JPS6367558B2 - - Google Patents

Info

Publication number
JPS6367558B2
JPS6367558B2 JP56135396A JP13539681A JPS6367558B2 JP S6367558 B2 JPS6367558 B2 JP S6367558B2 JP 56135396 A JP56135396 A JP 56135396A JP 13539681 A JP13539681 A JP 13539681A JP S6367558 B2 JPS6367558 B2 JP S6367558B2
Authority
JP
Japan
Prior art keywords
cathode
exchange membrane
electrolytic cell
cation exchange
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56135396A
Other languages
Japanese (ja)
Other versions
JPS5837181A (en
Inventor
Yosuke Kakihara
Makoto Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP56135396A priority Critical patent/JPS5837181A/en
Publication of JPS5837181A publication Critical patent/JPS5837181A/en
Publication of JPS6367558B2 publication Critical patent/JPS6367558B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン交換膜法アルカリ金属塩水溶
液の電解槽、特にナトリウム、カリウムなどのア
ルカリ金属塩化物水溶液の電解に供する電解槽に
係わる。 更に詳しくは、所謂二室式の堅型電解槽であつ
て、陽イオン交換膜と陰極との間に金属の隔膜を
有することを特徴とするものである。 従来、アルカリ金属塩水溶液の電解方法として
イオン交換膜法が知られている。更に耐久性のあ
る陽イオン交換膜の開発により、所謂二室式電解
槽が提案された。この型式の電解槽は一般に陽、
陰両極を多孔体とし、且つ両者を比較的近接して
設け、その間に陽イオン交換膜を存在させると共
に、各電極の背後に夫々陽極室空間及び陰極室空
間を持つ構造を基本とし、これらに種々の設計変
更を加えたものである。 種々の改良提案の例として、イオン交換膜を陽
極側に近付けるか又は陽極面上に密着させること
により、電解電圧を下げること、イオン交換膜と
陽極及び/又は陰極との間に網又はスダレ状のス
ペーサーを介在させることにより、気泡の滞溜を
防止すること、又は、陽極と陰極とを陽イオン交
換膜を介して密着させることにより電極間距離を
最小にし溶液の電気抵抗を可及的に小さくするな
どの提案がある。 本発明は、陽イオン交換膜と多孔性陰極との間
に該陰極よりも水素過電圧が大きい厚さ0.05〜3
mmの金属多孔質膜を挿入介在させることを特徴と
するイオン交換膜法塩化アルカリ金属水溶液電解
用電解槽である。 本発明の最大の特徴は陽イオン交換膜と陰極と
の間に、該陰極よりも水素過電圧の大きい金属多
孔質膜を挿入介在させることにある。 前記の如く、陽イオン交換膜と陰極の間にスペ
ーサーを介在させるという提案はある。この場合
の目的は(1)陽イオン交換膜が陰極と接触し、損傷
することを防止すること、陽イオン交換膜を陽極
側に押しやつて電解時の電極間電圧を低下させる
こと及び陽イオン交換膜と陰極との間に十分間隙
を持たせ、その間に苛性アルカリ水溶液が流入し
得るようにし、陽イオン交換膜と陰極間の水素ガ
スを陰極背後の空間に導く如くしたものと考えら
れる。 従つて先行技術に使用されるスペーサーは悉く
非電導性の物質であり、且つ極めて孔径の大き
い、例えば目開きが10mm以上の網状のものであ
る。 また別の技術として、陽イオン交換膜と陰極と
の間に補助電極ともいうべき金属網を存在させ、
これに電位をかけることにより、陰極上で発生し
た水酸イオンが陽イオン交換膜側へ拡散するのを
電気的反撥力により抑止しようというものもあ
る。この場合は陰極と該補助陰極との間に比較的
大きい距離、例えば5〜10mm程度の間隔を必要と
すること、及び補助陰極は比較的大きい網目状金
属で構成され、しかもこれに陰極よりも、その絶
対値において小さい電位が別途付加されている。
この形状は電極室の厚さの増大を来たし、積層形
などの実用電解槽とするには不向きでもある。 本発明の好ましい態様は、陽極〜陰極間が0.5
〜5mm更には2〜4mmの狭いものであることが特
に重要であり、陽イオン交換膜と、陰極との両方
に接する如く、金属膜を介在させる態様である。 本発明の該金属膜は、陰極と接することにより
陰極と同電位になる。しかるに、陰極よりも水素
過電圧が大きいため、それ自体陰極として機能す
ることはない。 本発明にあつては、陰極面上で発生した水素ガ
スは、陰極面から、極めて単時間のうちに離脱す
ること、これが苛性アルカリ中では、比較的会合
することなく、あたかも乳化状態の如くなり、延
いては陽イオン交換膜と水素ガスとの染みの良さ
によつて陽イオン交換膜面に付着し、その通電面
積を減ずることになり、電解時の電圧の上昇を来
たすというメカニズムの解明により、陰極上で発
生した水素を可及的に陽イオン交換膜に接触させ
ない手段を検討した。その結果、従来の如く、非
電導性物質のスペーサー様スリリーンにあつて
は、苛性アルカリ中で陽イオン交換膜と同様これ
に水素気泡が著じるしく付着することにより、結
局陽イオン交換膜の場合と同様に、有効通電面積
を減ずることになることを知つた。 しかるに金属にあつては、不思議なことに苛性
アルカリ水溶液中で水素との染が悪く、その表面
に水素ガスが付着する傾向が極めて少ないのであ
