JP2724772B2 - Electrolysis equipment - Google Patents

Electrolysis equipment

Info

Publication number
JP2724772B2
JP2724772B2 JP3047560A JP4756091A JP2724772B2 JP 2724772 B2 JP2724772 B2 JP 2724772B2 JP 3047560 A JP3047560 A JP 3047560A JP 4756091 A JP4756091 A JP 4756091A JP 2724772 B2 JP2724772 B2 JP 2724772B2
Authority
JP
Japan
Prior art keywords
electrode
outlet
electrode plate
inlet
collecting electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3047560A
Other languages
Japanese (ja)
Other versions
JPH07173663A (en
Inventor
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OO DEII ESU KK
Original Assignee
OO DEII ESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OO DEII ESU KK filed Critical OO DEII ESU KK
Priority to JP3047560A priority Critical patent/JP2724772B2/en
Publication of JPH07173663A publication Critical patent/JPH07173663A/en
Application granted granted Critical
Publication of JP2724772B2 publication Critical patent/JP2724772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気分解装置に関するも
ので、さらに詳しくはイオン交換膜等の固形重合体電解
質膜の両面に電極を接合し、両電極に所定電圧を印加す
ると共に、該固形重合体電解質膜の電極接触面に原料液
を供送して電気分解を行う電気分解装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolysis apparatus, and more particularly, to a method in which electrodes are joined to both surfaces of a solid polymer electrolyte membrane such as an ion exchange membrane, and a predetermined voltage is applied to both electrodes. The present invention relates to an electrolysis apparatus for performing electrolysis by feeding a raw material liquid to an electrode contact surface of a polymer electrolyte membrane.

【0002】[0002]

【従来の技術】近時、上記のごとき固形重合体電解質膜
を利用した電気分解装置が種々提案されている。
2. Description of the Related Art Recently, various electrolyzers using a solid polymer electrolyte membrane as described above have been proposed.

【0003】上記固形重合体電解質膜を利用した電気分
解装置は、電極間隔が固形重合体電解質膜の厚み分しか
離れておらず、通常その電極間隔距離は200〜700
ミクロンと非常に近接しているため、低い電圧で電気分
解が行え、また、低電圧であるが故、電源装置等の各装
置を小型化できるという利点を有している。
In an electrolyzer using the above-mentioned solid polymer electrolyte membrane, the electrode interval is only separated by the thickness of the solid polymer electrolyte membrane, and the electrode interval is usually 200 to 700.
Since it is very close to the micron, electrolysis can be performed at a low voltage, and since the voltage is low, each device such as a power supply device can be downsized.

【0004】また、上記固形重合体電解質膜自体が電解
質であるため、イオン交換が円滑に行なわれ、溶質濃度
の低い溶液をはじめ、純水をも容易に電気分解すること
もできるという高い電気分解効率が得られるという利点
を有していることが知られている。
[0004] Further, since the solid polymer electrolyte membrane itself is an electrolyte, ion exchange is carried out smoothly, and high electrolysis can be carried out easily, including a solution having a low solute concentration and pure water. It is known that it has the advantage of gaining efficiency.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の固
形重合体電解質膜を利用した電気分解装置は、固形重合
体電解質膜の表面で、しかも接触する電極の接触角部位
のごく限られた部位で電気分解が行われる。そして、原
料液中に何らかの形でカルシューム・カリュームなどが
溶存していると、この電気分解発生部に、これらが析出
して付着する傾向を有し、この析出物はカソード側には
カルシュームやナトリュームとして、アノード側にには
炭酸カルシュームや炭酸ナトリューム等の非導電性物質
とし付着し、やがて電気分解発生部位に原料液が接触す
るのを遮断して電気分解の効率を極端に低下させること
になるという欠点を有している。
However, the above-mentioned conventional electrolyzer using the solid polymer electrolyte membrane has a very limited area of the contact angle area of the electrode in contact with the surface of the solid polymer electrolyte membrane. The electrolysis is performed. If some amount of calcium, calcium, etc. is dissolved in the raw material liquid, they tend to precipitate and adhere to the electrolysis generation part, and this precipitate is deposited on the cathode side, such as calcium and sodium. As a result, non-conductive substances such as calcium carbonate and sodium carbonate adhere to the anode side, and eventually the raw material liquid is prevented from coming into contact with the electrolysis-causing site, thereby greatly reducing the efficiency of electrolysis. There is a disadvantage that.

【0006】また、上記析出物は析出の進行にともな
い、固形重合体電解質膜と電極との間に析出物が侵入
し、両者間に導電性、非導電性を問わず疎なる析出物が
介入することで物理的および電気的接触不良を来し、電
気分解の発生をさらに阻害する欠点を有している。
[0006] Further, as the precipitate proceeds, the precipitate penetrates between the solid polymer electrolyte membrane and the electrode, and a sparse precipitate intervenes regardless of conductivity or non-conductivity between the two. This leads to poor physical and electrical contact and has the disadvantage of further inhibiting the occurrence of electrolysis.

【0007】すなわち、従来の固形重合体電解質膜を利
用した電気分解装置は、効率的ではあるが、原料液中の
溶存物質の析出堆積で、その効率を長期間保持すること
ができないというのが課題である。
That is, although the conventional electrolyzer using a solid polymer electrolyte membrane is efficient, it cannot maintain its efficiency for a long time due to the deposition of dissolved substances in the raw material liquid. It is an issue.

【0008】そこで、本発明は上記欠点を解決すべくな
されたもので、効率的な電気分解が安定して、長期間保
持できる電気分解装置を提供することを目的としたもの
である。
Accordingly, the present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide an electrolysis apparatus which can stably perform efficient electrolysis and can be maintained for a long period of time.

