. The first protrusions 56 are provided around the protrusions arranged discretely in the main part of the electrolysis part 52 in the first protrusion 53. As a result, the edge 41e of the anode power supply 41 is pressed toward the diaphragm 43 by the first protrusion 56, the contact pressure between the edge 41e of the anode power supply 41 and the diaphragm 43 is increased, and the gap between the two is increased. Contact resistance is reduced.
 一方、第2凸部63は、陰極給電体42の端縁部42e(図2、6参照)と当接する第2突起66を含む。第2突起66は、第2凸部63のうち、電解部62の主要部に離散化して配置された突起の周辺に設けられている。これにより、陰極給電体42の端縁部42eが第2突起66によって隔膜43の側に押圧され、陰極給電体42の端縁部42eと隔膜43との接触圧力が高められ、両者の間の接触抵抗が低減される。 On the other hand, the second convex portion 63 includes a second protrusion 66 that comes into contact with the end edge portion 42e (see FIGS. 2 and 6) of the cathode power supply body 42. The second protrusions 66 are provided around the protrusions that are discretely arranged in the main part of the electrolysis part 62 in the second convex part 63. Thereby, the edge part 42e of the cathode power supply body 42 is pressed by the 2nd protrusion 66 to the diaphragm 43 side, the contact pressure of the edge part 42e of the cathode power supply body 42 and the diaphragm 43 is raised, between both. Contact resistance is reduced.
 従って、陽極給電体41の端縁部41e及び陰極給電体42の端縁部42eを流れる電解電流が増大し、各端縁部41e、42eでの電気分解が促進される。よって、陰極室40Bで生成される電解水素水の溶存水素濃度を容易に高めることが可能となる。 Therefore, the electrolysis current flowing through the edge 41e of the anode power supply 41 and the edge 42e of the cathode power supply 42 is increased, and the electrolysis at each edge 41e, 42e is promoted. Therefore, it is possible to easily increase the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the cathode chamber 40B.
 本実施形態では、第1突起56は、陽極給電体41の端縁部41eに沿って複数個設けられている。同様に、第2突起66は、陰極給電体42の端縁部42eに沿って複数個設けられている。 In the present embodiment, a plurality of the first protrusions 56 are provided along the edge 41e of the anode power feeder 41. Similarly, a plurality of second protrusions 66 are provided along the edge part 42 e of the cathode power supply body 42.
 図5、6に示されるように、第1ケース片50と第2ケース片60とが固着されると、第1突起56及び第2突起66の外側に、封止部材46が配設される。封止部材46の内側、すなわち、陽極給電体41の端縁部41e及び陰極給電体42の42eにも、水が供給される。 As shown in FIGS. 5 and 6, when the first case piece 50 and the second case piece 60 are fixed, the sealing member 46 is disposed outside the first protrusion 56 and the second protrusion 66. . Water is also supplied to the inside of the sealing member 46, that is, the edge 41 e of the anode power supply 41 and 42 e of the cathode power supply 42.
 図3乃至6に示されるように、各第2突起66は、隣り合う第1突起56の間に隔設されている。換言すると、各第1突起56は、隣り合う第2突起66の間に隔設されている。これにより、陽極給電体41の端縁部41e及び陰極給電体42の端縁部42eは、第1突起56及び第2突起66によって第1ケース片50の側及び第2ケース片60の側から交互に押圧され、支持される。また、端縁部42eにおいて発生した水素ガスが、隣り合う第2突起66の間に流れ込んだ水に溶け込みやすくなり、溶存水素濃度がより一層高められる。 As shown in FIGS. 3 to 6, the second protrusions 66 are spaced between the adjacent first protrusions 56. In other words, each first protrusion 56 is spaced between adjacent second protrusions 66. As a result, the edge 41 e of the anode power supply 41 and the edge 42 e of the cathode power supply 42 are separated from the first case piece 50 side and the second case piece 60 side by the first protrusion 56 and the second protrusion 66. Pressed alternately and supported. In addition, the hydrogen gas generated at the edge portion 42e is easily dissolved in the water flowing between the adjacent second protrusions 66, and the dissolved hydrogen concentration is further increased.
 図6に示されるように、第1突起56及び第2突起66の高さは、陽極給電体41の端縁部41e及び陰極給電体42の端縁部42eを波形に矯正できる程度に設定されるのが好ましい。このような波形の陽極給電体41の端縁部41e及び陰極給電体42は、大きな曲げ剛性を有しているので、電解室40内での圧力差により積層体45が大きな応力を受けても、その変形が抑制され、隔膜43の損傷が抑制される。 As shown in FIG. 6, the heights of the first protrusion 56 and the second protrusion 66 are set to such an extent that the edge 41 e of the anode power supply 41 and the edge 42 e of the cathode power supply 42 can be corrected to a waveform. It is preferable. Since the edge 41e and the cathode power supply 42 of the anode power supply 41 having such a waveform have a large bending rigidity, even if the laminated body 45 receives a large stress due to a pressure difference in the electrolytic chamber 40. The deformation is suppressed and damage to the diaphragm 43 is suppressed.
 図3乃至6に示されるように、第1突起56は、陽極室40A内での水の流れに沿う縦方向Vに長い第1縦長突起57を含む。第1縦長突起57は、陽極給電体41の横方向Hの横端縁部41hと当接する。横端縁部41hは、第1縦長突起57によって隔膜43の側に押圧され、隔膜43との接触圧力が高められる。なお、陽極給電体41の横端縁部41hとは、例えば、陽極給電体41の横方向Hの端縁から内側に、陽極給電体41の横方向Hの長さの2%以下の領域をいう(以下、陰極給電体42の横端縁部42hについても同様とする)。 As shown in FIGS. 3 to 6, the first protrusion 56 includes a first vertical protrusion 57 that is long in the vertical direction V along the flow of water in the anode chamber 40A. The first vertically long protrusions 57 are in contact with the lateral edge 41 h in the lateral direction H of the anode power feeding body 41. The lateral edge 41h is pressed toward the diaphragm 43 by the first vertically long protrusion 57, and the contact pressure with the diaphragm 43 is increased. The horizontal edge 41h of the anode power supply 41 is, for example, a region that is 2% or less of the length in the horizontal direction H of the anode power supply 41 on the inner side from the edge in the horizontal direction H of the anode power supply 41. (Hereinafter, the same applies to the lateral edge 42h of the cathode power supply 42).
 第2突起66は、陰極室40B内での水の流れに沿う縦方向Vに長い第2縦長突起67を含む。各第2縦長突起67は、電解槽4を横方向Hから視た側面視で、隣り合う第1縦長突起57の間に隔設されている。第2縦長突起67は、陰極給電体42の横方向Hの横端縁部42hと当接する。横端縁部42hは、第2縦長突起67によって隔膜43の側に押圧され、隔膜43との接触圧力が高められる。なお、各第2縦長突起67は、第1縦長突起57に対して縦方向Vに交互に設けられていればよく、第1ケース片50と第2ケース片60とが固着されたとき、隣り合う第1縦長突起57から横方向Hにずれた位置に設けられていてもよい。 The second protrusion 66 includes a second vertical protrusion 67 that is long in the vertical direction V along the flow of water in the cathode chamber 40B. Each of the second vertically long protrusions 67 is provided between the adjacent first vertically long protrusions 57 in a side view when the electrolytic cell 4 is viewed from the lateral direction H. The second vertically long protrusion 67 contacts the horizontal end edge portion 42 h in the horizontal direction H of the cathode power supply body 42. The lateral edge 42h is pressed toward the diaphragm 43 by the second vertically long projection 67, and the contact pressure with the diaphragm 43 is increased. The second vertically long protrusions 67 may be provided alternately in the vertical direction V with respect to the first vertically long protrusions 57. When the first case piece 50 and the second case piece 60 are fixed, they are adjacent to each other. It may be provided at a position shifted in the horizontal direction H from the matching first vertically long protrusion 57.