る。更に陰極で発生した水素ガスが多孔性金属膜
を通過して陽イオン交換膜に達し、そこで膜面に
付着するのを防止し得るに適した多孔性金属の孔
の状態を検討すると、一般に孔径が小さい程良行
なのは当然であるが、観察したところによると孔
径が0.5mm程度で十分であり、1mm程度の孔径で
あつても観察上十分効果が認められる。従つて、
一般に1000μ以下の孔径が好ましい。またあまり
に少さい孔径を得るためには、通常これを構成す
る遮蔽部分も一般に増大するため、通常50〜
1000μの孔径メツシユ(金網)状膜を用いるのが
よいであろう。また該多孔性金属膜の厚みは一般
に0.05〜3mmの範囲が好適である。また該膜が電
解中に振動したり、折れ曲つたりするおそれのあ
る場合は、これを陰極上に溶接その他の手段で固
定することも場合によつては有効である。 また本発明の多孔性金属膜の材質は、陰極との
相対的関係で決まり、陰極より水素過電圧が大き
いものであることが必須であり、厳密には、陰極
と陽イオン光換膜との間に苛性アルカリ水溶液中
の電位差と陰極過電圧との代数和よりも大きい水
素過電圧を有する物質であるのが好ましいが、一
般に該水溶液の電位差は20〜40mV/mmに過ぎ
ず、これを無視して、材質を選定しても現実に重
要な支障を生じない。勿論、該多孔性金属膜の厚
みの大きい場合例えば2〜3mmにもなる場合は、
該厚みによる溶液中の電位差を考慮するのが望ま
しい。このような材質の例は軟鋼陰極にあつては
ニツケル又はステンレス等のニツケル合金類銅、
アルミニウムなどが、また軟鋼よりも水素過電圧
を小さくした陰極例えば白金,ロジウム,タング
ステン,金,又はこれらを陰極としての基材金属
上にメツキした陰極、又は硫黄分を含有するニツ
ケル層よりなるニツケルメツキした陰極などの場
合には、軟鋼又はニツケル等が多孔性金属膜とし
て使用される。 一般には、鉄,ニツケル,ステンレス鋼の金網
を用い、陰極とし、鉄よりも低い水素過電圧を有
する陰極、例えば、鉄などの陰極基体上に銅メツ
キを施すか又は施すことなく、ロダンニツケルを
含むメツキ浴により電気メツキしたものなどを用
いるのが好ましい。 図面を用いて、更に詳細に説明する、第1図は
従来のイオン交換膜法堅型電解槽、例えばフイル
タープレス型バイポーラ電槽の一部の断面図であ
る。電解槽枠1,1′と隔壁2,2′とによつて構
成される部分が一つの単位電槽であり陽イオン交
換膜3を挾んで、4が陰極、5が陽極である。ま
た6,7は夫々陰極及び陽極へ電気を供給するた
めの電導リブであり、各隔壁と電極間の空間が
夫々各室液及びガスの流路となる陰極室及び陽極
室である。 勿論本発明はバイポーラ型電解槽に限定される
ものではなく、原理的に第1図の単位電槽を構成
するものであればよい。第2図は、本発明の電解
槽の一例の一部断面図であり、第1図に対応する
ものである。本図において、8が多孔性金属膜で
ある。この状態を一層明らかに示すのが第3図で
ある。第3図は第2図の断面とは直角方向に切つ
た断面の一部を示す図である。このように陽極と
陰極の狭い間隙に好ましくは0.5〜5mm、特に1
〜4mmの間に陽イオン交換膜と陰極との間に多孔
性金属膜がほぼ一ぱいの状態で存在する形態にお
いて本発明は著効を示す。即ち、陽イオン交換膜
を陽極側に押し付け固定させる効課も付加され
る。更に本発明の電解槽はその運転時に陰極室圧
を陽極室圧よりも200〜600mm水柱更には350〜450
mm水柱高く保つのが一層効果を上げる。 以下に本発明の電解槽の使用例を示す。 例 1 通電面積18dm2の電解槽であつて、陽極はチタ
レラス上に酸化ルテニウムをコーテイングしたも
のを、また陰極は軟鋼ラス止に常法により銅メツ
キし、更にこの上にロダンニツケル浴による電気
メツキを行つたものを用いた。(このメツキ層に
ついてX線マイクロアナライザーにより硫黄分が
存することを確認した。)極間距離3mm、各々電
極の背後に各々25mmの空間を有する構造である。 陽イオン交換膜として、デユポン社製ナフイオ
ン(商品名)のスルホン酸基を、該膜の一方の表
面のみ、五酸化りん処理によりスルホニルクロリ
ドとし、これを酸化して、カルボン酸基に交換し
たもの(EW=1100)を用いた。 陰極と陽イオン交換膜との間にステンレス製の
80メツシユ平織網(線径0.15mm)の多孔性金属膜
を存在させた場合とこれを除いた場合との食塩電
解における各データ及び電解条件を表1に示す。
The present invention relates to an electrolytic cell for electrolyzing an aqueous solution of an alkali metal salt using an ion exchange membrane method, and particularly to an electrolytic cell for electrolyzing an aqueous solution of an alkali metal chloride such as sodium or potassium. More specifically, it is a so-called two-chamber type vertical electrolytic cell, and is characterized by having a metal diaphragm between the cation exchange membrane and the cathode. Conventionally, an ion exchange membrane method has been known as a method for electrolyzing an aqueous alkali metal salt solution. Furthermore, with the development of a more durable cation exchange membrane, a so-called two-chamber electrolytic cell was proposed. This type of electrolyzer is generally positive,