【0009】[0009]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、電気分解槽1内を、固形重合体電解質
膜2で第一室3と第二室4とに仕切り、上記第一室3に
は原料液の第一流入口5aと第一流出口6aとを、第二
室4には原料液の第二流入口5bと第二流出口6bとを
設け、上記固形重合体電解質膜2の第一室3側面には多
数の開口部7,7,7・・・を有した第一電極板8を、
第二室4側面には同じく多数の開口部7,7,7・・・
を有した第二電極板9を接合し、上記第一電極板8と第
二電極板9との両外面側には、多数の通孔7a,7a,
7a・・・を複数列設けた第一集電電極8aと、同じく
多数の通孔7a,7a,7a・・・を複数列設けた第二
集電電極9aとを夫々重ね、さらに、上記第一集電電極
8aと第二集電電極9bとの両外側には、第一流入口5
aまたは第二流入口5b側の内面に、この第一流入口5
aまたは第二流入口5bと、第一集電電極8aまたは第
二集電電極9aの各列の最上流部位の各通孔7a,7
a,7a・・・とを連通する分流凹部15を、第一流出
口6aまたは第二流出口6b側の内面に、この第一流出
口6aまたは第二流出口6bと第一集電電極8aまたは
第二集電電極9aの各列の最下流部位の各通孔7a,7
a,7a・・・とを連通する合流凹部16を、また、内
面の該分流凹部15と合流凹部16との間の部位には、
該第一集電電極8aまたは第二集電電極9aの各列の隣
り合う下流側の通孔7aと上流側の通孔7aとを順次連
通する凹部部17,17,17・・・を設けたジグザグ
流発生板14,14を夫々重ね、上記この第一電極板8
と第二電極板9とは陽極出力端と陰極出力端とを所定時
間間隔で切り換える電源反転装置11を有した電源10
に連結してなる技術的手段を講じたものである。
In order to solve the above-mentioned problems, according to the present invention, in order to solve the above-mentioned problems, a solid polymer electrolyte membrane 2 is provided. The first chamber 3 is divided into a first chamber 3 and a second chamber 4, and the first chamber 3 is provided with a first inlet 5 a and a first outlet 6 a of the raw material liquid, and the second chamber 4 is provided with a second inlet 5 b of the raw material liquid. And a second outlet 6b, and a first electrode plate 8 having a large number of openings 7, 7, 7,... On the side of the first chamber 3 of the solid polymer electrolyte membrane 2,
Similarly, a large number of openings 7, 7, 7,.
The first electrode plate 8 and the second electrode plate 9 are provided with a plurality of through holes 7a, 7a,
7a... Are provided in a plurality of rows, and the same number of through holes 7a, 7a, 7a. The first inflow port 5 is provided on both outer sides of the first current collecting electrode 8a and the second current collecting electrode 9b.
a or the first inlet 5b on the inner surface on the side of the second inlet 5b.
a or the second inlet 5b, and the through holes 7a, 7 at the most upstream part of each row of the first current collecting electrode 8a or the second current collecting electrode 9a.
a, 7a... are formed on the inner surface on the first outlet 6a or the second outlet 6b side, and the first outlet 6a or the second outlet 6b and the first current collecting electrode 8a or the Each through hole 7a, 7 at the most downstream portion of each row of the secondary current collecting electrode 9a
a, 7a... and a portion of the inner surface between the diversion recess 15 and the junction depression 16,
.. Are provided to sequentially communicate the adjacent downstream through-holes 7a and upstream through-holes 7a in each row of the first current collecting electrode 8a or the second current collecting electrode 9a. The zigzag flow generating plates 14 and 14 are overlapped with each other, and the first electrode plate 8
And a second electrode plate 9 are connected to a power supply 10 having a power supply reversing device 11 for switching between an anode output terminal and a cathode output terminal at predetermined time intervals.
It takes technical measures that are linked to.

【0010】[0010]

【作用】それ故、本発明電気分解装置は、原料液を電気
分解槽1内に向け供送し、電源10によって第一電極板
8と第二電極板9との間に所定の直流電圧を印加する。
すると、第一電極板8と第二電極板9とは夫々電源反転
装置11で所定時間間隔ごとにアノードとカソードとに
反転する。すなわち、第一電極板8は所定時間ごとにア
ノードまたはカソードとなり、第二電極板9は第一電極
板8とは逆に所定時間ごとにカソードまたはアノードと
なる。
Therefore, the electrolyzer according to the present invention feeds the raw material liquid into the electrolysis tank 1 and applies a predetermined DC voltage between the first electrode plate 8 and the second electrode plate 9 by the power supply 10. Apply.
Then, the first electrode plate 8 and the second electrode plate 9 are respectively inverted by the power supply inversion device 11 into an anode and a cathode at predetermined time intervals. That is, the first electrode plate 8 becomes an anode or a cathode every predetermined time, and the second electrode plate 9 becomes a cathode or an anode every predetermined time contrary to the first electrode plate 8.

【0011】上記電気分解によってカソード側およびア
ノード側には析出物が析出することは従来と同じで避け
得ない。しかし、この析出物は、析出当初は電極付近に
コロイド状に出現し、やがて電極および固形重合体電解
質膜2に付着して個化(純粋な結晶というより固形粒子
が互いに付着して個化した状態に付着)する性状を有
し、このコロイド状の状態で、電源反転装置11でアノ
ード側をカソード側に反転することで、電気的反発力を
受け、さらに原料液の流れに随伴して流れさるので、固
化して付着されるのを阻止するように作用する。
It is inevitable that precipitates are deposited on the cathode side and the anode side by the above-mentioned electrolysis as in the conventional case. However, this precipitate appeared in a colloidal form near the electrode at the beginning of the deposition, and then adhered to the electrode and the solid polymer electrolyte membrane 2 and singulated (solid particles adhered to each other rather than pure crystals, and singulated). In this colloidal state, when the power supply reversing device 11 reverses the anode side to the cathode side, the colloidal state receives an electric repulsion force and further flows along with the flow of the raw material liquid. Therefore, it acts to prevent solidification and adhesion.

【0012】また、ジグザグ流発生板14,14は原料
水を固形重合体電解質膜2に対して接離方向にジグザグ
状に流す作用を呈し、上記コロイド状の付着物を掃引す
る作用を呈し、特に固形重合体電解質膜2に直交方向の
水流は、第一電極板8と第二電極板9との開口部7,
7,7・・・の底の角部まで達することができ、効率的
な掃引作用を呈するものである。
The zigzag flow generating plates 14 and 14 have a function of flowing the raw water in a zigzag manner in the direction of contact and separation with respect to the solid polymer electrolyte membrane 2 and a function of sweeping the colloidal deposits. In particular, the water flow in the direction orthogonal to the solid polymer electrolyte membrane 2 is applied to the openings 7 between the first electrode plate 8 and the second electrode plate 9,
Can reach the bottom corners of 7, 7,... And exhibit an efficient sweeping action.