 第1凸部53の頂部53aは、第1ケース片50の側に中心を有する凸曲面53bを含んで構成されている。凸曲面53bは、図6に示される第1縦長突起57の頂部57aに形成されている凸曲面57bを含む。凸曲面53bは、円柱の側面の一部のような2次曲面であってもよく、球の表面の一部のような3次曲面であってもよい。頂部53aが凸曲面53bで構成されることにより、積層体45がゆるやかな曲率で湾曲するため、隔膜43への応力集中が緩和され、隔膜43の損傷が抑制される。 The top 53a of the first convex portion 53 is configured to include a convex curved surface 53b having a center on the first case piece 50 side. The convex curved surface 53b includes a convex curved surface 57b formed at the top 57a of the first vertically long protrusion 57 shown in FIG. The convex curved surface 53b may be a quadratic curved surface such as a part of a side surface of a cylinder, or may be a cubic curved surface such as a part of the surface of a sphere. Since the top portion 53a is configured by the convex curved surface 53b, the stacked body 45 is curved with a gentle curvature, so that stress concentration on the diaphragm 43 is alleviated and damage to the diaphragm 43 is suppressed.
 第2凸部63の頂部63aは、第2ケース片60の側に中心を有する凸曲面63bを含んで構成されている。凸曲面63bは、図6に示される第2縦長突起67の頂部67aに形成されている凸曲面67bを含む。凸曲面63bについても上記凸曲面53bと同様である。 The top portion 63a of the second convex portion 63 is configured to include a convex curved surface 63b having a center on the second case piece 60 side. The convex curved surface 63b includes a convex curved surface 67b formed on the top 67a of the second vertically long projection 67 shown in FIG. The convex curved surface 63b is the same as the convex curved surface 53b.
 本実施形態では、第1ケース片50と第2ケース片60とが固着されたとき、第2凸部63は、縦方向Vに最も近い距離で隣り合う第1凸部53、53の間に配置されている。これに伴い、第2凸部63は、第1凸部53よりも、一行少なく設けられている。さらに、第2凸部63は、横方向Hに最も近い距離で隣り合う第1凸部53、53の間に配置されている。 In the present embodiment, when the first case piece 50 and the second case piece 60 are fixed, the second convex portion 63 is located between the first convex portions 53 and 53 adjacent to each other at a distance closest to the vertical direction V. Has been placed. Accordingly, the second convex portion 63 is provided in one line fewer than the first convex portion 53. Further, the second convex portion 63 is disposed between the first convex portions 53 and 53 adjacent to each other at a distance closest to the horizontal direction H.
 このような各第1凸部53及び各第2凸部63の相対的な配置によって、陰極室40B内では、各第2凸部63が、縦方向V及び横方向Hに離散的かつ均等に点在することになる。これにより、陰極室40B内で縦方向V及び横方向Hに点在する第2凸部63の間に流速の大きな水が流れ込み、陰極給電体42の表面に十分な水が供給される。従って、例えば、各給電体41、42に供給する電解電流を大きくして、陰極給電体42の表面で大量の水素ガスを発生させる場合であっても、電解水素水の溶存水素濃度が局所的に飽和値に近づくことが抑制され、陰極室40B全体での溶存水素濃度が向上する。また、例えば、陰極室40Bに供給される水の流量が少ない場合であっても、電解水素水の溶存水素濃度が局所的に飽和値に近づくことが抑制され、陰極室40B全体での溶存水素濃度が向上する。 Due to the relative arrangement of the first protrusions 53 and the second protrusions 63, the second protrusions 63 are discretely and evenly distributed in the vertical direction V and the horizontal direction H in the cathode chamber 40B. Will be scattered. As a result, water having a large flow velocity flows between the second convex portions 63 scattered in the vertical direction V and the horizontal direction H in the cathode chamber 40 </ b> B, and sufficient water is supplied to the surface of the cathode power supply 42. Therefore, for example, even when the electrolytic current supplied to each of the power feeders 41 and 42 is increased to generate a large amount of hydrogen gas on the surface of the cathode power feeder 42, the dissolved hydrogen concentration of the electrolytic hydrogen water is locally increased. Near the saturation value, and the dissolved hydrogen concentration in the entire cathode chamber 40B is improved. Further, for example, even when the flow rate of water supplied to the cathode chamber 40B is small, the dissolved hydrogen concentration of the electrolytic hydrogen water is suppressed from locally approaching a saturation value, and dissolved hydrogen in the entire cathode chamber 40B. Concentration is improved.
 一方、陽極室40A内では、各第1凸部53が、縦方向V及び横方向Hに離散的かつ均等に点在し、陽極室40A内で縦方向V及び横方向Hに点在する第1凸部53の間にも流速の大きな水が流れ込み、陽極給電体41の表面に十分な水が供給される。従って、上述した陰極室40Bと同様に、陽極室40A全体での溶存酸素濃度が向上する。これにより、陽極室40Aで発生する酸素ガスを、陽極室40A内の水に容易に溶け込ませて排出することが可能となる。 On the other hand, in the anode chamber 40A, the first convex portions 53 are scattered in the vertical direction V and the horizontal direction H in a discrete and even manner, and the first convex portions 53 are scattered in the vertical direction V and the horizontal direction H in the anode chamber 40A. Water having a high flow velocity flows also between the one convex portion 53, and sufficient water is supplied to the surface of the anode power feeding body 41. Therefore, like the cathode chamber 40B described above, the dissolved oxygen concentration in the entire anode chamber 40A is improved. Thereby, the oxygen gas generated in the anode chamber 40A can be easily dissolved in the water in the anode chamber 40A and discharged.
 第1凸部53及び第2凸部63は、縦方向Vに長い縦長形状に形成されている。このような縦長形状の第1凸部53及び第2凸部63によって、陽極室40A及び陰極室40B内の水が整流され、縦方向Vの大局的な水流を妨げることなく、積層体45が広い面積で強固に支持されうる。従って、各給電体41、42と隔膜43のめっき層43aとの間の接触抵抗が低下し、電解室40内の水を効率よく電気分解することが可能となる。本実施形態では、縦長形状の第1凸部53として楕円柱状の突起が採用されているが、長円柱状又は直方体状の突起であってもよい。 The first convex portion 53 and the second convex portion 63 are formed in a vertically long shape that is long in the vertical direction V. The vertically long first convex portion 53 and the second convex portion 63 rectify the water in the anode chamber 40A and the cathode chamber 40B, and the laminated body 45 can be formed without hindering the general water flow in the vertical direction V. It can be firmly supported over a wide area. Therefore, the contact resistance between each of the power feeding bodies 41 and 42 and the plating layer 43a of the diaphragm 43 is reduced, and the water in the electrolysis chamber 40 can be efficiently electrolyzed. In the present embodiment, an elliptical columnar protrusion is employed as the vertically long first convex portion 53, but it may be a long cylindrical protrusion or a rectangular parallelepiped protrusion.