The basic structure is that the cathode and both electrodes are porous, and are placed relatively close to each other, with a cation exchange membrane between them, and an anode chamber space and a cathode chamber space behind each electrode. Various design changes have been made. Examples of various improvement proposals include lowering the electrolytic voltage by bringing the ion exchange membrane closer to the anode side or in close contact with the anode surface, and reducing the electrolytic voltage by lowering the electrolytic voltage between the ion exchange membrane and the anode and/or cathode. By interposing a spacer, it is possible to prevent the accumulation of air bubbles, or by bringing the anode and cathode into close contact via a cation exchange membrane, the distance between the electrodes can be minimized and the electrical resistance of the solution can be minimized. There are suggestions to make it smaller. The present invention provides a structure in which the thickness between the cation exchange membrane and the porous cathode is 0.05 to 3, which has a hydrogen overvoltage greater than that of the cathode.
This is an electrolytic cell for aqueous alkali metal chloride solution electrolysis using an ion-exchange membrane method, characterized in that a porous metal membrane of mm in diameter is inserted therein. The most important feature of the present invention is that a porous metal membrane having a higher hydrogen overvoltage than the cathode is inserted between the cation exchange membrane and the cathode. As mentioned above, there have been proposals to interpose a spacer between the cation exchange membrane and the cathode. The purpose in this case is (1) to prevent the cation exchange membrane from coming into contact with the cathode and damage it, to push the cation exchange membrane toward the anode side and reduce the interelectrode voltage during electrolysis, and to It is thought that a sufficient gap is provided between the exchange membrane and the cathode so that the aqueous caustic alkali solution can flow into the gap, and hydrogen gas between the cation exchange membrane and the cathode is guided into the space behind the cathode. Therefore, the spacers used in the prior art are all made of non-conductive materials and have extremely large pores, for example, mesh-like spacers with openings of 10 mm or more. Another technique is to create a metal mesh between the cation exchange membrane and the cathode, which can also be called an auxiliary electrode.