【0013】[0013]

【実施例】次に、本発明を添付図面に示す、原料液に水
を使用し、この原料水を電気分解してアノード側に発生
した酸素を該原料水に溶解せしめ、酸素が高濃度に溶存
する高濃度酸素水を得る装置例によって詳細に説明す
る。
Next, the present invention is shown in the accompanying drawings, in which water is used as a raw material liquid, and the raw water is electrolyzed to dissolve the oxygen generated on the anode side into the raw water. This will be described in detail with an example of an apparatus for obtaining dissolved high-concentration oxygen water.

【0014】図中、1が電気分解槽で、この電気分解槽
1は、その内部を固形重合体電解質膜2で第一室3と第
二室4とに仕切られてなる。この電気分解槽1は耐水性
材で構成されることはむろん、後述第一電極板8および
第二電極板9との外部との電気的連結を遮断するため絶
縁材で構成することが望ましく、また、電気分解によっ
て発生した発生期の酸素は酸化力が大きいので合成樹脂
材などの耐食性に優れた物が使用される。
In the figure, reference numeral 1 denotes an electrolysis tank, and the interior of the electrolysis tank 1 is divided into a first chamber 3 and a second chamber 4 by a solid polymer electrolyte membrane 2. Of course, the electrolysis tank 1 is preferably made of a water-resistant material, and is desirably made of an insulating material in order to cut off the electrical connection between the first electrode plate 8 and the second electrode plate 9 and the outside. Since the nascent oxygen generated by the electrolysis has a large oxidizing power, a material having excellent corrosion resistance such as a synthetic resin material is used.

【0015】また、上記固形重合体電解質膜2として
は、従来公知なイオン交換樹脂膜が使用される。
As the solid polymer electrolyte membrane 2, a conventionally known ion exchange resin membrane is used.

【0016】そして、上記第一室3には原料液の第一流
入口5aと第一流出口6aとを、第二室4には原料液の
第二流入口5bと第二流出口6bとを夫々設けてある。
The first chamber 3 has a first inlet 5a and a first outlet 6a for the raw material liquid, and the second chamber 4 has a second inlet 5b and a second outlet 6b for the raw liquid. It is provided.

【0017】すなわち、前記電気分解槽1は第一流入口
5aより第一室3内に流入した原料水は第一流出口6a
より流出し、第二流入口5bより第二室4内に流入した
原料水は第二流出口6bより流出するようになしてあ
る。
That is, the raw material water flowing into the first chamber 3 through the first inlet 5a is supplied to the first outlet 6a.
The raw water that has flowed out and flowed into the second chamber 4 from the second inlet 5b flows out from the second outlet 6b.

【0018】そして、上記固形重合体電解質膜2の第一
室3側面には多数の開口部7,7,7・・・を有した第
一電極板8を、第二室側面4には同じく多数の開口部
7,7,7・・・を有した第二電極板9を接合してあ
る。この、多数の開口部7,7,7・・・を有した第一
電極板8および第二電極板9としては、図示例では金網
を使用して、金網の網目が各開口部7となるようになし
てあるが、その他に、多孔板、スリットを多数設けた板
等が使用できる。なお、この第一電極板8と第二電極板
9とは、ステンレス、ニッケル、チタン、その他、金、
プラチナ等の耐食性の金属が使用される。
A first electrode plate 8 having a large number of openings 7, 7, 7... On the side of the first chamber 3 of the solid polymer electrolyte membrane 2 A second electrode plate 9 having a large number of openings 7, 7, 7,... Is joined. As the first electrode plate 8 and the second electrode plate 9 having a large number of openings 7, 7, 7,..., A wire mesh is used in the illustrated example, and the mesh of the wire mesh becomes each of the openings 7. In addition, a perforated plate, a plate provided with a large number of slits, or the like can be used. The first electrode plate 8 and the second electrode plate 9 are made of stainless steel, nickel, titanium, gold,
A corrosion-resistant metal such as platinum is used.

【0019】そして、上記第一電極板8と第二電極板9
との両外面側には、多数の通孔7a,7a,7a・・・
を複数列設けた第一集電電極8aと、同じく多数の通孔
7a,7a,7a・・・を複数列設けた第二集電電極9
aとを夫々重ねてある。なお、この第一集電電極8aと
第二集電電極9aとは、上記第一電極板8と第二電極板
9と同様にステンレス、ニッケル、チタン、その他、
金、プラチナ等の耐食性の金属が使用される。
The first electrode plate 8 and the second electrode plate 9
Are provided on both outer surface sides of the first through fourth through holes 7a, 7a, 7a,.
Are provided in a plurality of rows, and a second current collecting electrode 9 is provided in a plurality of rows similarly with a large number of through holes 7a, 7a, 7a,.
a is superimposed on each. The first current collecting electrode 8a and the second current collecting electrode 9a are made of stainless steel, nickel, titanium, and the like, like the first electrode plate 8 and the second electrode plate 9.
Corrosion-resistant metals such as gold and platinum are used.

【0020】さらに、上記第一集電電極8aと第二集電
電極9bとの両外側には、第一流入口5aまたは第二流
入口5b側の内面に、この第一流入口5aまたは第二流
入口5bと、第一集電電極8aまたは第二集電電極9a
の各列の最上流部位の通孔7a,7a,7a・・・とを
連通する分流凹部15を、第一流出口6aまたは第二流
出口6b側の内面に、この第一流出口6aまたは第二流
出口6bと第一集電電極8aまたは第二集電電極9aの
各列の最下流部位の通孔7a,7a,7a・・・とを連
通する合流凹部16を、また、内面の該分流凹部15と
合流凹部16との間部位には、該第一集電電極8aまた
は第二集電電極9aの各列の隣り合う下流側の通孔7a
と上流側の通孔7aとを順次連通する凹部部17,1
7,17・・・を設けたジグザグ流発生板14,14を
夫々重ねてある。
Further, on both sides of the first current collecting electrode 8a and the second current collecting electrode 9b, on the inner surface on the side of the first inlet 5a or the second inlet 5b, the first inlet 5a or the second current Inlet 5b, first current collecting electrode 8a or second current collecting electrode 9a
Are formed in the inner surface on the side of the first outlet 6a or the second outlet 6b so as to communicate with the through holes 7a, 7a, 7a,. The converging recess 16 communicating the outflow port 6b with the through holes 7a, 7a, 7a,... At the most downstream portion of each row of the first current collecting electrode 8a or the second current collecting electrode 9a, In a portion between the concave portion 15 and the converging concave portion 16, a downstream through hole 7a adjacent to each row of the first current collecting electrode 8a or the second current collecting electrode 9a is provided.
17, 1, which sequentially communicate with the upstream through hole 7 a
The zigzag flow generating plates 14 provided with 7, 17,...