 各第1凸部53は、頂部53aで陽極給電体41に当接する。頂部53aは、例えば、合わせ面51と、同等の高さに突出している。これにより、陽極給電体41は、頂部53aとの当接箇所で第2ケース片60の側に押圧されて突出する。一方、各第2凸部63は、頂部63aで陰極給電体42に当接する。これにより、陰極給電体42は、頂部63aとの当接箇所で第1ケース片50の側に押圧されて突出する。 Each first convex portion 53 comes into contact with the anode power feeding body 41 at the top portion 53a. The top 53a protrudes to the same height as the mating surface 51, for example. As a result, the anode power feeding body 41 is pressed and protrudes toward the second case piece 60 at the contact point with the top 53a. On the other hand, each 2nd convex part 63 contact | abuts to the cathode electric power feeding body 42 by the top part 63a. Thereby, the cathode power supply body 42 is pressed and protrudes toward the first case piece 50 at a contact portion with the top 63a.
 本発明では、縦方向Vに隣り合う第1凸部53、53の間に第2凸部63が配置されているので、積層体45は、縦方向Vに沿った断面で波形に矯正されている。さらに、横方向Hに最も近い距離で隣り合う第1凸部53、53の間に第2凸部63が配置されているので、積層体45は、横方向Hに沿った断面でも波形に矯正されている。このような波形の積層体45は、大きな曲げ剛性を有しているので、電解室40内での圧力差により積層体45が大きな応力を受けても、その変形が抑制され、隔膜43の損傷が抑制される。 In the present invention, since the second convex portion 63 is disposed between the first convex portions 53 adjacent to each other in the vertical direction V, the laminate 45 is corrected to have a waveform in a cross section along the vertical direction V. Yes. Furthermore, since the 2nd convex part 63 is arrange | positioned between the 1st convex parts 53 and 53 which adjoin at the distance nearest to the horizontal direction H, the laminated body 45 is corrected to a waveform also in the cross section along the horizontal direction H. Has been. Since the corrugated laminate 45 has a large bending rigidity, even if the laminate 45 receives a large stress due to a pressure difference in the electrolysis chamber 40, the deformation is suppressed and the diaphragm 43 is damaged. Is suppressed.
  図3、4に示されるように、第1ケース片50の電解室40側を向く内面には、積層体45(図2参照)を挟んで第2ケース片60の第2凸部63(突起63P)と対向する位置に、複数の第1小突起54が配設されているのが望ましい。各第1小突起54は、横方向Hに隣り合う第1凸部53、53の間を縦方向Vに流れる水の一部をせき止めて、第1小突起54の横方向Hの両端、すなわち縦方向Vに隣り合う第1凸部53、53の間に案内する。これにより、陽極室40A内の水が第1小突起54の周辺で局所的に攪拌される。従って、第1凸部53による縦方向Vの大局的な水流と第1小突起54による局所的な水流とが融合されることにより、陽極給電体41の表面に供給される水の流れがより一層均一化され、溶存水素濃度が高められる。 As shown in FIGS. 3 and 4, on the inner surface of the first case piece 50 facing the electrolytic chamber 40 side, the second convex portion 63 (projection) of the second case piece 60 with the laminate 45 (see FIG. 2) interposed therebetween. It is desirable that a plurality of first small protrusions 54 be disposed at a position facing 63P). Each first small protrusion 54 blocks part of the water flowing in the vertical direction V between the first convex portions 53 and 53 adjacent in the horizontal direction H, so that both ends of the first small protrusion 54 in the horizontal direction H, that is, It guides between the 1st convex parts 53 and 53 adjacent to the vertical direction V. FIG. Thereby, the water in the anode chamber 40 </ b> A is locally stirred around the first small protrusion 54. Therefore, the flow of water supplied to the surface of the anode power supply 41 is further increased by the fusion of the global water flow in the vertical direction V by the first convex portion 53 and the local water flow by the first small protrusion 54. More uniform and dissolved hydrogen concentration is increased.
 第1小突起54は、横方向Hに長い横長形状に形成されているのが望ましい。このような第1小突起54は、縦方向Vに隣り合う第1凸部53、53の間に水を案内する効果が高く、陽極給電体41の表面に供給される水の流れがより一層均一化され、溶存水素濃度が高められる。本実施形態では、横長形状の第1凸部53として、楕円柱状の突起が採用されているが、長円柱状又は直方体状の突起であってもよい。 The first small protrusions 54 are preferably formed in a horizontally long shape in the horizontal direction H. Such a first small protrusion 54 has a high effect of guiding water between the first convex portions 53 and 53 adjacent in the vertical direction V, and the flow of water supplied to the surface of the anode power supply 41 is further increased. Homogenized and dissolved hydrogen concentration is increased. In the present embodiment, an elliptical columnar protrusion is adopted as the horizontally long first convex portion 53, but it may be a long columnar or rectangular parallelepiped protrusion.
 第1小突起54は、高さが第1凸部53よりも小さく、陽極給電体41とは当接しない。このため、第1小突起54と陽極給電体41との間には流路が形成され、陽極給電体41の表面に供給される水の流れがより一層均一化される。 The height of the first small protrusion 54 is smaller than that of the first convex portion 53 and does not contact the anode power supply body 41. For this reason, a flow path is formed between the first small protrusion 54 and the anode power feeder 41, and the flow of water supplied to the surface of the anode power feeder 41 is made more uniform.
  一方、第2ケース片60の電解室40側を向く内面には、積層体45(図2参照)を挟んで第1ケース片50の第1凸部53(突起53P)と対向する位置に、複数の第2小突起64が配設されているのが望ましい。第2小突起64の形状や作用効果については、上記第1小突起54と同様であるため、その説明を省略する。 On the other hand, on the inner surface of the second case piece 60 facing the electrolytic chamber 40 side, at a position facing the first convex portion 53 (projection 53P) of the first case piece 50 with the laminated body 45 (see FIG. 2) interposed therebetween. It is desirable that a plurality of second small protrusions 64 be provided. Since the shape and operational effects of the second small protrusion 64 are the same as those of the first small protrusion 54, the description thereof is omitted.
 本発明では、第2突起66の近傍に設けられた第2小突起64は、陰極給電体42の横端縁部42hに向って、陰極室40B内の水を案内するので、陰極給電体42の横端縁部42hの表面にも水が十分に供給されうる。従って、上述した第1突起56及び第2突起66による端縁部42eでの電気分解の促進作用によって発生した水素ガスが水に溶け込みやすくなり、溶存水素濃度が容易に高められる。 In the present invention, the second small protrusion 64 provided in the vicinity of the second protrusion 66 guides the water in the cathode chamber 40 </ b> B toward the lateral edge 42 h of the cathode power supply 42. Water can be sufficiently supplied also to the surface of the horizontal end edge portion 42h. Therefore, the hydrogen gas generated by the action of promoting electrolysis at the edge portion 42e by the first protrusion 56 and the second protrusion 66 described above is easily dissolved in water, and the dissolved hydrogen concentration is easily increased.