There is also a method in which by applying a potential to this, the diffusion of hydroxyl ions generated on the cathode toward the cation exchange membrane is suppressed by electrical repulsion. In this case, a relatively large distance is required between the cathode and the auxiliary cathode, for example, about 5 to 10 mm, and the auxiliary cathode is composed of a relatively large mesh metal, and moreover, it is larger than the cathode. , a potential with a small absolute value is separately added.
This shape increases the thickness of the electrode chamber and is not suitable for use as a practical electrolytic cell such as a stacked type. In a preferred embodiment of the present invention, the distance between the anode and the cathode is 0.5
It is particularly important that the membrane be as narrow as 5 mm or even 2 to 4 mm, and a metal membrane is interposed so as to be in contact with both the cation exchange membrane and the cathode. The metal film of the present invention has the same potential as the cathode by coming into contact with the cathode. However, since the hydrogen overvoltage is larger than that of the cathode, it does not function as a cathode itself. In the present invention, the hydrogen gas generated on the cathode surface is released from the cathode surface in a very short period of time, and in caustic alkali, it does not associate with each other relatively, and becomes like an emulsified state. By elucidating the mechanism by which hydrogen gas adheres to the surface of the cation exchange membrane due to its good staining, reducing the current-carrying area and causing an increase in voltage during electrolysis. We investigated ways to prevent the hydrogen generated on the cathode from coming into contact with the cation exchange membrane as much as possible. As a result, in the case of spacer-like Thrilene, which is a non-conductive material, as in the case of cation-exchange membranes, hydrogen bubbles are noticeably attached to it in caustic alkali, and as a result, the cation-exchange membrane ends up being As in the previous case, I learned that this would reduce the effective current-carrying area. However, strangely, metals do not stain well with hydrogen in aqueous caustic alkali solutions, and there is very little tendency for hydrogen gas to adhere to their surfaces. Furthermore, when considering the state of the pores of a porous metal that is suitable for preventing hydrogen gas generated at the cathode from passing through the porous metal membrane, reaching the cation exchange membrane, and adhering to the membrane surface, it is generally found that the pore size It is natural that the smaller the diameter, the better the performance, but according to observation, a pore diameter of about 0.5 mm is sufficient, and even a pore diameter of about 1 mm can be observed to be sufficiently effective. Therefore,
Generally, pore sizes of 1000μ or less are preferred. In addition, in order to obtain a pore size that is too small, the shielding part that constitutes it also generally increases, so it is usually 50~
It would be better to use a mesh membrane with a pore size of 1000 microns. The thickness of the porous metal film is generally preferably in the range of 0.05 to 3 mm. Furthermore, if there is a risk that the membrane may vibrate or bend during electrolysis, it may be effective to fix it onto the cathode by welding or other means. Furthermore, the material of the porous metal membrane of the present invention is determined by its relative relationship with the cathode, and it is essential that the material has a larger hydrogen overvoltage than the cathode. It is preferable that the substance has a hydrogen overvoltage larger than the algebraic sum of the potential difference in the caustic aqueous solution and the cathode overvoltage, but generally the potential difference in the aqueous solution is only 20 to 40 mV/mm, and ignoring this, The material selection does not cause any significant problems in reality. Of course, if the thickness of the porous metal film is large, for example, 2 to 3 mm,
It is desirable to consider the potential difference in the solution depending on the thickness. Examples of such materials include nickel or nickel alloys such as stainless steel, copper, etc. for mild steel cathodes.
A cathode made of aluminum, etc. has a lower hydrogen overvoltage than mild steel, such as platinum, rhodium, tungsten, gold, or a cathode made of these plated on a base metal as a cathode, or a nickel-plated cathode made of a nickel layer containing sulfur. In the case of a cathode, mild steel, nickel, or the like is used as the porous metal membrane. In general, iron, nickel, or stainless steel wire mesh is used as the cathode, with or without copper plating on the cathode substrate, such as cathode having a lower hydrogen overvoltage than iron, such as iron, or plating containing rodan nickel. It is preferable to use one that has been electroplated using a bath. DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a part of a conventional ion-exchange membrane type vertical electrolytic cell, for example, a filter press type bipolar cell. The part constituted by the electrolytic cell frames 1, 1' and the partition walls 2, 2' constitutes one unit cell, which sandwiches a cation exchange membrane 3, with 4 being a cathode and 5 being an anode. Further, 6 and 7 are conductive ribs for supplying electricity to the cathode and the anode, respectively, and the spaces between the partition walls and the electrodes are a cathode chamber and an anode chamber, respectively, which serve as flow paths for the liquid and gas in the chambers. Of course, the present invention is not limited to bipolar electrolytic cells, but any electrolytic cell that can basically constitute the unit cell shown in FIG. 1 may be used. FIG. 2 is a partial sectional view of an example of the electrolytic cell of the present invention, and corresponds to FIG. 1. In this figure, 8 is a porous metal film. FIG. 3 shows this state more clearly. FIG. 3 is a diagram showing a part of a cross section taken in a direction perpendicular to the cross section of FIG. 2. FIG. In this way, the narrow gap between the anode and the cathode is preferably 0.5 to 5 mm, especially 1 mm.
The present invention is particularly effective in the case where the porous metal membrane is substantially completely present between the cation exchange membrane and the cathode with a width of 4 mm. That is, an additional function is added to press and fix the cation exchange membrane against the anode side. Furthermore, during operation of the electrolytic cell of the present invention, the cathode chamber pressure is lower than the anode chamber pressure by 200 to 600 mm of water column, and further by 350 to 450 mm.
mm It is more effective to keep the water column high. Examples of use of the electrolytic cell of the present invention are shown below. Example 1 An electrolytic cell with a current carrying area of 18 dm 2 , the anode is made of titare lath coated with ruthenium oxide, the cathode is made of mild steel lath plated with copper by the usual method, and further electroplated with a rodan nickel bath. I used what I had done. (The presence of sulfur in this plating layer was confirmed using an X-ray microanalyzer.) The structure had a distance between electrodes of 3 mm and a space of 25 mm behind each electrode. As a cation exchange membrane, the sulfonic acid group of Nafion (trade name) manufactured by DuPont was converted to sulfonyl chloride by treating only one surface of the membrane with phosphorus pentoxide, which was then oxidized and replaced with a carboxylic acid group. (EW=1100) was used. A stainless steel plate is placed between the cathode and the cation exchange membrane.
Table 1 shows the data and electrolytic conditions for salt electrolysis in the presence and absence of a porous metal membrane of 80 mesh plain weave net (wire diameter 0.15 mm).

【表】 例 2 例1の電解槽を用い、種々の目開きの軟鋼製平
織金網を用いて同様の実験を行つた。結果を表2
に示す。
[Table] Example 2 Using the electrolytic cell of Example 1, similar experiments were conducted using mild steel plain-woven wire meshes with various openings. Table 2 shows the results.
Shown below.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の堅型イオン交換膜電解槽の一単
位電槽の断面図であり、第2図は本発明の電解槽
の第1図に対応する部分の断面図であり、第3図
は第2図における断面と直角方向に切つた一部の
断面図である。 図中、1,1′は電解槽枠、2,2′は隔壁、3
は陽イオン交換膜、4は陰極、5は陽極、6,7
は夫々リブを表す。
FIG. 1 is a sectional view of one unit of a conventional rigid ion exchange membrane electrolyzer, FIG. 2 is a sectional view of a portion of the electrolytic cell of the present invention corresponding to FIG. 1, and FIG. is a partial sectional view taken in a direction perpendicular to the cross section in FIG. 2; In the figure, 1 and 1' are electrolytic cell frames, 2 and 2' are partition walls, and 3
is a cation exchange membrane, 4 is a cathode, 5 is an anode, 6, 7
each represents a rib.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜と多孔性陰極との間に該陰極
よりも水素過電圧が大きい厚さ0.05〜3mmの金属
多孔質膜を挿入介在させることを特徴とするイオ
ン交換膜法塩化アルカリ金属水溶液電解用電解
槽。 2 金属多孔質膜が鉄、ニツケル又はこれらを含
む合金のうちから選ばれた1種の金属で構成さ
れ、陰極が鉄よりも低い水素過電圧を有すること
を特徴とする特許請求の範囲第1項記載の電解
槽。 3 金属多孔質膜が鉄、ニツケル又はこれらを含
む合金のうちから選ばれた1種の金属で構成さ
れ、陰極が基体上に含硫ニツケル化合物を用いて
メツキされた表面を有することを特徴とする特許
請求の範囲第2項記載の電解槽。 4 陽極と陰極との間隙は0.5〜5mmである特許
請求の範囲第1項記載の電解槽。
[Scope of Claims] 1. An ion exchange membrane method characterized by interposing a metal porous membrane with a thickness of 0.05 to 3 mm, which has a larger hydrogen overvoltage than the cathode, between a cation exchange membrane and a porous cathode. Electrolytic cell for aqueous alkali metal chloride solution electrolysis. 2. Claim 1, wherein the metal porous membrane is made of one metal selected from iron, nickel, or an alloy containing these, and the cathode has a hydrogen overvoltage lower than that of iron. The electrolytic cell described. 3. The metal porous membrane is made of one metal selected from iron, nickel, or an alloy containing these, and the cathode has a surface plated with a sulfur-containing nickel compound on the base. An electrolytic cell according to claim 2. 4. The electrolytic cell according to claim 1, wherein the gap between the anode and the cathode is 0.5 to 5 mm.
JP56135396A 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution Granted JPS5837181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135396A JPS5837181A (en) 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135396A JPS5837181A (en) 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Publications (2)

Publication Number Publication Date
JPS5837181A JPS5837181A (en) 1983-03-04
JPS6367558B2 true JPS6367558B2 (en) 1988-12-26

Family

ID=15150730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135396A Granted JPS5837181A (en) 1981-08-31 1981-08-31 Electrolytic cell for electrolysis of aqueous alkali metal chloride solution

Country Status (1)

Country Link
JP (1) JPS5837181A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670276B2 (en) * 1983-05-02 1994-09-07 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ Chlorine generation method and its electrolytic cell
JP2724772B2 (en) * 1991-02-20 1998-03-09 株式会社オーディーエス Electrolysis equipment

Also Published As

Publication number Publication date
JPS5837181A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
JP2581685B2 (en) Electrolyzer with intermediate electrode structure
CA1258443A (en) Electrolysis apparatus with horizontally disposed electrodes
EP0031660A1 (en) Electrolysis apparatus using a diaphragm of a solid polymer electrolyte, and a method for the production of the same
JP2648313B2 (en) Electrolysis method
JPS6315354B2 (en)
KR20080087037A (en) Elastic current distributor for percolating cells
JPH0125836B2 (en)
US4141815A (en) Bipolar electrode
EP2436804A1 (en) Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
US4194670A (en) Method of making a bipolar electrode
KR860001501B1 (en) Double l-shaped electrode for brine electrolysis cell
JPS5943885A (en) Electrode device for gas generation electrolytic cell and vertical plate electrode therefor
US6063257A (en) Bipolar type ion exchange membrane electrolytic cell
JPH1081987A (en) Gas diffusion cathode and brine electrolyzing cell using this gas diffusion cathode
NL8205018A (en) MULTIPLE LAYER STRUCTURE FOR ELECTRODE AND MEMBRANE ASSEMBLY AND ELECTROLYSIS METHOD USING THE SAME.
US4936972A (en) Membrane electrolyzer
JPS6367558B2 (en)
US3849280A (en) Electrolytic cell including means for preventing atomic hydrogen attack of the titanium backplate member
CA1075200A (en) Bipolar electrolyzer
US4339323A (en) Bipolar electrolyzer element
JP3596997B2 (en) Electrode feeder, method for producing the same, and electrolytic cell for producing hydrogen peroxide
JP3928013B2 (en) Insoluble anode for plating
US6165333A (en) Cathode assembly and method of reactivation
JP2020007607A (en) Electrode structure, electrolytic cell and electrolytic bath
JPH05320970A (en) Ion exchange membrane electrolyzer