【0021】上記ジグザグ流発生板14は、一端側に第
一流入口5aに連通する流入通孔5を他端側に第一流出
口6aに連通する流出通孔6を開穿し、裏面側に該流入
通孔5に連通する分流凹部15と該流出通孔6に連通す
る合流凹部16とを凹設してある。
The zigzag flow generating plate 14 has an inflow hole 5 communicating with the first inlet 5a at one end and an outflow hole 6 communicating with the first outlet 6a at the other end. A diverging recess 15 communicating with the inflow through hole 5 and a merging recess 16 communicating with the outflow through hole 6 are provided.

【0022】そして、該ジグザグ流発生板14の上記分
流凹部15と合流凹部16とは、横長に形成され第一集
電電極8aに重ねた際に、その一部が該集電電極8aの
上下各端の通孔7a,7a,7a・・・(「図2」にお
いて上下両端の横列)の上方(「図2」手前側)の一部
に共通して適合するように位置し、これら通孔7a,7
a,7a・・・を互いに分流凹部15と合流凹部16で
それぞれ連通している。さらに、上記分流凹部15と合
流凹部16との間の部位には、該ジグザグ流発生板14
を集電電極8aに重ねた際に、各縦方向列の隣り合う通
孔7a,7a,7a・・・の夫々二つの上方に適合して
両者を連通する凹所17,17,17・・・を配設して
なる。
When the zigzag flow generating plate 14 has the diverging concave portion 15 and the merging concave portion 16 formed in a horizontally long shape and overlaps with the first current collecting electrode 8a, a part thereof is located above and below the current collecting electrode 8a. .. (In FIG. 2, the upper and lower ends of the rows) are positioned so as to be commonly fitted to a part of the upper side (in FIG. 2, the near side), and these through holes 7 a, 7 a, 7 a. Holes 7a, 7
are connected to each other by a diversion concave part 15 and a merge concave part 16. Further, the zigzag flow generating plate 14 is provided at a portion between the branch concave portion 15 and the merge concave portion 16.
Are placed on the collecting electrode 8a, the recesses 17, 17, 17, 17,... Which fit over two adjacent through holes 7a, 7a, 7a,.・ It is arranged.

【0023】したがって、上記ジグザグ流発生板14は
「図3」に最も明らかに示されるごとく、原料液がジグ
ザグ流発生板14の分流凹部15内から合流凹部16内
に至るまで、各凹所17,17,17・・・内と集電電
極8aの各通孔7a,7a,7a・・・・内とを交互に
通り、矢印Pで示されるごとくジグザグ流となるように
なっている。
Therefore, as shown most clearly in FIG. 3, the zigzag flow generating plate 14 has various recesses 17 from the inside of the diversion recess 15 of the zigzag flow generating plate 14 to the inside of the merging recess 16. , 17, 17... And the insides of the through holes 7a, 7a, 7a... Of the collecting electrode 8a alternately, so as to form a zigzag flow as shown by an arrow P.

【0024】上記ジグザグ流発生板14は第二集電電極
9aの外面側にも重ねられるのは無論であるが、その構
造は固形重合体電解質膜2を中心として対称となしてあ
るので、ここではその説明を省略する。
Although it is a matter of course that the zigzag flow generating plate 14 is also overlapped on the outer surface side of the second current collecting electrode 9a, its structure is symmetrical with the solid polymer electrolyte membrane 2 as a center. Then, the description is omitted.

【0025】そして、上記第一電極板8および第二電極
板9を固形重合体電解質膜2に接合するには、従来公知
な種々の手段で該第一電極板8、第二電極板9、固形重
合体電解質膜2の夫々を固定乃至弾止すればよい。
To join the first electrode plate 8 and the second electrode plate 9 to the solid polymer electrolyte membrane 2, the first electrode plate 8, the second electrode plate 9, What is necessary is just to fix or stop each of the solid polymer electrolyte membranes 2.

【0026】図示例では、電気分解槽1を第一容体1a
と第二容体1bとの二つ割容器状となし、固形重合体電
解質膜2の一面に耐食性の金網の第一電極板8を、この
第一電極板8の外側に多数の開口部7a,7a,7a・
・・を有した第一集電電極8aを、さらに該第一集電電
極8aの外側にジグザグ流発生板14を重ね、固形重合
体電解質膜2の他面側も略同構造であるので、固形重合
体電解質膜2の他面に耐食性の金網の第二電極板9を、
この第二電極板9の外側に多数の開口部7aを有した第
二集電電極9aを、さらに該第二集電電極9aの外側に
ジグザグ流発生板14bを重ね、これらを第一容体1a
と第二容体1bとの内面で挟持して固定してある。
In the illustrated example, the electrolysis tank 1 is connected to the first container 1a.
And a second container 1b. The first electrode plate 8 of a corrosion-resistant wire mesh is formed on one surface of the solid polymer electrolyte membrane 2 and a large number of openings 7a, 7a, 7a
Since the zigzag flow generating plate 14 is further stacked on the outside of the first current collecting electrode 8a having the... And the other surface side of the solid polymer electrolyte membrane 2 has substantially the same structure, On the other surface of the solid polymer electrolyte membrane 2, a corrosion-resistant wire mesh second electrode plate 9 is provided.
A second current collecting electrode 9a having a large number of openings 7a outside the second electrode plate 9 and a zigzag flow generating plate 14b outside the second current collecting electrode 9a are further stacked.
And the second container 1b are sandwiched and fixed between the inner surfaces thereof.