 図3及び6に示されるように、第1小突起54には、第1小突起54を縦方向Vに貫く溝55が形成されているのが望ましい。一つの第1小突起54に対する溝55の本数、幅、深さは、適宜設定されうる。例えば、本実施形態では、1本の溝55が第1小突起54の横方向Hの中央部に設けられている。また、溝55の深さは、第1小突起54の高さと同等である。溝55は、横方向Hに隣り合う第1凸部53、53の間を流れる水の一部を縦方向Vに導いて、第1小突起54を通過させる。溝55によって、陽極給電体41の表面に供給される水の流れがより一層均一化される。 As shown in FIGS. 3 and 6, the first small protrusion 54 is preferably formed with a groove 55 penetrating the first small protrusion 54 in the vertical direction V. The number, width, and depth of the groove 55 for one first small protrusion 54 can be set as appropriate. For example, in the present embodiment, one groove 55 is provided in the central portion in the lateral direction H of the first small protrusion 54. Further, the depth of the groove 55 is equal to the height of the first small protrusion 54. The groove 55 guides a part of the water flowing between the first convex portions 53 and 53 adjacent in the horizontal direction H in the vertical direction V and allows the first small protrusions 54 to pass therethrough. The groove 55 makes the flow of water supplied to the surface of the anode power supply body 41 even more uniform.
 同様に、第2小突起64には、第2小突起64を縦方向Vに貫く溝65が形成されているのが望ましい。溝65の本数等については、上記溝55と同様である。溝65は、横方向Hに隣り合う第2凸部63、63の間を流れる水の一部を縦方向Vに導いて、第2小突起64を通過させる。溝65によって、陰極給電体42の表面に供給される水の流れがより一層均一化される。 Similarly, it is desirable that the second small protrusion 64 is formed with a groove 65 penetrating the second small protrusion 64 in the vertical direction V. The number of grooves 65 is the same as that of the groove 55. The groove 65 guides a part of the water flowing between the second convex portions 63, 63 adjacent in the horizontal direction H in the vertical direction V and allows the second small protrusion 64 to pass therethrough. The groove 65 makes the flow of water supplied to the surface of the cathode power supply 42 even more uniform.
 なお、上記第1小突起54及び第2小突起64によって、陽極室40A内及び陰極室40B内の水の流れが阻害されるおそれもある。しかしながら、本実施形態では、第1小突起54の高さは、第1凸部53の高さよりも小さく、第1小突起54は、陽極給電体41とは当接しない。従って、第1小突起54と陽極給電体41との間には流路が形成され、第1小突起54によって、陽極室40A内の水の流れが阻害されるおそれは限定的となる。同様に、第2小突起64によって、陰極室40B内の水の流れが阻害されるおそれは限定的となる。 Note that the first small protrusion 54 and the second small protrusion 64 may impede the flow of water in the anode chamber 40A and the cathode chamber 40B. However, in the present embodiment, the height of the first small protrusion 54 is smaller than the height of the first convex portion 53, and the first small protrusion 54 does not contact the anode feeder 41. Therefore, a flow path is formed between the first small protrusion 54 and the anode power supply body 41, and the possibility that the first small protrusion 54 hinders the flow of water in the anode chamber 40A is limited. Similarly, the possibility that the flow of water in the cathode chamber 40B is hindered by the second small protrusion 64 is limited.
 図3及び4に示されるように、第1ケース片50の内面の下部には、第1分水路58Dが形成されている。第1分水路58Dは、第1ケース片50の横方向Hに沿ってのび、電解部52と連通している。継手91から流入した水は、第1分水路58Dを介して、電解部52に流れ込み、第1凸部53等の間隙を上方に流れる。同様に、第2ケース片60の内面の下部には、第2分水路68Dが形成されている。第2分水路68Dは、第2ケース片60の横方向Hに沿ってのび、電解部62と連通している。継手92から流入した水は、第2分水路68Dを介して、電解部62に流れ込み、第2凸部63等の間隙を上方に流れる。 As shown in FIGS. 3 and 4, a first water diversion channel 58 </ b> D is formed at the lower part of the inner surface of the first case piece 50. The first diversion channel 58 </ b> D extends along the lateral direction H of the first case piece 50 and communicates with the electrolysis unit 52. The water flowing in from the joint 91 flows into the electrolysis unit 52 via the first diversion channel 58D, and flows upward through the gap such as the first convex portion 53. Similarly, a second water diversion channel 68 </ b> D is formed in the lower part of the inner surface of the second case piece 60. The second diversion channel 68 </ b> D extends along the lateral direction H of the second case piece 60 and communicates with the electrolysis unit 62. The water flowing in from the joint 92 flows into the electrolysis unit 62 via the second diversion channel 68D and flows upward through the gap such as the second convex portion 63.
 一方、第1ケース片50の内面の上部には、第1集水路58Cが形成されている。第1集水路58Cは、第1ケース片50の横方向Hに沿ってのび、電解部52と連通している。電解部52の上方に移動した水は、第1集水路58Cによって集められて、継手93から電解槽4の外部に流出する。同様に、第2ケース片60の内面の上部には、第2集水路68Cが形成されている。第2集水路68Cは、第2ケース片60の横方向Hに沿ってのび、電解部62と連通している。電解部62の上方に移動した水は、第2集水路68Cによって集められて、継手94から電解槽4の外部に流出する。 On the other hand, a first water collecting channel 58 </ b> C is formed in the upper part of the inner surface of the first case piece 50. The first water collecting channel 58 </ b> C extends along the lateral direction H of the first case piece 50 and communicates with the electrolysis unit 52. The water that has moved above the electrolysis unit 52 is collected by the first water collecting channel 58 </ b> C and flows out of the electrolytic cell 4 from the joint 93. Similarly, a second water collecting channel 68 </ b> C is formed in the upper part of the inner surface of the second case piece 60. The second water collection channel 68 </ b> C extends along the lateral direction H of the second case piece 60 and communicates with the electrolysis unit 62. The water that has moved above the electrolysis unit 62 is collected by the second water collecting channel 68C and flows out of the electrolytic cell 4 from the joint 94.
 合わせ面51を基準とすると、電解部52の深さは、第1分水路58D及び第1集水路58Cよりも小さい。このような電解部52によって、電解部52を流れる水の速度が高められ、酸素ガスが溶け込みやすくなる。そして、電解部52と第1分水路58D及び第1集水路58Cとの段差部には、斜面59が形成されている。斜面59は、陽極室40A内の水の流れを円滑なものとし、電解部52を流れる水の速度の低下を抑制する。 With reference to the mating surface 51, the depth of the electrolysis unit 52 is smaller than that of the first water diversion channel 58D and the first water collection channel 58C. By such an electrolysis part 52, the speed of the water which flows through the electrolysis part 52 is raised, and it becomes easy to melt | dissolve oxygen gas. A slope 59 is formed at the step between the electrolysis unit 52 and the first water diversion channel 58D and the first water collection channel 58C. The slope 59 smoothes the flow of water in the anode chamber 40A and suppresses a decrease in the speed of water flowing through the electrolysis unit 52.
 同様に、合わせ面61を基準とすると、電解部62の深さは、第2分水路68D及び第2集水路68Cよりも小さい。このような電解部62によって、電解部62を流れる水の速度が高められ、水素ガスが溶け込みやすくなる。そして、電解部62と第2分水路68D及び第2集水路68Cとの段差部には、斜面69が形成されている。斜面69は、陰極室40B内の水の流れを円滑なものとし、電解部62を流れる水の速度の低下を抑制する。 Similarly, when the mating surface 61 is used as a reference, the depth of the electrolysis unit 62 is smaller than that of the second water diversion channel 68D and the second water collection channel 68C. By such an electrolysis part 62, the speed of the water which flows through the electrolysis part 62 is raised, and it becomes easy to melt | dissolve hydrogen gas. A slope 69 is formed at the step between the electrolytic unit 62 and the second water diversion channel 68D and the second water collection channel 68C. The slope 69 smoothes the flow of water in the cathode chamber 40B and suppresses a decrease in the speed of the water flowing through the electrolysis unit 62.