【0027】そして、上記第一集電電極8aと第二集電
電極9aとは電極押えを兼ねるようになしている。ま
た、同じく図示はしていないが、このジグザグ流発生板
14の外面と第一容体1aの内面との間にパッキン等を
クッション材として介在せしめて、これらの挟持が所定
の力で弾止されるようになしてもよい。
The first current collecting electrode 8a and the second current collecting electrode 9a also serve as electrode holders. Also, although not shown in the drawing, packing or the like is interposed between the outer surface of the zigzag flow generating plate 14 and the inner surface of the first container 1a as a cushion material, and the sandwiching thereof is stopped by a predetermined force. You may make it so.

【0028】また、上記第一電極板8と第二電極板9と
は、陽極出力端と陰極出力端とを所定時間間隔で反転す
る電源反転装置11を有した電源10に連結してある。
The first electrode plate 8 and the second electrode plate 9 are connected to a power supply 10 having a power supply reversing device 11 for reversing an anode output terminal and a cathode output terminal at predetermined time intervals.

【0029】上記電源10は、商用電源を所定直流電圧
(実施例では8V)に変換する従来公知な変圧・整流回
路11aと、タイマー回路を内蔵または外付けして設定
時間ごとに陽極出力端と陰極出力端とが反転する従来公
知な電源反転装置11と、この電源反転装置11と連動
する制御回路11bとからなる。
The power supply 10 includes a conventional well-known transformer / rectifier circuit 11a for converting a commercial power supply into a predetermined DC voltage (8V in the embodiment), and a built-in or external timer circuit, and an anode output terminal for each set time. It comprises a conventionally known power supply reversing device 11 whose cathode output terminal is reversed, and a control circuit 11b interlocked with the power supply reversing device 11.

【0030】また、上記電気分解槽1には、第一流入口
5aと第二流入口5bとの流入口切換装置12、または
第一流出口6aと第二流出口6bとの流出口切換装置1
3のいずれか一方または双方を連結し、さらに、この第
一流入口5aと第二流入口5bとに原料液を圧送する原
料液圧送装置12a,12bを連結して、この流入口切
換装置12および流出口切換装置13を前記電源反転装
置11に連動させてある。
The electrolytic cell 1 has an inlet switching device 12 between the first inlet 5a and the second inlet 5b or an outlet switching device 1 between the first outlet 6a and the second outlet 6b.
3 is connected to the first inlet 5a and the second inlet 5b, and raw material pumping devices 12a and 12b for pumping the raw material liquid are connected to the first inlet 5a and the second inlet 5b. The outlet switching device 13 is linked to the power reversing device 11.

【0031】上記原料液圧送装置12a,12bは、ポ
ンプを使用すればよいが、「図1」例はこの原料液圧送
装置12a,12bを第一流入口5aと第二流入口5b
とに夫々連結し、この原料液圧送装置12a,12bが
流入口切換装置12を兼ねている。すなわち、両原料液
圧送装置12a,12bは一方が運転されている場合は
他方が停止されるように、制御回路11bで制御され、
アノード側あるいはカソード側にのみ原料水を圧送する
ようになしてある。
A pump may be used for the raw material liquid feeders 12a and 12b. In the example shown in FIG. 1, the raw material liquid feeders 12a and 12b are connected to the first inlet 5a and the second inlet 5b.
The raw material liquid feeding devices 12a and 12b also serve as the inlet switching device 12. That is, both the raw material liquid pressure feeding devices 12a and 12b are controlled by the control circuit 11b so that when one is operated, the other is stopped.
Raw water is pumped only to the anode side or the cathode side.

【0032】なお、この流入口切換装置12は「図4」
に示す3ポート2位切換弁12bを使用(図では省略し
たが原料液圧送装置12a,12bは別途設けることは
無論で、この場合ポンプは[図1]例とはことなり通常
一台を使用し、そのポンプ下流側で流路を二つに分岐す
る。)してもよいし、3ポート2位切切換12cを第一
流出口6aと第二流出口6b側、すなわち、電気分解槽
1の下流側に配してもよい。但し、電気分解槽1の下流
側に流入口切換装置(本願では流出口切換装置13とす
る)を設ける場合は、アノード側あるいはカソード側の
一方に原料水を流し他方は止めてある場合は、利用しな
い側で発生する酸素または水素が上流側に押し戻されの
で、この酸素または水素が利用する側に混入することも
あるので留意が必要となる。
The inflow switching device 12 is shown in FIG.
(The illustration is omitted in the figure, but it is needless to say that the raw material liquid pumping devices 12a and 12b are separately provided. In this case, one pump is usually used unlike the example in FIG. 1) Then, the flow path is branched into two at the downstream side of the pump.) Or the three-port second-place switching 12c may be connected to the first outlet 6a and the second outlet 6b, that is, of the electrolysis tank 1. It may be arranged on the downstream side. However, when an inflow switching device (hereinafter referred to as an outflow switching device 13) is provided on the downstream side of the electrolysis tank 1, when the raw material water is flown to one of the anode side and the cathode side and the other is stopped, It should be noted that oxygen or hydrogen generated on the unused side is pushed back to the upstream side, and this oxygen or hydrogen may be mixed into the used side.

【0033】さらに、上記流入口切換装置12と流出口
切換装置13は種々の実施態様が可能で、「図5」の場
合は流出口切換装置13に4ポート2位切換弁を使用
し、この4ポート2位切換弁は両流出ポートを連結して
いるが、これは後述酸素水を得るために使用するため
で、両流出ポートの夫々を別途使用場所に連通してよい
ことは無論である。また、この4ポート2位切換弁を第
一流出口6aと第二流出口6b側に連結して(両流出ポ
ートを第一流出口6aと第二流出口6bとの夫々連結す
る)してもよい。なお、この「図5」例ではアノード側
およびカソード側の双方に原料水が流れることになる。
Further, the inflow switching device 12 and the outflow switching device 13 can be implemented in various embodiments. In the case of FIG. 5, a 4-port 2-position switching valve is used for the outflow switching device 13. The four-port two-way switching valve connects the two outflow ports, but this is used for obtaining oxygen water described later, and it goes without saying that each of the two outflow ports may be separately connected to the place of use. . Further, the four-port second-position switching valve may be connected to the first outlet 6a and the second outlet 6b (both outlet ports may be connected to the first outlet 6a and the second outlet 6b, respectively). . In the example of FIG. 5, the raw water flows on both the anode side and the cathode side.

【0034】さらに、「図6」例は、流入口切換装置1
2と流出口切換装置13との双方を設けた例で、流入口
切換装置12は3ポート2位切換弁を使用し、流出口切
換装置13には4ポート2位切換弁を使用している。そ
して、流入口切換装置12はアノード側とカソード側と
の一方(実施例ではアノード側)にのみ原料水を流し、
他方は原料水が流れないようになしてあり、流出口切換
装置13の一方の流出ポートは後述水槽30等に連通
し、他方のポートは図示しない水素排気口または水素処
理部に連通してある。
Further, the example shown in FIG.
In the example in which both the outlet 2 and the outlet switching device 13 are provided, the inlet switching device 12 uses a 3-port 2-position switching valve, and the outlet switching device 13 uses a 4-port 2-position switching valve. . Then, the inflow switching device 12 feeds the raw water only to one of the anode side and the cathode side (in the embodiment, the anode side),
The other is configured so that the raw water does not flow, one outlet port of the outlet switching device 13 communicates with a water tank 30 or the like described later, and the other port communicates with a hydrogen exhaust port or a hydrogen processing unit (not shown). .

【0035】そして、「図1」実施例は、第一流出口6
aと第二流出口6bとを夫々原料液圧送装置12a,1
2bを途中に介在する流入路31a,31bで水槽30
の原料水中に連通し、第一流出口6aと第二流出口6b
は夫々循環路32a,32bで水槽30に連通してあ
る。
The embodiment shown in FIG.
a and the second outlet 6b are connected to the raw material liquid pressure feeders 12a and 12a, respectively.
The water tank 30 is formed by the inflow passages 31a and 31b intervening the 2b.
The first outlet 6a and the second outlet 6b
Are connected to the water tank 30 by circulation paths 32a and 32b, respectively.

【0036】そして、電源10により第一電極板8がア
ノード、第二電極板9がカソードの状態に電圧を印加
し、制御回路11bで一方の原料液圧送装置12aが運
転され、他方の原料液圧送装置12bは停止した状態と
する。すると、原料水は第一室3内を通過し水槽30に
循環し、第二室4内の原料水は封止状態で流れない。し
たがって、原料水はこの状態で電気分解槽1内で電気分
解され、第一室3内には酸素が第二室4内には水素が発
生する。
Then, a voltage is applied by the power supply 10 in a state where the first electrode plate 8 is an anode and the second electrode plate 9 is a cathode. The pumping device 12b is in a stopped state. Then, the raw water passes through the first chamber 3 and circulates to the water tank 30, and the raw water in the second chamber 4 does not flow in a sealed state. Therefore, the raw water is electrolyzed in the electrolysis tank 1 in this state, and oxygen is generated in the first chamber 3 and hydrogen is generated in the second chamber 4.

【0037】上記状態で一定時間(実施例では1分)運
転されると、今度は第一電極板8がカソード、第二電極
板9がアノードの状態に電圧が印加されるように反転
し、さらに一方の原料液圧送装置12aが停止され、他
方の原料液圧送装置12bが運転される状態となる。す
ると、原料水は第二室4内を通過し水槽30に循環し、
第一室3内の原料水は封止状態で流れない。したがっ
て、原料水はこの状態で電気分解槽1内で電気分解さ
れ、第二室4内には酸素が第一室3内には水素が発生す
る。
After operating for a certain period of time (one minute in the embodiment) in the above state, the operation is reversed so that a voltage is applied to a state where the first electrode plate 8 is a cathode and the second electrode plate 9 is an anode. Further, one raw material liquid feeding device 12a is stopped, and the other raw material liquid feeding device 12b is operated. Then, the raw water passes through the second chamber 4 and circulates to the water tank 30,
The raw material water in the first chamber 3 does not flow in a sealed state. Accordingly, the raw water is electrolyzed in the electrolysis tank 1 in this state, and oxygen is generated in the second chamber 4 and hydrogen is generated in the first chamber 3.

【0038】そして、第二室4内において発生した酸素
は原料水に随伴され、原料水中に溶解される。この工程
が繰り返されて水槽30内の溶存酸素濃度が順次高めら
れるものである。なお、水素に関しては、滞留原料水中
に発生するので大きな気体の泡となり原料水との接触頻
度が少ないのでほとんど水中に溶解することなく、次に
水流で水槽30内に注入されると即座に水面から大気中
に消散し、また「図6」例のごとくにすれば、水素は電
気分解槽1より直接補集、または排気することもでき
る。
The oxygen generated in the second chamber 4 is accompanied by the raw water and is dissolved in the raw water. This process is repeated to sequentially increase the dissolved oxygen concentration in the water tank 30. In addition, hydrogen is generated in the retained raw water and becomes a large gas bubble, so that it hardly dissolves in the water because the frequency of contact with the raw water is low. The hydrogen can be directly collected or exhausted from the electrolysis tank 1 if it is dissipated into the atmosphere from the gas and as shown in the example of FIG.

【0039】以上は、水の電気分解によって酸素を利用
する例を説明したが、無論、水素を利用してもよく、ま
た、原料液に海水を使用して電気分解よって発生する塩
素ガスを利用する等してもよい。
In the above, an example in which oxygen is used by electrolysis of water has been described. Of course, hydrogen may be used, or chlorine gas generated by electrolysis using seawater as a raw material liquid may be used. You may do it.

【0040】なお、図中18は集電電極8aのリード、
19はパッキン、20は螺締螺子穴を示すものである。
In the figure, reference numeral 18 denotes a lead of the current collecting electrode 8a;
Reference numeral 19 denotes a packing, and 20 denotes a screw screw hole.

【0041】[0041]

【発明の効果】本発明は上記のごときであり、第一電極
板8と第二電極板9とを夫々アノードとカソードとに役
割分担させることなく、交互に使用しているため、カソ
ード側で使用された第一電極板8に陽イオンが吸引され
続け、やがて陽イオンの吸引が飽和状態となると、次い
で該陽イオンが析出し固化するが、遅くてもこの個化前
にアノードとカソードを反転すれば、陽イオンは電気的
な反発力を受け第一電極板8より離脱し、水流に随伴し
て該第一電極板より離れることになり、カソード側も略
同じであるので、長期間安定して電気分解を行える電気
分解装置を提供することができるものである。
The present invention is as described above. Since the first electrode plate 8 and the second electrode plate 9 are alternately used without sharing the roles of the anode and the cathode, the cathode side is used. When the cations continue to be attracted to the used first electrode plate 8 and the cations are eventually saturated, the cations are then precipitated and solidified. When inverted, the cations receive an electric repulsion and separate from the first electrode plate 8 and separate from the first electrode plate with the flow of water, and the cathode side is substantially the same. It is possible to provide an electrolyzer capable of performing electrolysis stably.