 図7は、第1ケース片50の変形例である第1ケース片50Aを示している。一方、図8は、第2ケース片60の変形例である第2ケース片60Aを示している。 FIG. 7 shows a first case piece 50 </ b> A that is a modification of the first case piece 50. On the other hand, FIG. 8 shows a second case piece 60 </ b> A that is a modification of the second case piece 60.
 第1ケース片50Aは、第1分水路58D(図3参照)及び第1集水路58Cの周囲に第1突起56が設けられている点で、第1ケース片50とは異なる。同様に、第2ケース片60Aは、第2分水路68D(図3参照)及び第2集水路68Cの周囲に第2突起66が設けられている点で、第2ケース片60とは異なる。本第1ケース片50A及び第2ケース片60Aのうち、以下で説明されてない部分については、上記第1ケース片50及び第2ケース片60の構成が採用されうる。 The first case piece 50A is different from the first case piece 50 in that a first protrusion 56 is provided around the first water diversion channel 58D (see FIG. 3) and the first water collection channel 58C. Similarly, the second case piece 60A is different from the second case piece 60 in that a second protrusion 66 is provided around the second water diversion channel 68D (see FIG. 3) and the second water collection channel 68C. Of the first case piece 50A and the second case piece 60A, the configuration of the first case piece 50 and the second case piece 60 can be adopted for portions not described below.
 図7に示されるように、第1突起56は、横方向Hに長い第1横長突起57Aを含む。第1横長突起57Aは、図3中第1分水路58Dの下端及び第1集水路58Cの上端に沿って複数個設けられ、陽極給電体41の縦方向Vの縦端縁部41v(図2参照)と当接する。これにより、陽極給電体41の縦端縁部41vが第1横長突起57Aによって支持される。従って、陽極室40Aと陰極室40Bとの間で大きな圧力差が生ずる場合であっても、積層体45の変形が抑制され、隔膜43の損傷が抑制される。なお、陽極給電体41の縦端縁部41vとは、例えば、陽極給電体41の縦方向Vの端縁から内側に、陽極給電体41の縦方向Vの長さの2%以下の領域をいう(以下、陰極給電体42の縦端縁部42vについても同様とする)。 7, the first protrusion 56 includes a first horizontally long protrusion 57A that is long in the lateral direction H. A plurality of first lateral protrusions 57A are provided along the lower end of the first water diversion channel 58D and the upper end of the first water collection channel 58C in FIG. 3, and the vertical end edge portion 41v in the vertical direction V of the anode feeder 41 (FIG. 2). Contact). Thereby, the vertical end edge portion 41v of the anode power feeding body 41 is supported by the first horizontally long protrusion 57A. Therefore, even when a large pressure difference is generated between the anode chamber 40A and the cathode chamber 40B, deformation of the stacked body 45 is suppressed, and damage to the diaphragm 43 is suppressed. Note that the vertical edge 41v of the anode power supply 41 is, for example, a region of 2% or less of the length of the anode power supply 41 in the vertical direction V on the inner side from the edge in the vertical direction V of the anode power supply 41. (Hereinafter, the same applies to the vertical edge portion 42v of the cathode power supply body 42).
 同様に、図8に示されるように、第2突起66は、横方向Hに長い第2横長突起67Aを含む。第2横長突起67Aは、電解槽4を縦方向Vから視た上面視で、隣り合う第1横長突起57Aの間に隔設されている。第2横長突起67Aは、図3中第2分水路68Dの下端及び第2集水路68Cの上端に沿って複数個設けられ、陰極給電体42の縦方向Vの縦端縁部42v(図2参照)と当接する。これにより、陰極給電体42の縦端縁部42vが第2横長突起67Aによって支持される。従って、陽極室40Aと陰極室40Bとの間で大きな圧力差が生ずる場合であっても、積層体45の変形が抑制され、隔膜43の損傷が抑制される。なお、各第2横長突起67Aは、第1横長突起57Aに対して横方向Hに交互に設けられていればよく、第1ケース片50と第2ケース片60とが固着されたとき、隣り合う第1横長突起57Aから縦方向Vにずれた位置に設けられていてもよい。 Similarly, as shown in FIG. 8, the second protrusion 66 includes a second horizontally long protrusion 67 </ b> A that is long in the horizontal direction H. The second horizontally long protrusions 67A are spaced between adjacent first horizontally long protrusions 57A in a top view when the electrolytic cell 4 is viewed from the vertical direction V. A plurality of second horizontally long projections 67A are provided along the lower end of the second water diversion channel 68D and the upper end of the second water collecting channel 68C in FIG. 3, and the vertical end edge portion 42v in the vertical direction V of the cathode feeder 42 (FIG. 2). Contact). Thereby, the vertical end edge portion 42v of the cathode power supply body 42 is supported by the second horizontally long protrusion 67A. Therefore, even when a large pressure difference is generated between the anode chamber 40A and the cathode chamber 40B, deformation of the stacked body 45 is suppressed, and damage to the diaphragm 43 is suppressed. The second lateral projections 67A need only be provided alternately in the lateral direction H with respect to the first lateral projections 57A. When the first case pieces 50 and the second case pieces 60 are fixed, they are adjacent to each other. It may be provided at a position shifted in the vertical direction V from the first laterally long projection 57A.
 以上、本発明の電解水生成装置1が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成装置1は、少なくとも、電気分解される水が供給される電解室40が形成された電解槽4と、電解室40内で、互いに対向して配置された陽極給電体41及び陰極給電体42と、陽極給電体41と陰極給電体42との間に配され、かつ、電解室40を陽極室40Aと、陰極室40Bとに区分する隔膜43とを備え、隔膜43が、陽極給電体41及び陰極給電体42で挟持され、電解槽4は、陽極給電体41側の第1ケース片50と、陰極給電体42側の第2ケース片60とが固着されることにより電解室40を形成し、第1ケース片50の内面には、陽極給電体41に当接する第1凸部53が配設され、第2ケース片60の内面には、陰極給電体42に当接する第2凸部63が配設され、第1凸部53は、陽極給電体41の端縁部41eと当接する第1突起56を含み、第2凸部63は、陰極給電体42の端縁部42eと当接する第2突起66を含んでいればよい。 As mentioned above, although the electrolyzed water generating apparatus 1 of this invention was demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment. That is, the electrolyzed water generating apparatus 1 includes at least an electrolysis tank 4 in which an electrolysis chamber 40 to which water to be electrolyzed is supplied, an anode feeder 41 disposed opposite to each other in the electrolysis chamber 40, and The separator 43 is provided between the cathode feeder 42, the anode feeder 41 and the cathode feeder 42 and separates the electrolysis chamber 40 into an anode chamber 40A and a cathode chamber 40B. The electrolytic cell 4 is sandwiched between the anode power supply 41 and the cathode power supply 42, and the electrolytic cell 4 is electrolyzed by fixing the first case piece 50 on the anode power supply 41 side and the second case piece 60 on the cathode power supply 42 side. A chamber 40 is formed, and a first convex portion 53 that contacts the anode power supply body 41 is disposed on the inner surface of the first case piece 50, and an inner surface of the second case piece 60 contacts the cathode power supply body 42. The second convex portion 63 is disposed, and the first convex portion 53 is the anode power feeding body 4. Of including edge 41e and the first protrusion 56 abutting, the second convex portion 63 may include at edge 42e and the second protrusion 66 that abuts the cathode current collector 42.
 例えば、電解部52、62の主要部に設けられている第1凸部53、第2凸部63は、第1ケース片50の縦方向Vに離散的に点在する形態の凸部に限られず、種々の形態であってもよい。 For example, the 1st convex part 53 and the 2nd convex part 63 which are provided in the principal part of the electrolysis parts 52 and 62 are restricted to the convex part of the form scattered in the longitudinal direction V of the 1st case piece 50 discretely. However, various forms may be used.
 図9は、第1ケース片50の別の変形例である第1ケース片50B、及び、第2ケース片60の別の変形例である第2ケース片60Bを示している。第1ケース片50Bは、電解部52の主要部52A(図3参照)に設けられている第1凸部53に替えて、上記特許文献1の図6等において、符合32で示される凸状部と同等の第1凸部53Bが適用されている点で、第1ケース片50とは異なる。本第1ケース片50Bのうち、以下で説明されてない部分については、上記第1ケース片50の構成が採用されうる。 FIG. 9 shows a first case piece 50B, which is another modification of the first case piece 50, and a second case piece 60B, which is another modification of the second case piece 60. The first case piece 50B is a convex shape indicated by reference numeral 32 in FIG. 6 of Patent Document 1 above, instead of the first convex portion 53 provided in the main portion 52A (see FIG. 3) of the electrolysis portion 52. It differs from the 1st case piece 50 by the point by which the 1st convex part 53B equivalent to a part is applied. Of the first case piece 50B, the configuration of the first case piece 50 can be adopted for portions not described below.
 第1凸部53は、第1凸部53B及び第1突起56を含む。第1凸部53Bは、第1分水路58Dの上端から第1集水路58Cの下端にわたって、縦方向Vに連続してのびる。この場合、隣り合う第1凸部53Bの間には、第1溝部54Bが設けられている。 The first convex portion 53 includes a first convex portion 53B and a first protrusion 56. The first convex portion 53B extends continuously in the vertical direction V from the upper end of the first water diversion channel 58D to the lower end of the first water collecting channel 58C. In this case, the 1st groove part 54B is provided between the adjacent 1st convex parts 53B.
 一方、第2ケース片60Bは、電解部62の主要部62A(図3参照)に設けられている第2凸部63に替えて、第1凸部53Bと同等の第2凸部63Bが適用されている点で、第2ケース片60とは異なる。本第2ケース片60Bのうち、以下で説明されてない部分については、上記第2ケース片60の構成が採用されうる。 On the other hand, in the second case piece 60B, a second convex portion 63B equivalent to the first convex portion 53B is applied instead of the second convex portion 63 provided in the main portion 62A (see FIG. 3) of the electrolysis portion 62. This is different from the second case piece 60. Of the second case piece 60B, the configuration of the second case piece 60 can be adopted for portions not described below.
 第2凸部63は、第2凸部63B及び第2突起66を含む。第2凸部63Bは、第2分水路68Dの上端から第2集水路68Cの下端にわたって、縦方向Vに連続してのびる。この場合、隣り合う第2凸部63Bの間には、第2溝部64Bが設けられている。 The second convex portion 63 includes a second convex portion 63B and a second protrusion 66. The second convex portion 63B extends continuously in the vertical direction V from the upper end of the second water diversion channel 68D to the lower end of the second water collecting channel 68C. In this case, a second groove portion 64B is provided between the adjacent second convex portions 63B.
 第1凸部53Bと第2凸部63Bとは、横方向Vに交互に位置するように設けられている。従って、第1ケース片50Bと、第2ケース片60Bとが固着されたとき、積層体45を挟んで、第1凸部53Bと第2溝部64Bとが対向し、第2凸部63Bと第1溝部54Bとが対向する。例えば、水素ガスが、第1溝部54B及び第2溝部64Bを流れる水に十分に溶け込むことができる電解槽4にあっては、第1ケース片50B及び第2ケース片60Bが好適に適用されうる。 1st convex part 53B and 2nd convex part 63B are provided so that it may be located in the horizontal direction V alternately. Accordingly, when the first case piece 50B and the second case piece 60B are fixed, the first convex portion 53B and the second groove portion 64B face each other with the stacked body 45 interposed therebetween, and the second convex portion 63B and the second convex portion 63B The one groove portion 54B faces. For example, in the electrolytic cell 4 in which hydrogen gas can be sufficiently dissolved in water flowing through the first groove portion 54B and the second groove portion 64B, the first case piece 50B and the second case piece 60B can be suitably applied. .
 第1ケース片50B及び第2ケース片60Bにあっては、第1凸部53及び第2凸部63の一部について第1凸部53B及び第2凸部63Bに置き換えられていてもよい。例えば、第1ケース片50Bには、電解部52の主要部に離散化して配置された第1凸部53と、縦方向Vに連続してのびる第1溝部54Bとが混在して設けられていてもよい。同様に、第2ケース片60Bには、電解部62の主要部に離散化して配置された第2凸部63と、縦方向Vに連続してのびる第2溝部64Bとが混在して設けられていてもよい。なお、第1ケース片50B及び第2ケース片60Bの特徴は、図7、8に示される第1ケース片50A及び第2ケース片60Aとも適宜組み合わせて適用されうる。 In the first case piece 50B and the second case piece 60B, a part of the first convex part 53 and the second convex part 63 may be replaced with the first convex part 53B and the second convex part 63B. For example, the first case piece 50B is provided with a mixture of first protrusions 53 that are discretely arranged in the main part of the electrolysis part 52 and first groove parts 54B that extend continuously in the vertical direction V. May be. Similarly, the second case piece 60B is provided with a mixture of second convex portions 63 arranged discretely at the main part of the electrolysis unit 62 and second groove portions 64B extending continuously in the vertical direction V. It may be. The features of the first case piece 50B and the second case piece 60B can be applied in appropriate combination with the first case piece 50A and the second case piece 60A shown in FIGS.
 図10は、第1ケース片50の別の変形例である第1ケース片50C、及び、第2ケース片60の別の変形例である第2ケース片60Cを示している。第1ケース片50Cは、電解部52の主要部52A(図3参照)には第1凸部53は存在しない点で第1ケース片50とは異なる。同様に、第2ケース片60Cは、電解部62の主要部62A(図3参照)には、第2凸部63は存在しない点で第2ケース片60とは異なる。本第1ケース片50C及び第2ケース片60Cのうち、以下で説明されてない部分については、上記第1ケース片50及び第2ケース片60の構成が採用されうる。 FIG. 10 shows a first case piece 50C, which is another modification of the first case piece 50, and a second case piece 60C, which is another modification of the second case piece 60. The first case piece 50C is different from the first case piece 50 in that the first convex portion 53 does not exist in the main part 52A (see FIG. 3) of the electrolysis part 52. Similarly, the second case piece 60 </ b> C is different from the second case piece 60 in that the main part 62 </ b> A (see FIG. 3) of the electrolysis part 62 does not have the second convex part 63. Of the first case piece 50C and the second case piece 60C, the configurations of the first case piece 50 and the second case piece 60 can be adopted for portions not described below.
 第1凸部53は第1突起56を含み、第2凸部63は第2突起66を含む。例えば、隔膜43と陽極給電体41及び陰極給電体42との間で、大きな接触圧力が要求されない電解槽4にあっては、第1ケース片50C及び第2ケース片60Cが好適に適用されうる。なお、第1ケース片50C及び第2ケース片60Cの特徴は、図7、8に示される第1ケース片50A及び第2ケース片60Aとも適宜組み合わせて適用されうる。 The first protrusion 53 includes a first protrusion 56, and the second protrusion 63 includes a second protrusion 66. For example, in the electrolytic cell 4 in which a large contact pressure is not required between the diaphragm 43 and the anode power supply 41 and the cathode power supply 42, the first case piece 50C and the second case piece 60C can be suitably applied. . The features of the first case piece 50C and the second case piece 60C can be applied in appropriate combination with the first case piece 50A and the second case piece 60A shown in FIGS.
 また、第1ケース片50、50A、50B又は50Cにおいて、陽極給電体41の横端縁部41hに沿って、第1分水路58Dの外縁から第1集水路58Cの外縁に亘って連続する一対の凸状部によって横端縁部41hと当接する第1突起56が構成されていてもよい。このような第1突起56は、複数個の離散化された第1縦長突起57に替えて適用される。同様に、第2ケース片60、60A、60B又は60Cにおいて、陰極給電体42の横端縁部42hに沿って、第2分水路68Dの外縁から第2集水路68Cの外縁に亘って連続する一対の凸状部によって横端縁部42hと当接する第2突起66が形成されていてもよい。このような第2突起66は、複数個の離散化された第2縦長突起67に替えて適用される。 Further, in the first case piece 50, 50A, 50B, or 50C, a pair that continues from the outer edge of the first water diversion channel 58D to the outer edge of the first water collecting channel 58C along the lateral edge 41h of the anode power feeder 41. The first protrusion 56 that contacts the lateral end edge portion 41h may be formed by the convex portion. Such first protrusions 56 are applied in place of the plurality of discrete first longitudinal protrusions 57. Similarly, in the second case piece 60, 60A, 60B, or 60C, it continues from the outer edge of the second water diversion channel 68D to the outer edge of the second water collecting channel 68C along the lateral end edge 42h of the cathode power feeder 42. A second protrusion 66 that contacts the lateral edge 42h may be formed by a pair of convex portions. Such second protrusions 66 are applied in place of the plurality of discrete second longitudinal protrusions 67.
 上記凸状部で構成された第1突起56及び第2突起66によれば、横端縁部41h及び横端縁部42hの近傍での隔膜43との接触抵抗が減少するため、横端縁部41h及び横端縁部42hの近傍を流れる電解電流が増大し、電気分解がより一層促進される。なお、このような凸状部による第1突起56及び第2突起66の高さは、隔膜43と陽極給電体41及び陰極給電体42との接触圧力によって隔膜43に損傷を及ぼさない程度に設定されるのが望ましい。 According to the first protrusion 56 and the second protrusion 66 configured by the convex portions, the contact resistance with the diaphragm 43 in the vicinity of the horizontal end edge 41h and the horizontal end edge 42h is reduced. The electrolytic current flowing in the vicinity of the portion 41h and the side edge portion 42h is increased, and electrolysis is further promoted. Note that the heights of the first protrusion 56 and the second protrusion 66 due to such convex portions are set to such an extent that the diaphragm 43 is not damaged by the contact pressure between the diaphragm 43 and the anode feeder 41 and the cathode feeder 42. It is desirable to be done.
 さらに、第1ケース片50Aにおいて、陽極給電体41の縦端縁部41vに沿って、第1分水路58Dの外縁及び第1集水路58Cの外縁に亘って連続する一対の凸状部によって縦端縁部41vと当接する第1突起56が構成されていてもよい。このような第1突起56は、複数個の離散化された第1横長突起57Aに替えて適用される。同様に、第2ケース片60Aにおいて、陰極給電体42の縦端縁部42vに沿って連続する一対の凸状部によって縦端縁部42vと当接する第2突起66が構成されていてもよい。このような第2突起66は、複数個の離散化された第2横長突起67Aに替えて適用される。 Further, in the first case piece 50A, a vertical pair of convex portions that extend along the vertical edge 41v of the anode power feeder 41 and across the outer edge of the first water diversion channel 58D and the outer edge of the first water collecting channel 58C. The 1st protrusion 56 contact | abutted with the edge part 41v may be comprised. Such a first protrusion 56 is applied in place of a plurality of discrete first lateral protrusions 57A. Similarly, in the second case piece 60A, a second protrusion 66 that contacts the vertical end edge portion 42v may be configured by a pair of convex portions that continue along the vertical end edge portion 42v of the cathode power supply 42. . Such a second protrusion 66 is applied in place of the plurality of discretized second horizontally long protrusions 67A.
 上記第1突起56及び第2突起66によれば、縦端縁部41v及び縦端縁部42vの近傍で、隔膜43を強固に支持できるので、陽極室40Aと陰極室40Bとの間で大きな圧力差が生ずる場合であっても、積層体45の変形が抑制され、隔膜43の損傷が抑制される。なお、このような凸状部による第1突起56及び第2突起66の高さは、隔膜43と陽極給電体41及び陰極給電体42との接触圧力によって隔膜43に損傷を及ぼさない程度に設定されるのが望ましい。 According to the first protrusion 56 and the second protrusion 66, the diaphragm 43 can be firmly supported in the vicinity of the vertical edge 41v and the vertical edge 42v, so that a large gap is formed between the anode chamber 40A and the cathode chamber 40B. Even when a pressure difference occurs, deformation of the laminated body 45 is suppressed, and damage to the diaphragm 43 is suppressed. Note that the heights of the first protrusion 56 and the second protrusion 66 due to such convex portions are set to such an extent that the diaphragm 43 is not damaged by the contact pressure between the diaphragm 43 and the anode feeder 41 and the cathode feeder 42. It is desirable to be done.
  1  電解水生成装置
  4  電解槽
 40  電解室
 40A 陽極室
 40B 陰極室
 41  陽極給電体
 41e 端縁部
 42  陰極給電体
 42e 端縁部
 43  隔膜
 50  第1ケース片
 53  第1凸部
 56  第1突起
 57  縦長突起
 60  第2ケース片
 63  第2凸部
 66  第2突起
 67  縦長突起
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 4 Electrolytic tank 40 Electrolytic chamber 40A Anode chamber 40B Cathode chamber 41 Anode feeder 41e Edge edge 42 Cathode feeder 42e Edge edge 43 Diaphragm 50 First case piece 53 1st convex part 56 1st protrusion 57 Longitudinal projection 60 Second case piece 63 Second convex portion 66 Second projection 67 Longitudinal projection

Claims (8)

  1.  電気分解される水が供給される電解室が形成された電解槽と、
     前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、
     前記陽極給電体と前記陰極給電体との間に配され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とを備えた電解水生成装置であって、
     前記隔膜が、前記陽極給電体及び前記陰極給電体によって挟持され、
     前記電解槽は、前記陽極給電体側の第1ケース片と、前記陰極給電体側の第2ケース片とが固着されることにより前記電解室を形成し、
     前記第1ケース片の前記電解室側を向く内面には、前記陽極給電体に当接する第1凸部が配設され、
     前記第2ケース片の前記電解室側を向く内面には、前記陰極給電体に当接する第2凸部が配設され、
     前記第1凸部は、前記陽極給電体の端縁部と当接する第1突起を含み、
     前記第2凸部は、前記陰極給電体の端縁部と当接する第2突起を含むことを特徴とする電解水生成装置。
    An electrolytic cell in which an electrolytic chamber to which water to be electrolyzed is supplied is formed;
    An anode feeder and a cathode feeder disposed opposite to each other in the electrolytic chamber;
    Electrolyzed water generation comprising a diaphragm disposed between the anode feeder and the cathode feeder and dividing the electrolysis chamber into an anode chamber on the anode feeder side and a cathode chamber on the cathode feeder side A device,
    The diaphragm is sandwiched between the anode feeder and the cathode feeder,
    The electrolytic cell forms the electrolytic chamber by fixing the first case piece on the anode feeder side and the second case piece on the cathode feeder side,
    On the inner surface of the first case piece facing the electrolysis chamber side, a first convex portion that is in contact with the anode feeder is disposed,
    On the inner surface of the second case piece facing the electrolytic chamber side, a second convex portion that comes into contact with the cathode power feeder is disposed,
    The first protrusion includes a first protrusion that contacts an end edge of the anode power feeding body,
    The electrolyzed water generator according to claim 2, wherein the second protrusion includes a second protrusion abutting against an edge of the cathode power supply.
  2.  前記第1突起は、前記陽極給電体の端縁部に沿って複数個設けられ、
     前記第2突起は、前記陰極給電体の端縁部に沿って複数個設けられている請求項1記載の電解水生成装置。
    A plurality of the first protrusions are provided along an edge portion of the anode power feeder,
    The electrolyzed water generating apparatus according to claim 1, wherein a plurality of the second protrusions are provided along an edge portion of the cathode power feeder.
  3.  前記第2突起は、隣り合う前記第1突起の間に配設されている請求項2記載の電解水生成装置。 The electrolyzed water generating apparatus according to claim 2, wherein the second protrusion is disposed between the adjacent first protrusions.
  4.  前記第1突起及び前記第2突起は、前記電解室内での水の流れに沿う縦方向に長い縦長突起を含み、
     前記縦長突起は、前記陽極給電体又は前記陰極給電体の前記縦方向に垂直な横方向の横端縁部と当接する請求項2又は3に記載の電解水生成装置。
    The first protrusion and the second protrusion include a vertically long protrusion in the vertical direction along the flow of water in the electrolytic chamber,
    4. The electrolyzed water generating device according to claim 2, wherein the vertically long protrusion is in contact with a lateral end edge in a lateral direction perpendicular to the longitudinal direction of the anode feeder or the cathode feeder.
  5.  前記第1突起及び前記第2突起は、前記縦方向に垂直な横方向に長い横長突起を含み、
     前記横長突起は、前記陽極給電体又は前記陰極給電体の前記縦方向の縦端縁部と当接する請求項2乃至4のいずれかに記載の電解水生成装置。
    The first protrusion and the second protrusion include a laterally long protrusion that is long in a lateral direction perpendicular to the longitudinal direction,
    The electrolyzed water generating apparatus according to any one of claims 2 to 4, wherein the laterally long protrusion is in contact with the longitudinal edge portion of the longitudinal direction of the anode feeder or the cathode feeder.
  6.  前記第1凸部の頂部は、前記第1ケース片の側に中心を有する曲面を含み、
     前記第2凸部の頂部は、前記第2ケース片の側に中心を有する曲面を含む請求項1乃至5のいずれかに記載の電解水生成装置。
    The top of the first convex part includes a curved surface having a center on the first case piece side,
    The electrolyzed water generating apparatus according to any one of claims 1 to 5, wherein a top portion of the second convex portion includes a curved surface having a center on the second case piece side.
  7.  前記第1ケース片の前記電解室側を向く内面には、前記隔膜、前記陽極給電体及び前記陰極給電体を挟んで前記第2凸部と対向する位置に、前記第1凸部よりも高さの小さい第1小突起が配設され、
     前記第2ケース片の前記電解室側を向く内面には、前記隔膜、前記陽極給電体及び前記陰極給電体を挟んで前記第1凸部と対向する位置に、前記第2凸部よりも高さの小さい複数の第2小突起が配設されている請求項1乃至6のいずれかに記載の電解水生成装置。
    The inner surface of the first case piece facing the electrolytic chamber side is higher than the first convex portion at a position facing the second convex portion with the diaphragm, the anode power feeding body, and the cathode power feeding body interposed therebetween. A small first small protrusion is disposed;
    The inner surface of the second case piece facing the electrolytic chamber side is higher than the second convex portion at a position facing the first convex portion with the diaphragm, the anode power feeding body, and the cathode power feeding body interposed therebetween. The electrolyzed water generating apparatus according to any one of claims 1 to 6, wherein a plurality of second small protrusions having a small length are disposed.
  8.  前記第1小突起は、前記陽極給電体とは当接せず、
     前記第2小突起は、前記陰極給電体とは当接しない請求項7記載の電解水生成装置。
    The first small protrusion does not contact the anode feeder,
    The electrolyzed water generating apparatus according to claim 7, wherein the second small protrusion does not contact the cathode power supply body.
PCT/JP2016/055622 2015-03-06 2016-02-25 Electrolytic water generating apparatus WO2016143540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-045192 2015-03-06
JP2015045192A JP5756579B1 (en) 2015-03-06 2015-03-06 Electrolyzed water generator

Publications (1)

Publication Number Publication Date
WO2016143540A1 true WO2016143540A1 (en) 2016-09-15

Family

ID=53759652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055622 WO2016143540A1 (en) 2015-03-06 2016-02-25 Electrolytic water generating apparatus

Country Status (3)

Country Link
JP (1) JP5756579B1 (en)
TW (1) TWI639562B (en)
WO (1) WO2016143540A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139589B2 (en) * 2015-03-18 2017-05-31 株式会社東芝 Electrolyzer
JP6154859B2 (en) * 2015-07-08 2017-06-28 株式会社日本トリム Electrolysis tank and electrolyzed water generator
KR101579044B1 (en) * 2015-09-10 2015-12-21 주식회사 동일그린시스 Apparatus for Generating Electrolyzed Water
JP6211152B1 (en) * 2016-07-28 2017-10-11 荒井 一好 Electrolyzed water generator and hydrogen generator
JP6825871B2 (en) * 2016-10-12 2021-02-03 株式会社日本トリム Electrolyzed water generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043707A (en) * 2005-10-26 2006-02-16 Shimazaki Denki Kk Apparatus for producing electrolytic water
JP2006150151A (en) * 2004-11-25 2006-06-15 Honda Motor Co Ltd Electrolytic cell of electrolytic water generator
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250674A (en) * 1975-10-22 1977-04-22 Nitsuko Ltd Noise filter for power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150151A (en) * 2004-11-25 2006-06-15 Honda Motor Co Ltd Electrolytic cell of electrolytic water generator
JP2006043707A (en) * 2005-10-26 2006-02-16 Shimazaki Denki Kk Apparatus for producing electrolytic water
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP5756579B1 (en) 2015-07-29
JP2016163865A (en) 2016-09-08
TWI639562B (en) 2018-11-01
TW201632469A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
JP5753638B1 (en) Electrolyzed water generator
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
WO2016143540A1 (en) Electrolytic water generating apparatus
JP5702885B1 (en) Electrolyzed water generator
CN107531517B (en) Electrolytic cell and electrolyzed water generation device
JP2009209378A (en) Ozone water production apparatus
JP6190426B2 (en) Electrolysis tank and electrolyzed water generator
JP6154859B2 (en) Electrolysis tank and electrolyzed water generator
JP6190424B2 (en) Electrolysis tank and electrolyzed water generator
JP6190427B2 (en) Electrolysis tank and electrolyzed water generator
WO2014141587A1 (en) Electrolyzed water-generating device
CN108473344B (en) Electrolyzed water production device and device for producing water for dialysate preparation using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761511

Country of ref document: EP

Kind code of ref document: A1