【0042】なお、具体的には人工海水を第一電極板8
をアノード、第二電極板9をカソード専用とし、「図
1」例で縦横30cmの多孔ステンレス電極で連続運転
したところ、5分程度で第二電極板9に白色の析出物の
付着が目視でき、8Vの直流電圧を印加したところ初期
には3アンペアの電流が流れたが、5分後には0.5ア
ンペア以下の電流値となった。この状態で電極を分解し
て噴射圧5Kの噴射水で水洗したが付着物の剥離は認め
られず、再度元の状態に組み立て、同様に8Vの直流電
圧を印加したが電源投入時の瞬間は1アンペア程度の電
流が流れたが、その後の電流値は0.5アンペア以下で
のままであった。そこで、この装置例(電極は新たなも
のを使用)で1分おきに電源と流入口切換装置12とを
切換えたところ初期には3アンペアの電流が流れるのは
同じであるが、以後電流値は順次低下し、1.5アンペ
アまで低下したところで安定した。
Specifically, artificial seawater is applied to the first electrode plate 8.
Is used as the anode and the second electrode plate 9 is dedicated to the cathode. In the example shown in FIG. 1, continuous operation was performed with a 30 cm-long porous stainless steel electrode. When a DC voltage of 8 V was applied, a current of 3 amps initially flowed, but after 5 minutes, the current value became 0.5 amps or less. In this state, the electrode was disassembled and washed with water sprayed at a spray pressure of 5K, but no detachment of the deposit was observed. The assembly was reassembled to the original state, and a DC voltage of 8 V was applied in the same manner. A current of about 1 amp flowed, but the current thereafter remained below 0.5 amp. Therefore, when the power supply and the inlet / outlet switching device 12 are switched every other minute in this device example (a new electrode is used), it is the same that a current of 3 amps flows at the initial stage. Gradually decreased and became stable when it decreased to 1.5 amperes.

【0043】そして、「図1」装置の溶存酸素料を測定
したところ水温摂氏15度で市販の溶存酸素計での測定
で25ppmまで溶存酸素濃度を高めることができ(こ
の酸素濃度は飽和量を超えており、飽和量を超えた数値
を示した理由は判別できていないが、飽和に達している
ことは明らかである。)この人工海水にボンベの酸素を
曝気し続けて飽和酸素濃度を測定したところでは7.5
ppmであったので明らかに電気分解が効率的に継続さ
れており、この測定は反復して行ったところ、数時間放
置して電源を投入した際は1.7アンペア程度の電流が
数分間流れることはあるが、その後は上記安定電流値と
なり反復継続性が確認された。
Then, when the dissolved oxygen content of the apparatus shown in FIG. 1 was measured, the dissolved oxygen concentration could be increased to 25 ppm at a water temperature of 15 ° C. by using a commercially available dissolved oxygen meter (this oxygen concentration decreases the saturation amount). The reason why the value exceeded the saturation amount was not determined, but it is clear that the saturation has been reached.) The oxygen in the cylinder was continuously aerated in this artificial seawater to measure the saturated oxygen concentration. 7.5
ppm, the electrolysis is clearly continued efficiently. This measurement was repeated, and when the power was turned on after standing for several hours, a current of about 1.7 amps flowed for several minutes. However, after that, the stable current value was obtained and the repetition continuity was confirmed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電気分解装置の一実施例を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing one embodiment of the electrolyzer according to the present invention.

【図2】別の実施例を示す電気分解槽の正面図である。FIG. 2 is a front view of an electrolysis tank showing another embodiment.

【図3】「図2」の中央縦断面図である。FIG. 3 is a central longitudinal sectional view of FIG. 2;

【図4】実施態様を示す流体回路図図である。FIG. 4 is a fluid circuit diagram showing an embodiment.

【図5】もう一つの実施態様を示す流体回路図図であ
る。
FIG. 5 is a fluid circuit diagram showing another embodiment.

【図6】さらにもう一つの実施態様を示す流体回路図で
ある。
FIG. 6 is a fluid circuit diagram showing still another embodiment.

【符号の説明】[Explanation of symbols]

1 電気分解槽 2 固形重合体電解質膜 3 第一室 4 第二室 5a 第一流入口 5b 第二流入口 6a 第一流出口 6b 第二流出口 7 開口部 7a 通孔 8 第一電極板 8a 第一集電電極 9 第二電極板 9a 第二集電電極 10 電源 11 電源反転装置 12 流入口切換装置 12a 原料液圧送装置 12b 原料液圧送装置 13 流出口切換装置 14 ジグザグ流発生板 Reference Signs List 1 electrolysis tank 2 solid polymer electrolyte membrane 3 first chamber 4 second chamber 5a first inlet 5b second inlet 6a first outlet 6b second outlet 7 opening 7a through hole 8 first electrode plate 8a first Current collecting electrode 9 Second electrode plate 9a Second current collecting electrode 10 Power supply 11 Power supply reversing device 12 Inlet switching device 12a Raw material liquid pumping device 12b Raw material liquid pumping device 13 Outlet switching device 14 Zigzag flow generating plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気分解槽(1)内を、固形重合体電解
質膜(2)で第一室(3)と第二室(4)とに仕切り、 上記第一室(3)には原料液の第一流入口(5a)と第
一流出口(6a)とを、第二室(4)には原料液の第二
流入口(5b)と第二流出口(6b)とを設け、 上記固形重合体電解質膜(2)の第一室(3)側面には
多数の開口部(7,7,7・・・)を有した第一電極板
(8)を、第二室(4)側面には同じく多数の開口部
(7,7,7・・・)を有した第二電極板(9)を接合
し、 上記第一電極板(8)と第二電極板(9)との両外面側
には、多数の通孔(7a,7a,7a・・・)を複数列
設けた第一集電電極(8a)と、同じく多数の通孔(7
a,7a,7a・・・)を複数列設けた第二集電電極
(9a)とを夫々重ね、 さらに、上記第一集電電極(8a)と第二集電電極(9
b)との両外側には、第一流入口(5a)または第二流
入口(5b)側の内面に、この第一流入口(5a)また
は第二流入口(5b)と、第一集電電極(8a)または
第二集電電極(9a)の各列の最上流部位の各通孔(7
a,7a,7a・・・)とを連通する分流凹部(15)
を、第一流出口(6a)または第二流出口(6b)側の
内面に、この第一流出口(6a)または第二流出口(6
b)と第一集電電極(8a)または第二集電電極(9
a)の各列の最下流部位の各通孔(7a,7a,7a・
・・)とを連通する合流凹部(16)を、また、内面の
該分流凹部(15)と合流凹部(16)との間の部位に
は、該第一集電電極(8a)または第二集電電極(9
a)の各列の隣り合う下流側の通孔(7a)と上流側の
通孔(7a)とを順次連通する凹部部(17,17,1
7・・・)を設けたジグザグ流発生板(14,14)を
夫々重ね、 上記この第一電極板(8)と第二電極板(9)とは陽極
出力端と陰極出力端とを所定時間間隔で切り換える電源
反転装置(11)を有した電源(10)に連結してなる
電気分解装置。
1. An electrolysis tank (1) is partitioned into a first chamber (3) and a second chamber (4) by a solid polymer electrolyte membrane (2), and the first chamber (3) contains raw materials. A first inlet (5a) and a first outlet (6a) for the liquid; a second inlet (5b) and a second outlet (6b) for the raw material liquid in the second chamber (4); A first electrode plate (8) having a large number of openings (7, 7, 7,...) Is provided on the side of the first chamber (3) of the polymer electrolyte membrane (2). Is connected to a second electrode plate (9) also having a large number of openings (7, 7, 7,...), And both of the first electrode plate (8) and the second electrode plate (9) are joined. On the outer surface side, a first current collecting electrode (8a) provided with a plurality of rows of a large number of through holes (7a, 7a, 7a.
a, 7a, 7a...) are provided in a plurality of rows, respectively, and the first current collecting electrode (8a) and the second current collecting electrode (9
b), on the inner surface on the side of the first inlet (5a) or the second inlet (5b), the first inlet (5a) or the second inlet (5b), and the first current collecting electrode (8a) or each through-hole (7) at the most upstream part of each row of the second collecting electrode (9a).
a, 7a, 7a,...)
Is provided on the inner surface on the first outlet (6a) or second outlet (6b) side, with the first outlet (6a) or the second outlet (6).
b) and the first collecting electrode (8a) or the second collecting electrode (9)
a) Each through hole (7a, 7a, 7a
..), and a portion of the inner surface between the junction recess (15) and the junction recess (16) at the first current collecting electrode (8a) or the second electrode. Collector electrode (9
a) a recessed portion (17, 17, 1) that sequentially communicates an adjacent downstream through-hole (7a) and an upstream through-hole (7a) in each row;
7) are provided, and the first electrode plate (8) and the second electrode plate (9) have an anode output terminal and a cathode output terminal at predetermined positions. An electrolyzer connected to a power supply (10) having a power supply reversing device (11) that switches at time intervals.
JP3047560A 1991-02-20 1991-02-20 Electrolysis equipment Expired - Fee Related JP2724772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047560A JP2724772B2 (en) 1991-02-20 1991-02-20 Electrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047560A JP2724772B2 (en) 1991-02-20 1991-02-20 Electrolysis equipment

Publications (2)

Publication Number Publication Date
JPH07173663A JPH07173663A (en) 1995-07-11
JP2724772B2 true JP2724772B2 (en) 1998-03-09

Family

ID=12778590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047560A Expired - Fee Related JP2724772B2 (en) 1991-02-20 1991-02-20 Electrolysis equipment

Country Status (1)

Country Link
JP (1) JP2724772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808512B2 (en) * 2013-01-22 2014-08-19 GTA, Inc. Electrolyzer apparatus and method of making it
JP6051267B1 (en) * 2015-05-28 2016-12-27 株式会社TrアンドK Electrolysis tank for electrolytic hydrogen gas generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837181A (en) * 1981-08-31 1983-03-04 Tokuyama Soda Co Ltd Electrolytic cell for electrolysis of aqueous alkali metal chloride solution
JPH02166289A (en) * 1988-12-20 1990-06-26 Tatsuo Okazaki Multipurpose electrolytic water feeder

Also Published As

Publication number Publication date
JPH07173663A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP6077087B2 (en) Electrolyzer for ozone generation
US5427667A (en) Apparatus for electrochemical treatment of water
KR100216114B1 (en) Electrolytic ion water generator
CN205954137U (en) Electroplating system
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JP5069292B2 (en) Equipment for electrochemical water treatment
JPS5932548B2 (en) Electrolysis method and electrolyzer
WO1996000701A1 (en) Electrolytic cell of non-diaphragm for electrolysis of water
CN107428567A (en) Electrolytic water generating device
WO2016169330A1 (en) Multipole saline electrolysis device
JPH01156487A (en) Hypochlorite electrolytic generator of douple-pole type rapid pass
KR100533710B1 (en) making apparatus of electrolysis water
JP2724772B2 (en) Electrolysis equipment
US3453201A (en) Polarity reversing electrode units and electrical switching means therefor
GB2392441A (en) Electrolytic activation of fluids
KR20170048264A (en) The electrolyzer having structure for increasing dissolved hydrogen
KR102400469B1 (en) Electrolytic cell and electrode plate for electrolytic cell
JPH0676672B2 (en) Electrolytic ozone water production equipment
RU2375313C2 (en) Flow diaphragm cell
WO2017119073A1 (en) Electrolyzed water-producing apparatus and electrolyzed water-producing method
JPH09192667A (en) Electrolyzed water generating device
JPH06192869A (en) Electrolytic cell
KR200338144Y1 (en) making apparatus of electrolysis water
ES2952069T3 (en) Method for the electrolytic deposition of a zinc-nickel alloy using a membrane anode system
TWI232772B (en) Acid-saving electrodialysis apparatus and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees