JP2010037619A - Ion exchange membrane system electrolytic cell and method of recovering performance of cathode - Google Patents

Ion exchange membrane system electrolytic cell and method of recovering performance of cathode Download PDF

Info

Publication number
JP2010037619A
JP2010037619A JP2008203853A JP2008203853A JP2010037619A JP 2010037619 A JP2010037619 A JP 2010037619A JP 2008203853 A JP2008203853 A JP 2008203853A JP 2008203853 A JP2008203853 A JP 2008203853A JP 2010037619 A JP2010037619 A JP 2010037619A
Authority
JP
Japan
Prior art keywords
cathode
expanded metal
ion exchange
exchange membrane
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008203853A
Other languages
Japanese (ja)
Inventor
Kenji Sakamoto
健二 坂本
Kanji Yoshimitsu
幹治 吉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008203853A priority Critical patent/JP2010037619A/en
Publication of JP2010037619A publication Critical patent/JP2010037619A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion exchange system electrolytic cell where the renewal of a cathode is remarkably simply practicable and to provide a method of recovering the performance of the cathode. <P>SOLUTION: In the ion exchange membrane system electrolytic cell where an anodic chamber and a cathodic chamber are separated by an ion exchange membrane, the cathode chamber is provided with the cathode formed by laminating a first expand metal and a second expand metal, and the second expand metal nearer to the ion exchange membrane has a notch width, minor axis and major axis which are smaller than half of that of the first expand metal. The method of manufacturing the ion exchange membrane system electrolytic cell is provided. When the cathode is degraded during the electrolysis from the start of the electrolysis with the cathode comprising the first expand metal, the method of recovering the performance of the cathode constituting the ion exchange membrane system electrolytic cell is used by attaching the second expand metal to be in close contact with the first expand metal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、イオン交換膜法食塩電解をはじめとする各種のイオン交換膜法電解槽及び、電気分解に長期間使用して劣化した陰極の性能回復方法に関する。   The present invention relates to various ion exchange membrane method electrolytic cells including ion exchange membrane method salt electrolysis, and a method for recovering the performance of a cathode that has deteriorated after being used for electrolysis for a long time.

本発明のイオン交換膜法電解槽、及び/又は、陰極の性能回復方法を用いることにより、食塩電解などの電気分解に必要なエネルギーを低く抑えることができ、なおかつ、陰極の性能回復が極めて簡便に実施可能である。   By using the ion exchange membrane method electrolytic cell and / or cathode performance recovery method of the present invention, the energy required for electrolysis such as salt electrolysis can be kept low, and the performance recovery of the cathode is extremely simple. Can be implemented.

食塩電解や水電解等に使用されるイオン交換膜法電解槽(以下、単に「電解槽」と記載する)の陰極室に設置される陰極は、電解中に水素発生反応が生じる。前記陰極は、通常、電解電圧を低減する目的で、発生した水素ガスを円滑に脱離させるために多孔板の形状からなり、さらに、水素過電圧を下げるため前記多孔板には水素発生用触媒が担持されている。   The cathode installed in the cathode chamber of an ion exchange membrane electrolytic cell (hereinafter simply referred to as “electrolytic cell”) used for salt electrolysis, water electrolysis and the like undergoes a hydrogen generation reaction during electrolysis. The cathode usually has a shape of a porous plate for smoothly desorbing the generated hydrogen gas for the purpose of reducing the electrolysis voltage, and further, a catalyst for hydrogen generation is provided on the porous plate to lower the hydrogen overvoltage. It is supported.

電解槽を長期間使用すると、水素発生用触媒の性能が低下し、水素過電圧が経年的に増加するため、電解に必要なエネルギーが増大する。このため、電解の省エネルギー化を行うためには、陰極を一定期間毎に更新又は再活性化する必要がある。   When the electrolytic cell is used for a long period of time, the performance of the hydrogen generating catalyst is lowered and the hydrogen overvoltage increases with time, so that the energy required for electrolysis increases. For this reason, in order to save energy in electrolysis, it is necessary to update or reactivate the cathode at regular intervals.

陰極の更新は、例えば、劣化した陰極を電解槽から取り外し、新規に製作した陰極を電解槽に取り付けることで可能である。   The cathode can be renewed, for example, by removing the deteriorated cathode from the electrolytic cell and attaching a newly manufactured cathode to the electrolytic cell.

例えば、特許文献1に記載の電解槽は、陰極をばねの弾性反発力でイオン交換膜に押付け、陰極を保持するとともに通電を行う、所謂、ゼロギャップ電解槽である。この様なばねの弾性反発力で陰極を保持する形式の電解槽では、陰極は電解槽に強固に接続する必要がなく、陰極の着脱が極めて容易である。そのため、劣化した陰極を電解槽から取り外し、新規に製作した陰極を電解槽に取り付けることは極めて容易である。   For example, the electrolytic cell described in Patent Document 1 is a so-called zero-gap electrolytic cell in which a cathode is pressed against an ion exchange membrane by an elastic repulsive force of a spring, and the cathode is held and energized. In such an electrolytic cell that holds the cathode by the elastic repulsive force of the spring, the cathode does not need to be firmly connected to the electrolytic cell, and it is very easy to attach and detach the cathode. Therefore, it is extremely easy to remove the deteriorated cathode from the electrolytic cell and attach the newly manufactured cathode to the electrolytic cell.

しかし、イオン交換膜と陰極との距離を1〜3mmに設定した電解槽が、現在も多く採用されている。図1は、イオン交換膜と陰極との距離を1〜3mmに設定した電解槽の断面図である。陰極室(3)内部の圧力は陽極室(1)内部の圧力より高く保持され、イオン交換膜(2)は陽極(5)に押し付け密着される。一方、イオン交換膜(2)と陰極(7)との距離は1〜3mmになるように、陰極リブ(6)の長さや、陰極側ガスケット(12)の厚みが調整されている。   However, many electrolytic cells in which the distance between the ion exchange membrane and the cathode is set to 1 to 3 mm are still used. FIG. 1 is a cross-sectional view of an electrolytic cell in which the distance between the ion exchange membrane and the cathode is set to 1 to 3 mm. The pressure inside the cathode chamber (3) is kept higher than the pressure inside the anode chamber (1), and the ion exchange membrane (2) is pressed and brought into close contact with the anode (5). On the other hand, the length of the cathode rib (6) and the thickness of the cathode side gasket (12) are adjusted so that the distance between the ion exchange membrane (2) and the cathode (7) is 1 to 3 mm.

イオン交換膜(2)と陰極(7)との距離に分布があると、電解電流が一部分に集中し電解性能が悪化するので、距離を均一に保つことが重要である。そのため、陰極(7)は陰極リブ(6)に溶接等によって強固に取り付けられ、歪みや変形が生じないようにされている。従って、陰極リブ(6)から陰極(7)を取り外すことが困難なため、劣化した陰極を電解槽から取り外し新規に製作した陰極を電解槽に取り付ける陰極更新方法は適用し難い。   If there is a distribution in the distance between the ion exchange membrane (2) and the cathode (7), the electrolytic current is concentrated in a part and the electrolysis performance deteriorates, so it is important to keep the distance uniform. Therefore, the cathode (7) is firmly attached to the cathode rib (6) by welding or the like so that distortion and deformation do not occur. Therefore, since it is difficult to remove the cathode (7) from the cathode rib (6), it is difficult to apply a cathode renewal method in which a deteriorated cathode is removed from the electrolytic cell and a newly manufactured cathode is attached to the electrolytic cell.

この問題に対応するため、従来、性能が劣化した既存の陰極を電解槽から取り外すことなく、陰極の再活性化を行う方法が検討されてきた。例えば、特許文献2には、「劣化した硫黄を含む活性ニッケルめっき被膜を有する活性電極を、電解槽に取付けたまま塩酸及び/又は硫酸にて該活性ニッケルめっき被膜を溶解した後、再度硫黄を含む活性ニッケルめっき被膜を施すこと」を主旨とする陰極の再活性化方法が提案されている。   In order to cope with this problem, conventionally, a method for reactivating the cathode without removing the existing cathode having deteriorated performance from the electrolytic cell has been studied. For example, Patent Document 2 states that “an active electrode having an active nickel plating film containing deteriorated sulfur is dissolved in hydrochloric acid and / or sulfuric acid while the active electrode is attached to an electrolytic cell, and then sulfur is added again. There has been proposed a cathode reactivation method whose main purpose is “to apply an active nickel plating film containing”.

特許文献2記載の再活性化方法は、劣化した陰極を取り外す必要が無いため、電解槽の陰極の更新方法に適用可能である。しかし、この方法は、電解槽の陰極室をめっき槽として用いて陰極に活性めっきを施すため、陰極以外に、陰極室の内壁全面に活性めっき被膜が施される。このため、触媒量が不必要に多くなり、更新費用が増加する。さらに、陰極室内壁のめっき被膜は密着性が劣る場合が多く、電気分解中に陰極室内壁の被膜が剥離し、皮膜による電解液の汚染や、イオン交換膜の破損が生じる不具合が生じていた。   The reactivation method described in Patent Document 2 is applicable to a method for renewing a cathode of an electrolytic cell because it is not necessary to remove a deteriorated cathode. However, since this method uses the cathode chamber of the electrolytic cell as a plating bath to perform active plating on the cathode, an active plating film is applied to the entire inner wall of the cathode chamber in addition to the cathode. For this reason, the amount of catalyst becomes unnecessarily large, and the renewal cost increases. Furthermore, the plating film on the inner wall of the cathode chamber is often inferior in adhesion, and the coating on the inner wall of the cathode chamber peels off during electrolysis, resulting in problems such as contamination of the electrolyte solution and damage to the ion exchange membrane. .

特許文献3には、「陽極と陰極で電気分解を行っている電気分解槽において多孔性陰極の陽極側に向かった側の面に更にもう1つの水素過電圧が前記陰極より低い多孔性の陰極を容易に取り除くことが出来るかまたは脱着が出来るように取付けたことを特徴とする電解用陰極。」が提案されている。特許文献3の電解用陰極は、電解槽の陰極室に強固に固着された第一の多孔性陰極に、第二の多孔性の陰極を取り外し可能な状態で取付けたもので、第二の多孔性陰極は交換が容易なため、第二の多孔性陰極を交換することで陰極の性能回復が可能である。   Patent Document 3 states that, in an electrolysis tank in which electrolysis is performed with an anode and a cathode, another porous cathode having a lower hydrogen overvoltage than that of the cathode is provided on the surface facing the anode side of the porous cathode. An electrolysis cathode characterized in that it is mounted so that it can be easily removed or detached is proposed. The cathode for electrolysis in Patent Document 3 is a first porous cathode firmly fixed to the cathode chamber of the electrolytic cell, and is attached in a state where the second porous cathode can be removed. Since the functional cathode can be easily replaced, the performance of the cathode can be recovered by replacing the second porous cathode.

しかし、一方で、電解槽は、イオン交換膜という高度な機能性膜が設置され、かつ、電解中は電極からは大量の気体が発生する複雑な電解系であり、電極の形状が電解性能に影響を及ぼすので、既存の電極上に別の電極を設けることには多くの問題がある。すなわち、既存の電極上に新たに電極を設けることによって2枚の電極が重ねられると電解液の流通が阻害され、また発生する気体の脱離も悪化し、電解性能の低下が起こることが知られている。   However, on the other hand, the electrolytic cell is a complex electrolytic system in which an advanced functional membrane called an ion exchange membrane is installed, and a large amount of gas is generated from the electrode during electrolysis. There are a number of problems with providing another electrode on top of an existing electrode because of its influence. That is, it is known that when two electrodes are overlapped by providing a new electrode on an existing electrode, the flow of the electrolytic solution is hindered, the detachment of the generated gas is worsened, and the electrolytic performance is lowered. It has been.

現在、陰極には、主として、薄板に規則的に設けた切れ目を拡張して製造したエキスパンドメタルと称される網状体に、ニッケル合金等の水素発生用触媒が担持されたものが用いられている。このエキスパンドメタルの形状が電解液の流通性や気体の脱離性に影響し、電解性能を左右する。   At present, the cathode is mainly used in which a hydrogen generation catalyst such as a nickel alloy is supported on a network called expanded metal produced by expanding the cuts regularly formed in a thin plate. . The shape of the expanded metal affects the flowability of the electrolytic solution and the gas detachability and affects the electrolytic performance.

エキスパンドメタルは加工に用いる板の厚み、切れ目を入れる間隔、引っ張り距離により種々の形状となる。図3に示したように、形状は、メッシュの短目方向中心間距離である短径(8)、同じくメッシュの長目方向中心間距離である長径(9)、板に設けた切れ目の刻み間隔である刻み巾(10)、エキスパンド加工した板の板厚(図示せず)で規定できる。電極に用いるエキスパンドメタルは、通常、予めロール掛け等により平坦化加工されたものが使用されている。   Expanded metal comes in various shapes depending on the thickness of the plate used for processing, the interval between cuts, and the pulling distance. As shown in FIG. 3, the shape is a short diameter (8) which is the distance between the centers of the meshes in the short direction, a long diameter (9) which is also the distance between the centers of the meshes in the long direction, and a notch formed on the plate. It can be defined by the step width (10) which is the interval and the plate thickness (not shown) of the expanded plate. As the expanded metal used for the electrode, one that has been flattened in advance by rolling or the like is usually used.

エキスパンドメタルが微細であるほど、液の流通性や気体の脱離性に優れることが知られており、短径(8)、長径(9)、刻み巾(10)、及び、板厚は小さいほど液の流通性や気体の脱離性に優れると言える。しかし、刻み巾(10)、及び、板厚が小さいほど、電気抵抗が高くなり、また、機械的強度に劣る。電極に使用するエキスパンドメタルの形状は、通常、上記の兼ね合いにより定められている。   It is known that the finer the expanded metal, the better the liquid flowability and gas detachability, and the shorter diameter (8), the longer diameter (9), the step width (10), and the plate thickness are smaller. It can be said that the liquid flowability and gas detachability are excellent. However, the smaller the step width (10) and the plate thickness, the higher the electric resistance and the lower the mechanical strength. The shape of the expanded metal used for the electrode is usually determined by the above balance.

一方、特許文献3が提案する第一の多孔性陰極に、第二の多孔性の陰極を取り外し可能な状態で取付けた陰極においては、電気抵抗の低減と機械的強度の保持は第一の多孔性陰極が担い、第二の多孔性の陰極を微細なメッシュとすることで、液の流通性や気体の脱離性と、電気抵抗や機械的強度を両立可能であることは容易に想到される。しかし、特許文献3の実施例に記載された好ましい状態の例は、第二の多孔性陰極の短径(8)、長径(9)、刻み巾(10)は各々、第一の多孔性の陰極の短径(8)、長径(9)、刻み巾(10)各々と同一で、第二の多孔性陰極の板厚:1mmは第一の多孔性陰極の板厚:1.5mmの3分の2である。   On the other hand, in the cathode in which the second porous cathode is removably attached to the first porous cathode proposed by Patent Document 3, the electrical resistance is reduced and the mechanical strength is maintained. It is easily conceived that the flowability of liquid and gas detachability can be compatible with electrical resistance and mechanical strength by making the second porous cathode a fine mesh. The However, an example of a preferable state described in the example of Patent Document 3 is that the minor diameter (8), the major diameter (9), and the step width (10) of the second porous cathode are the same as those of the first porous cathode. The same as the minor axis (8), major axis (9), and step width (10) of the cathode, the thickness of the second porous cathode is 1 mm, and the thickness of the first porous cathode is 1.5 mm. Two minutes.

しかし、エキスパンドメタルの形状は全面が同一ではなく誤差がある。そのため、短径(8)、長径(9)、刻み巾(10)が同一のエキスパンドメタルを重ね合わせた場合、実験レベルのサイズでは一方のエキスパンドメタルの孔部(14)と他方のエキスパンドメタルの孔部(14)を一致して重ね合わせることが可能であっても、工業規模では、一方のエキスパンドメタルの孔部(14)と他方のエキスパンドメタルの孔部(14)が一致する箇所とずれる箇所が生じる。その場合、液の流通性や気体の脱離性に極端な不均一が生じ、電解性能が悪化することが知られている。   However, the shape of the expanded metal is not the same on the entire surface, and there is an error. Therefore, when the expanded metal having the same short diameter (8), long diameter (9), and step width (10) is overlapped, the hole portion (14) of one expanded metal and the expanded metal of the other expanded metal at the experimental level size. Even if the hole (14) can be overlapped and overlapped, on an industrial scale, the hole (14) of one expanded metal and the hole (14) of the other expanded metal are shifted from the same position. A place arises. In that case, it is known that extreme non-uniformity occurs in the flowability of the liquid and the detachability of the gas, and the electrolytic performance deteriorates.

特許文献4は既存の陽極に新規陽極を重ねる陽極更新方法を提案している。特許文献4の骨子は、その特許請求の範囲に記載の通り、「電極触媒を被覆した不溶性電極の活性が低下した際に、新しい電極を既設の電極に溶接して再活性化する方法において、新しい電極がエキスパンドメタルをロール掛け等により平坦化したものであり、新しい電極のエキスパンドメタルのメッシュの短径が既設の電極のメッシュの短径より小さく、かつ既設の電極のメッシュの刻み巾の二倍より大きいことを特徴とする電解用電極の活性化方法」である。   Patent Document 4 proposes an anode renewal method in which a new anode is superimposed on an existing anode. The gist of Patent Document 4 is, as described in the claims, “When the activity of an insoluble electrode coated with an electrode catalyst is reduced, a new electrode is welded to an existing electrode and reactivated. The new electrode is obtained by flattening the expanded metal by rolling, etc. The short diameter of the expanded metal mesh of the new electrode is smaller than the short diameter of the existing electrode mesh, and the existing electrode mesh step width is two times. It is a method for activating an electrode for electrolysis characterized by being larger than twice.

特許文献4の第3頁右上欄10行目〜第3頁左下欄8行目に「槽電圧を上げずに再活性化を行うには新しい電極のメッシュは既存の電極のメッシュより微細でなければならず、一方過度に微細であると既存の電極のメッシュとの重なり具合により新しい電極のメッシュの開口部が既存の電極のメッシュによってふさがれる。前述の気体発生の観察装置を用いて観察したところ、新しい電極のメッシュの短径が既存の電極のメッシュの刻み幅の二倍以上でなければ一部に気体の閉塞する部分ができることがわかった。このような気体の閉塞部に面するイオン交換膜には電解液が充分に供給されなくなる。その結果、長時間の電解で気体の閉塞部に相対するイオン交換膜の内部に塩素および水酸化ナトリウムが拡散して内部に食塩が析出したブリスターを生じさせイオン交換膜を劣化させる。これらのことから、新しい電極のメッシュの短径は既存の電極のメッシュの短径より小さく、かつ既存の電極のメッシュの刻み巾の二倍より大きくなければならないことを見いだした。」の記載の通り、特許文献4は、陽極に直接接触するエキスパンドメタルの孔部(14)が、既存のエキスパンドメタルのメッシュ部(13)でふさがれた部位でのイオン交換膜への電解液供給が不十分となり劣化する課題を解決した新規な陽極更新方法と言える。   In Patent Document 4, page 10, upper right column, line 10 to page 3, lower left column, line 8 “To reactivate without increasing the cell voltage, the new electrode mesh must be finer than the existing electrode mesh. On the other hand, if it is excessively fine, the opening of the new electrode mesh is blocked by the existing electrode mesh due to the overlap with the existing electrode mesh. However, it has been found that if the minor axis of the new electrode mesh is not more than twice the step size of the existing electrode mesh, there will be a part of the gas clogging part. As a result, the electrolyte is not sufficiently supplied to the exchange membrane, and as a result, chlorine and sodium hydroxide are diffused inside the ion exchange membrane facing the gas clogging portion due to long-term electrolysis, and salt is precipitated inside. As a result, the minor axis of the new electrode mesh must be smaller than the minor axis of the existing electrode mesh and greater than twice the step size of the existing electrode mesh. As described in "Patent Document 4", Patent Document 4 discloses that the expanded metal hole portion (14) in direct contact with the anode is blocked by the existing expanded metal mesh portion (13). It can be said that this is a novel anode renewal method that solves the problem of deterioration due to insufficient supply of electrolyte to the ion exchange membrane.

一方、特許文献4には、その第3頁左下欄の下から2行目〜第3頁右下欄の上から4行目に「以上の説明では陽極について説明をしたが、本発明による再活性化方法は・・・陰極についても同様の効果が得られる。」と記載されている。しかし、電解槽は、陽極室と陰極室がイオン交換膜で区分されているため、陽極と陰極は全く異なる状況におかれることは本技術分野では周知である。   On the other hand, in Patent Document 4, the second line from the lower left column on page 3 to the fourth line from the upper right column on page 3 “In the above description, the anode has been described. The activation method is the same as that of the cathode. ” However, it is well known in the art that the electrolytic cell has an anode chamber and a cathode chamber separated by an ion exchange membrane, so that the anode and the cathode are in completely different situations.

例えば、イオン交換膜法食塩電解において、陽極室では陽極から塩素ガスが発生し、陽極室内は塩素ガスが飽和した食塩水で満たされた状態であり、一方、陰極室では陰極から水素ガスが発生し、水素ガスが飽和した水酸化ナトリウム水溶液が満たされた状態にある。食塩水中の塩素ガスと、水酸化ナトリウム水溶液中の水素ガスの状態(気泡サイズ、気泡率)が全く異なることは、本技術分野では周知の事実で、食塩水と水酸化ナトリウム水溶液の粘度や比重が異なるため、電解液の流通性やガスの分離性も全く異なる。   For example, in ion exchange membrane salt electrolysis, chlorine gas is generated from the anode in the anode chamber, and the anode chamber is filled with a saline solution saturated with chlorine gas, while hydrogen gas is generated from the cathode in the cathode chamber. However, it is in a state filled with a sodium hydroxide aqueous solution saturated with hydrogen gas. It is a well-known fact in this technical field that chlorine gas in salt water and the state of hydrogen gas (bubble size, bubble rate) in sodium hydroxide aqueous solution are completely different, and the viscosity and specific gravity of salt water and sodium hydroxide aqueous solution are known. Therefore, the flowability of the electrolyte and the gas separation are completely different.

さらに、当該特許文献4の実施例にも記載されている通り、イオン交換膜法食塩電解では、一般的に、陰極室の圧力を陽極室の圧力より高く保ち、イオン交換膜を陽極に押付けた状態におかれる。従って、陽極とイオン交換膜は互いに強く密着しており、陽極とイオン交換膜の接触する部分での形状、例えば、孔がふさがれている/ふさがれていないにより、イオン交換膜への液の供給状態が異なり、劣化有無が大きく異なると想到される。一方、陰極は、前述の通り、イオン交換膜から1mm〜3mm離されており、陰極形状とイオン交換膜への液の供給状態に関連が乏しいことは極めて容易に想到される。   Furthermore, as described in the Examples of Patent Document 4, in the ion exchange membrane method salt electrolysis, generally, the pressure in the cathode chamber is kept higher than the pressure in the anode chamber, and the ion exchange membrane is pressed against the anode. Put in condition. Therefore, the anode and the ion exchange membrane are in close contact with each other, and the shape of the contact portion between the anode and the ion exchange membrane, for example, the pores are blocked / not blocked, the liquid to the ion exchange membrane is It is thought that the supply state is different and the presence or absence of deterioration is greatly different. On the other hand, as described above, the cathode is separated from the ion exchange membrane by 1 mm to 3 mm, and it is very easily conceived that the relationship between the cathode shape and the supply state of the liquid to the ion exchange membrane is poor.

すなわち、陽極に要求される特性と、陰極に要求される特性は、全く異なり、陽極に付いてなされた提案を、陰極に対して適用することは、本技術分野において習熟した者であっても、容易ではない。   In other words, the characteristics required for the anode and the characteristics required for the cathode are completely different, and applying the proposal made for the anode to the cathode can be applied even to those skilled in the art. ,It's not easy.

以上の通り、陰極の更新が簡便に実施できる電解槽が待望されており、かつ、陰極更新が困難な形式の電解槽でも、陰極の更新が簡便に行える陰極更新方法が待望されていた。   As described above, there has been a demand for an electrolytic cell in which the cathode can be easily updated, and there has been a demand for a cathode renewal method in which the cathode can be easily updated even in a type of electrolytic cell in which it is difficult to update the cathode.

特開2004−2993号公報(請求項1、段落番号0017、段落番号0018)JP 2004-2993 A (Claim 1, paragraph number 0017, paragraph number 0018) 特開平1−168885号公報(特許請求の範囲)Japanese Patent Laid-Open No. 1-168885 (Claims) 実公昭58−24932号公報(実用新案登録請求の範囲、第2頁(3)欄16行目〜第2頁(3)欄19行目、第3図)Japanese Utility Model Publication No. 58-24932 (claim of utility model registration, second page (3) column 16th line to second page (3) column 19th line, FIG. 3) 特開平4−32594号公報(特許請求の範囲、第3頁右上欄10行目〜第3頁左下欄8行目)JP-A-4-32594 (Claims, page 3, upper right column, line 10 to page 3, lower left column, line 8)

陰極の更新が極めて簡便に実施可能なイオン交換膜法電解槽及びその陰極の性能回復方法を提供する。   Provided are an ion exchange membrane electrolytic cell in which renewal of a cathode can be carried out very easily and a method for recovering the performance of the cathode.

本発明者らは、陰極の性能回復方法に関して鋭意検討した結果、陰極の性能回復が極めて簡便に実施可能なイオン交換膜法電解槽を完成するに至った。   As a result of intensive studies on the cathode performance recovery method, the present inventors have completed an ion exchange membrane electrolytic cell capable of performing the cathode performance recovery very simply.

すなわち、本発明は、イオン交換膜で陽極室と陰極室とに区画されたイオン交換膜法電解槽において、前記陰極室は第一のエキスパンドメタルと第二のエキスパンドメタルとが積層されてなる陰極を備えており、かつ、イオン交換膜に近接した第二のエキスパンドメタルの刻み巾、短径及び長径が、他方の第一のエキスパンドメタルの刻み巾、短径及び長径の半分より小さい、イオン交換膜法電解槽である。   That is, the present invention relates to an ion exchange membrane electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, wherein the cathode chamber is a cathode in which a first expanded metal and a second expanded metal are laminated. And the step width, minor axis and major axis of the second expanded metal adjacent to the ion exchange membrane are less than half of the step width, minor axis and major axis of the other first expanded metal. It is a membrane method electrolytic cell.

また本発明は、イオン交換膜の陰極側表面と陰極のイオン交換膜側表面との距離が1mm〜3mmである、上記のイオン交換膜法電解槽である。   Moreover, this invention is said ion exchange membrane method electrolytic cell whose distance of the cathode side surface of an ion exchange membrane and the ion exchange membrane side surface of a cathode is 1 mm-3 mm.

また本発明は、陰極室に第一のエキスパンドメタルを取り付けた後、第二のエキスパンドメタルを前記第一のエキスパンドメタルに密着させて取り付ける、上記のイオン交換膜法電解槽の製造方法である。   Moreover, this invention is a manufacturing method of said ion exchange membrane method electrolytic cell which attaches a 2nd expanded metal closely_contact | adhered to said 1st expanded metal, after attaching a 1st expanded metal to a cathode chamber.

また本発明は、第一のエキスパンドメタルからなる陰極により電気分解を開始し、電気分解中に当該陰極が劣化したときに、第二のエキスパンドメタルを前記第一のエキスパンドメタルに密着させて取り付け、上記のイオン交換膜法電解槽を構成する、陰極の性能回復方法である。   Also, the present invention starts electrolysis with a cathode made of the first expanded metal, and when the cathode deteriorates during electrolysis, the second expanded metal is attached in close contact with the first expanded metal, This is a method for recovering the performance of the cathode, which constitutes the above ion exchange membrane electrolytic cell.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の電解槽は、陰極以外は従来の電解槽の構造が適宜適用可能である。陰極を、バネ等の弾性集電体等で支持し、陰極を陽イオン交換膜に密着させる、所謂、ゼロギャップ電解槽に本発明を適用することも可能である。しかし、前記ゼロギャップ電解槽は、元来、陰極の更新は簡便であるので、本発明の効果を十分に享受できない。   In the electrolytic cell of the present invention, the structure of a conventional electrolytic cell can be appropriately applied except for the cathode. It is also possible to apply the present invention to a so-called zero gap electrolytic cell in which the cathode is supported by an elastic current collector such as a spring and the cathode is in close contact with the cation exchange membrane. However, since the zero gap electrolytic cell is originally easy to renew the cathode, the effect of the present invention cannot be fully enjoyed.

すなわち、本発明は、陰極がリブ等に強固に溶接され、イオン交換膜と陰極との距離が1mm以上離れた電解槽に特に効果を発揮するが、図1に電解槽の断面図を例示した。電解槽は、イオン交換膜(2)で陽極室(1)と陰極室(3)に区画され、陽極室(1)には陽極(5)が陽極リブ(4)で取付けられており、陰極室(3)には陰極(7)が陰極リブ(6)に固着されている。   That is, the present invention is particularly effective in an electrolytic cell in which the cathode is firmly welded to a rib or the like and the distance between the ion exchange membrane and the cathode is 1 mm or more, but FIG. 1 illustrates a cross-sectional view of the electrolytic cell. . The electrolytic cell is divided into an anode chamber (1) and a cathode chamber (3) by an ion exchange membrane (2), and an anode (5) is attached to the anode chamber (1) by an anode rib (4). A cathode (7) is fixed to the cathode rib (6) in the chamber (3).

一般に、陰極室(3)内部の圧力は、陽極室(1)内部の圧力より高く設定され、イオン交換膜(2)は陽極(5)に押し付けられている。陽極面と陰極面は、何れも実質的に平面で、陽極面と陰極面は実質的に平行に置かれている。また、陰極(7)はイオン交換膜(2)から一定の距離だけ離して設置されるように、リブの長さや陰極側ガスケット(12)の厚みで調整される。陰極(7)とイオン交換膜(2)との距離が離れすぎていると電圧が高くなり、近すぎると、部分的に陰極(7)がイオン交換膜(2)に過剰に押付けられ、イオン交換膜が破損する。陰極(7)とイオン交換膜(2)の距離は、通常、1mm乃至3mm、好ましくは、1mm乃至2mmである。   Generally, the pressure inside the cathode chamber (3) is set higher than the pressure inside the anode chamber (1), and the ion exchange membrane (2) is pressed against the anode (5). The anode surface and the cathode surface are both substantially flat, and the anode surface and the cathode surface are substantially parallel to each other. Further, the length of the rib and the thickness of the cathode side gasket (12) are adjusted so that the cathode (7) is placed at a certain distance from the ion exchange membrane (2). When the distance between the cathode (7) and the ion exchange membrane (2) is too large, the voltage becomes high. When the distance is too close, the cathode (7) is partially pressed excessively against the ion exchange membrane (2), and the ion The exchange membrane is damaged. The distance between the cathode (7) and the ion exchange membrane (2) is usually 1 mm to 3 mm, preferably 1 mm to 2 mm.

電解槽の陽極(5)は、通常、ロール掛け等により平坦化加工したエキスパンドメタルが用いられる。エキスパンドメタルは、通常、チタンであり、チタンの表面には電極触媒が担持される。陽極(5)の電極触媒の種類や、エキスパンドメタルの形状は、公知の技術を適宜用いればよく、限定はない。   As the anode (5) of the electrolytic cell, an expanded metal that has been flattened by rolling or the like is usually used. The expanded metal is usually titanium, and an electrode catalyst is supported on the surface of titanium. The type of the electrode catalyst of the anode (5) and the shape of the expanded metal may be appropriately selected from known techniques and are not limited.

図2は、図1のa部を拡大した図である。本発明の電解槽は、陰極(7)は、2枚のエキスパンドメタル(7aと7b)を積層し構成されていることが必須である。以下、イオン交換膜から離れた、第二のエキスパンドメタル(7b)の他方側を第一のエキスパンドメタル(7a)、イオン交換膜に近接した側を第二のエキスパンドメタル(7b)と呼ぶ。   FIG. 2 is an enlarged view of part a in FIG. In the electrolytic cell of the present invention, it is essential that the cathode (7) is formed by laminating two expanded metals (7a and 7b). Hereinafter, the other side of the second expanded metal (7b) away from the ion exchange membrane is referred to as a first expanded metal (7a), and the side close to the ion exchange membrane is referred to as a second expanded metal (7b).

陰極(7)を構成する何れのエキスパンドメタル(7a、7b)も、導電性が高くかつ電解液中で耐食性を有した材料を用いることが必須である。例えば、ニッケルやニッケル合金が好ましく採用可能である。導電性が乏しければ、電気抵抗による電圧損失が高いために、本発明の効果が享受できないことがある。また、鉄や銅等の導電性に優れるが腐食しやすい材質を用いると、運転中や運転休止中に腐食を受け、製品を汚染する、電極触媒を汚染し電圧が上昇する等が生し、本発明の効果が得られないことがある。   It is essential that any expanded metal (7a, 7b) constituting the cathode (7) is made of a material having high conductivity and having corrosion resistance in the electrolytic solution. For example, nickel or a nickel alloy can be preferably used. If the conductivity is poor, the voltage loss due to electrical resistance is high, and thus the effects of the present invention may not be enjoyed. In addition, using a material that is highly conductive but easily corroded, such as iron or copper, will corrode during operation or operation interruption, contaminating the product, contaminating the electrode catalyst, increasing the voltage, etc. The effect of the present invention may not be obtained.

次いで、陰極(7)を構成するエキスパンドメタル(7a、7b)の形状に付いて、図3を参照し詳細に説明する。エキスパンドメタル(7a、7b)は、何れも、ロール掛け等により平坦化加工されたものを用いることが必要である。平坦化加工をしないと、エキスパンドメタルのメッシュ部(13)が隆起しているため、電解中に発生する水素ガスの脱離性が悪化し電圧が上昇する、エキスパンドメタル(7a、7b)同士の積層が困難である、等の不具合が生じる。   Next, the shape of the expanded metal (7a, 7b) constituting the cathode (7) will be described in detail with reference to FIG. It is necessary to use the expanded metal (7a, 7b) that has been flattened by rolling or the like. Without flattening, the expanded metal mesh part (13) is raised, so that the detachment property of hydrogen gas generated during electrolysis deteriorates and the voltage rises. The expanded metal (7a, 7b) Problems such as difficulty in stacking occur.

エキスパンドメタルは薄板に規則的な切れ目を刻んで引っ張ることによって薄板に設けた切れ目を拡大したもので、加工に用いる板の厚み、切れ目を入れる間隔、引っ張り距離により種々の形状となる。図3に示したように、メッシュの形状は、メッシュの短目方向中心間距離である短径(8)、同じくメッシュの長目方向中心間距離である長径(9)、板に設けた切れ目の刻み間隔である刻み巾(10)、エキスパンド加工した板の板厚(図示せず)で規定できる。   Expanded metal is obtained by enlarging the cuts provided in the thin plate by engraving the regular cuts on the thin plate and pulling them. The expanded metal has various shapes depending on the thickness of the plate used for processing, the interval between the cuts, and the pulling distance. As shown in FIG. 3, the shape of the mesh is a short diameter (8) that is the distance between the centers in the short direction of the mesh, a long diameter (9) that is also the distance between the centers in the long direction of the mesh, and a cut provided in the plate. Can be defined by a step width (10), which is a step interval, and a plate thickness (not shown) of the expanded plate.

第一のエキスパンドメタル(7a)の形状は特に限定は無く、従来の形状が好ましく適用可能である。例えば、板厚:1mm〜2mm、長径:8mm〜16mm、短径:4mm〜8mm、刻み巾:1mm〜2mmである。第一のエキスパンドメタル(7a)に電極触媒を担持しても良いが、電極反応は第二のエキスパンドメタル(7b)で行うため、第一のエキスパンドメタル(7a)に電極触媒の担持は不要である。しかし、電極触媒が担持されたものを第一のエキスパンドメタル(7a)として使用する場合、無理に電極触媒を除去する必要はない。何れにせよ、本発明の電解槽における陰極(7)において、第一のエキスパンドメタル(7a)は、陰極(7)の強度を確保し、また、電気抵抗を下げる役目を担う。板厚、長径、短径、又は、刻み巾の何れかが小さすぎる場合、電気抵抗が高くなり、あるいは強度が乏しく陰極に歪みや破損等の不具合、あるいはこれら両方が生じる。   The shape of the first expanded metal (7a) is not particularly limited, and a conventional shape is preferably applicable. For example, the plate thickness is 1 mm to 2 mm, the major axis is 8 mm to 16 mm, the minor axis is 4 mm to 8 mm, and the step width is 1 mm to 2 mm. Although the electrode catalyst may be supported on the first expanded metal (7a), since the electrode reaction is performed on the second expanded metal (7b), it is not necessary to support the electrode catalyst on the first expanded metal (7a). is there. However, when the electrode catalyst supported is used as the first expanded metal (7a), it is not necessary to forcibly remove the electrode catalyst. In any case, in the cathode (7) in the electrolytic cell of the present invention, the first expanded metal (7a) plays a role of securing the strength of the cathode (7) and lowering the electric resistance. If any of the plate thickness, the long diameter, the short diameter, or the step width is too small, the electric resistance becomes high, or the strength is poor, and the cathode has problems such as distortion and breakage, or both.

第二のエキスパンドメタル(7b)の短径(8)、長径(9)、及び、刻み巾(10)は、各々、第一のエキスパンドメタル(7a)の短径(8)、長径(9)、及び、刻み巾(10)の各々の半分より小さいことが必要である。第二のエキスパンドメタル(7b)の短径(8)、長径(9)、及び、刻み巾(10)の何れかが、第二のエキスパンドメタル(7b)の短径(8)、長径(9)、及び、刻み巾(10)の各々の半分以上の場合、電解電圧が高くなり、本発明の効果が得られない。   The minor diameter (8), major diameter (9), and step width (10) of the second expanded metal (7b) are the minor diameter (8) and major diameter (9) of the first expanded metal (7a), respectively. And less than half of each step width (10). Any of the short diameter (8), the long diameter (9), and the step width (10) of the second expanded metal (7b) is the short diameter (8), long diameter (9) of the second expanded metal (7b). ) And more than half of each step width (10), the electrolysis voltage becomes high, and the effect of the present invention cannot be obtained.

また、第二のエキスパンドメタル(7b)の板厚は第一のエキスパンドメタル(7a)の板厚の半分より小さいと、電解電圧がより低く安定し好ましい。   Moreover, when the plate | board thickness of a 2nd expanded metal (7b) is smaller than half the plate | board thickness of a 1st expanded metal (7a), an electrolysis voltage becomes lower and it is preferable.

第二のエキスパンドメタル(7b)の刻み巾(10)、短径(8)、長径(9)、板厚の最小値は、特に限定はないが、以下で示すように電極触媒を担持する時のハンドリング性から、刻み巾:0.1mm以上、短径:0.5mm以上、長径:1mm以上、板厚:0.1mm以上が適当である。   The step width (10), minor diameter (8), major diameter (9) and minimum thickness of the second expanded metal (7b) are not particularly limited, but when the electrode catalyst is supported as shown below. In view of the handling property, the step width: 0.1 mm or more, the short diameter: 0.5 mm or more, the long diameter: 1 mm or more, and the plate thickness: 0.1 mm or more are suitable.

第二のエキスパンドメタル(7b)は電極触媒を担持することが必須である。電極触媒を担持しない場合は、電解電圧が高く、本発明の効果が得られない。担持する電極触媒の種類や担持方法に特に限定はないが、担持した水素発生用触媒が厚すぎると第二のエキスパンドメタルの開口が小さくなり、電解電圧が高くなる。通常、触媒被膜の厚みは50μm以下、好ましくは、10μm以下とする。触媒被膜が薄くても、過電圧を低く保つためには、白金やルテニウム等の貴金属触媒を用いればよい。   It is essential for the second expanded metal (7b) to carry an electrode catalyst. When no electrode catalyst is supported, the electrolysis voltage is high and the effects of the present invention cannot be obtained. There are no particular limitations on the type of electrode catalyst to be supported and the supporting method, but if the supported hydrogen generating catalyst is too thick, the opening of the second expanded metal becomes small and the electrolysis voltage becomes high. Usually, the thickness of the catalyst coating is 50 μm or less, preferably 10 μm or less. In order to keep the overvoltage low even if the catalyst coating is thin, a noble metal catalyst such as platinum or ruthenium may be used.

以上説明した陰極(7)を電解槽に取り付ける。その取り付け方法に特に限定はないが、通常、以下の手順、方法で行う。   The cathode (7) described above is attached to the electrolytic cell. Although the attachment method is not particularly limited, it is usually performed by the following procedure and method.

最初に第一のエキスパンドメタル(7a)を電解槽の陰極室(3)に取り付ける。前記の通り、第一のエキスパンドメタル(7a)は強度確保が必要なため、第一のエキスパンドメタル(7a)は、陰極室のリブ(6)に溶接等で強固に取付ける。取り付け方法は、従来実施されているスポット溶接等の方法を適宜適用すればよい。   First, the first expanded metal (7a) is attached to the cathode chamber (3) of the electrolytic cell. As described above, since the first expanded metal (7a) needs to secure strength, the first expanded metal (7a) is firmly attached to the rib (6) of the cathode chamber by welding or the like. As a mounting method, a conventional method such as spot welding may be applied as appropriate.

また、陰極(7)の平面精度が電解性能に影響する。すなわち、陰極(7)の平面精度が悪いと、陽極(5)と陰極(7)との距離に分布が生じ、電解電流が距離の近い部位に集中するため、電圧の上昇や電流効率の低下を招く。陰極(7)の平面精度は、第一のエキスパンドメタル(7a)で確保するため、リブ(6)に第一のエキスパンドメタル(7a)を取り付けた時点で、必要に応じ、平面精度の修正を行う。平面精度は、通常、基準面+0.5〜−0.5mm、好ましくは、+0.2〜−0.2mmにする。   Further, the planar accuracy of the cathode (7) affects the electrolysis performance. That is, when the planar accuracy of the cathode (7) is poor, a distribution occurs in the distance between the anode (5) and the cathode (7), and the electrolysis current is concentrated in a portion close to the distance, thereby increasing the voltage and decreasing the current efficiency. Invite. In order to ensure the planar accuracy of the cathode (7) with the first expanded metal (7a), the planar accuracy is corrected as necessary when the first expanded metal (7a) is attached to the rib (6). Do. The plane accuracy is usually a reference plane +0.5 to −0.5 mm, preferably +0.2 to −0.2 mm.

次に、第二のエキスパンドメタル(7b)を第一のエキスパンドメタル(7a)に取り付ける。その方法は、特に限定はないが、電気抵抗を下げるため、溶接で取り付けることが好ましく、特にスポット溶接が好ましい。第二のエキスパンドメタル(7b)は溶接強度が強い必要は無く、緩やかな溶接条件で取付ければよい。陰極(7)の平面精度は、第一のエキスパンドメタル(7a)に第二のエキスパンドメタル(7b)を均一に密着することで確保するため、第一のエキスパンドメタル(7a)と第二のエキスパンドメタル(7b)を均一に密着させることが肝要で、第二のエキスパンドメタルが第一のエキスパンドメタルから部分的に浮き上がる部位がないようにする。   Next, the second expanded metal (7b) is attached to the first expanded metal (7a). The method is not particularly limited, but is preferably attached by welding in order to lower the electric resistance, and spot welding is particularly preferable. The second expanded metal (7b) does not need to have high welding strength, and may be attached under mild welding conditions. In order to ensure the planar accuracy of the cathode (7) by uniformly adhering the second expanded metal (7b) to the first expanded metal (7a), the first expanded metal (7a) and the second expanded metal are secured. It is important that the metal (7b) is in close contact with the second expanded metal so that there is no part of the second expanded metal that is partially lifted from the first expanded metal.

なお、第二のエキスパンドメタル(7b)を第一のエキスパンドメタル(7a)に取り付けた状態では、水素発生用触媒を担持することが困難であり、第一のエキスパンドメタル(7a)への取り付け前に、第二のエキスパンドメタル(7b)に所望の水素発生用触媒を担持する。担持方法は、塗布熱分解法、電気めっき法等、従来の触媒担持方法を適宜適用すればよい。   In addition, in the state which attached the 2nd expanded metal (7b) to the 1st expanded metal (7a), it is difficult to carry | support the catalyst for hydrogen generation, and before attachment to the 1st expanded metal (7a) In addition, a desired hydrogen generation catalyst is supported on the second expanded metal (7b). As a supporting method, a conventional catalyst supporting method such as a coating pyrolysis method or an electroplating method may be appropriately applied.

以上、説明した電解槽を用いて、食塩電解や水電解を行うが、その条件は、従来知られている方法を適宜用いればよく、何ら限定はない。食塩電解であれば、通常、電流密度は1〜6kA/m、温度は80〜90℃、陽極室出口塩水の濃度は190〜230g/l、陰極室出口水酸化ナトリウム水溶液の濃度は30〜35wt%で実施される。 As described above, salt electrolysis and water electrolysis are performed using the electrolytic cell described above, and the conditions may be appropriately selected from conventionally known methods and are not limited at all. In the case of salt electrolysis, the current density is usually 1 to 6 kA / m 2 , the temperature is 80 to 90 ° C., the concentration of the brine at the outlet of the anode chamber is 190 to 230 g / l, and the concentration of the sodium hydroxide aqueous solution at the outlet of the cathode chamber is 30 to 30 °. Performed at 35 wt%.

本発明の電解槽を用いることで、通常の運転中は従来技術に比較して大きな差異はない。しかし、劣化した陰極の更新が、従来の電解槽に比較して極めて簡便である。すなわち、陰極の更新は第二のエキスパンドメタル(7b)だけを交換すればよく、電解槽に強固に取り付けられ強度を保持している第一のエキスパンドメタル(7a)の取り外しと再取り付けが不要なため、陰極更新作業は極めて簡便で、また、作業中に電解槽を傷める恐れもない。   By using the electrolytic cell of the present invention, there is no significant difference during the normal operation as compared with the prior art. However, the replacement of a deteriorated cathode is very simple compared to a conventional electrolytic cell. That is, it is only necessary to replace the second expanded metal (7b) for renewal of the cathode, and it is not necessary to remove and replace the first expanded metal (7a) that is firmly attached to the electrolytic cell and maintains the strength. Therefore, the cathode renewal work is very simple and there is no fear of damaging the electrolytic cell during the work.

前述の通り、従来から二枚のエキスパンドメタルを積層して陰極とすることは、例えば、特許文献2に提案されているが、単独のエキスパンドメタルからなる陰極と比較し電解電圧が高くなるなどの問題点が有った。それに対し、本発明の提供する電解槽は、何故低い電圧を維持できるかに付いて、必ずしも明らかではないが、発明者らは以下のように推定している。   As described above, the conventional method of laminating two expanded metals to form a cathode has been proposed in, for example, Patent Document 2, but the electrolytic voltage is higher than that of a single expanded metal cathode. There was a problem. On the other hand, although the electrolytic cell provided by the present invention is not necessarily clear as to why a low voltage can be maintained, the inventors presume as follows.

図4は、第二のエキスパンドメタル面側から見た本発明の陰極の部分拡大平面図である。第一のエキスパンドメタル(7a)の孔部(14)は、第二のエキスパンドメタル(7b)のメッシュ部(13)で部分的にふさがれている。   FIG. 4 is a partially enlarged plan view of the cathode of the present invention viewed from the second expanded metal surface side. The hole (14) of the first expanded metal (7a) is partially blocked by the mesh portion (13) of the second expanded metal (7b).

前記の通り、特許文献4に、新しい電極のエキスパンドメタルのメッシュの短径が既設の電極のメッシュの短径より小さく、かつ既設の電極のメッシュの刻み巾の二倍より大きい陽極が提案されている。これは、イオン交換膜に接するエキスパンドメタルの孔部が、他方のエキスパンドメタルのメッシュ部で完全にふさがれる部位をなくすことが主な目的である。   As described above, Patent Document 4 proposes an anode in which the short diameter of the expanded metal mesh of the new electrode is smaller than the short diameter of the existing electrode mesh and larger than twice the step size of the existing electrode mesh. Yes. The main purpose of this is to eliminate a portion where the hole portion of the expanded metal in contact with the ion exchange membrane is completely blocked by the mesh portion of the other expanded metal.

これは、陰極室内の圧力は陽極室内の圧力より高くして電気分解を行うため、イオン交換膜は陽極に押付けられた状態となり、イオン交換膜に接する側(特許文献4で言う、「新しい電極のエキスパンドメタル」)の孔が、他方のエキスパンドメタルで完全にふさがれる部位の有無が電解性能に大きく影響するためと思われる。   This is because the pressure in the cathode chamber is higher than the pressure in the anode chamber for electrolysis, so that the ion exchange membrane is pressed against the anode and is in contact with the ion exchange membrane (referred to as “new electrode” in Patent Document 4). This is probably because the presence or absence of the portion of the expanded metal of “) that is completely blocked by the other expanded metal greatly affects the electrolysis performance.

一方、本発明の陰極は、イオン交換膜に近い側である第二のエキスパンドメタル(特許文献4で言う、「新しい電極のエキスパンドメタル」に対応)の孔が、第一のエキスパンドメタル(特許文献4で言う、「既設の電極のメッシュ」に対応)で完全にふさがれた部分が存在する。しかし、本発明の陰極はイオン交換膜に押付けられた状態ではなく、イオン交換膜と陰極との距離(正確には、イオン交換膜の陰極側表面と陰極のイオン交換膜側表面との距離)が1〜3mmに設定されるため、第二のエキスパンドメタルの孔が第一のエキスパンドメタルのメッシュ部でふさがれても、膜への電解液の供給状態やガスの脱離性へ与える影響が小さいためと推定する。   On the other hand, in the cathode of the present invention, the hole of the second expanded metal (corresponding to “expanded metal of new electrode” referred to in Patent Document 4) on the side closer to the ion exchange membrane has the first expanded metal (Patent Document). 4) (corresponding to “existing electrode mesh”), there is a portion completely covered. However, the cathode of the present invention is not pressed against the ion exchange membrane, but the distance between the ion exchange membrane and the cathode (more precisely, the distance between the cathode side surface of the ion exchange membrane and the ion exchange membrane side surface of the cathode) Is set to 1 to 3 mm, so that even if the hole of the second expanded metal is blocked by the mesh portion of the first expanded metal, it has an influence on the supply state of the electrolyte to the membrane and the gas detachability. It is estimated that it is small.

逆に、本発明の陰極は、第二のエキスパンドメタルの短径、長径、刻み巾、及び、板厚の各々の何れもが、第一のエキスパンドメタルの陰極で短径、長径、刻み巾、及び、板厚の各々の半分より小さいため、陰極上での反応が均一化されることによる電解性能向上効果が、第二のエキスパンドメタルの孔が第一のエキスパンドメタルのメッシュ部でふさがれる電解性能への悪影響を補い、その結果、本発明の陰極を用いることにより、低電圧が享受できるものと推定する。   On the contrary, the cathode of the present invention, each of the short diameter, the long diameter, the step width, and the plate thickness of the second expanded metal are the short diameter, the long diameter, the step width of the first expanded metal cathode, And, since it is smaller than half of each plate thickness, the electrolytic performance improvement effect due to the uniform reaction on the cathode is the electrolysis in which the hole of the second expanded metal is blocked by the mesh portion of the first expanded metal. It is estimated that a low voltage can be enjoyed by using the cathode of the present invention as a result of compensating for the adverse effect on the performance.

以上詳細に説明した本発明のイオン交換膜法電解槽は、長期間使用し劣化した陰極を持つ電解槽の陰極更新に応用可能である。すなわち、長期間使用し劣化した陰極を第一のエキスパンドメタル(7a)として、水素発生用触媒を担持した第二のエキスパンドメタル(7b)を取り付けることで陰極の性能回復が可能であり、上記の様に改造された陰極を有するイオン交換膜法電解槽は本発明の好ましい実施形態の1つである事は明らかである。   The ion exchange membrane method electrolytic cell of the present invention described in detail above can be applied to cathode renewal of an electrolytic cell that has been used for a long time and has a deteriorated cathode. That is, the cathode performance can be recovered by attaching the second expanded metal (7b) carrying the hydrogen generating catalyst as the first expanded metal (7a), which has been deteriorated after being used for a long time. It is clear that an ion exchange membrane electrolytic cell having a cathode modified in this way is one of the preferred embodiments of the present invention.

本発明のイオン交換膜法電解槽を用いることにより、劣化した陰極が極めて簡便に性能回復が可能となる。また、本発明の陰極の性能回復方法を用いることにより、従来のイオン交換膜法電解槽の陰極の性能回復を極めて簡便に行うことができる。   By using the ion exchange membrane method electrolytic cell of the present invention, the performance of a deteriorated cathode can be recovered very simply. Further, by using the cathode performance recovery method of the present invention, the performance recovery of the cathode of the conventional ion exchange membrane electrolytic cell can be performed very simply.

以下、実施例を用いて本発明を詳細に説明するが、実施例は本発明を限定するものではない。なお、エキスパンドメタルは全てロール掛けにより平坦化加工をおこなったものを使用した。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, an Example does not limit this invention. In addition, all the expanded metal used what performed the flattening process by roll application.

実施例1
第一のエキスパンドメタル(7a)として、板厚:1.5mm、長径:13mm、短径:6mm、刻み巾:1.5mmのNi製のエキスパンドメタルを、縦:7.5cm、横:4.0cmに切断した。この時、エキスパンドメタルの短径方向を縦、長径方向を横とした。
Example 1
As the first expanded metal (7a), an expanded metal made of Ni having a plate thickness of 1.5 mm, a major axis: 13 mm, a minor axis: 6 mm, and a step width: 1.5 mm is longitudinally 7.5 cm and laterally 4. Cut to 0 cm. At this time, the short diameter direction of the expanded metal was set to be vertical, and the long diameter direction was set to be horizontal.

前記第一のエキスパンドメタル(7a)を、有効電解面積:30cm2(縦:7.5cm、横:4.0cm)の小型電解槽の陰極室のリブ(6)に溶接で強固に取り付けるとともに、第一のエキスパンドメタル(7a)が実質上平坦になるように調整した。   The first expanded metal (7a) is firmly attached to the rib (6) of the cathode chamber of a small electrolytic cell having an effective electrolysis area of 30 cm 2 (length: 7.5 cm, width: 4.0 cm) by welding, One expanded metal (7a) was adjusted to be substantially flat.

次に、第二のエキスパンドメタル(7b)として、板厚:0.5mm、長径:4mm、短径:2mm、刻み巾:0.5mmのNi製エキスパンドメタルを、縦:7.5cm、横:4.0cmに切断した。この時、エキスパンドメタルの短径方向を縦、長径方向を横とした。   Next, as the second expanded metal (7b), an expanded metal made of Ni having a thickness of 0.5 mm, a major axis: 4 mm, a minor axis: 2 mm, and a step width: 0.5 mm, length: 7.5 cm, width: Cut to 4.0 cm. At this time, the short diameter direction of the expanded metal was set to be vertical, and the long diameter direction was set to be horizontal.

前記第二のエキスパンドメタル(7b)を、10wt%の塩酸溶液を用いて温度50℃で15分間エッチングした後、水洗、乾燥した。   The second expanded metal (7b) was etched with a 10 wt% hydrochloric acid solution at a temperature of 50 ° C. for 15 minutes, then washed with water and dried.

次いで、ジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:4.5重量%、溶媒:8重量%硝酸溶液)と硝酸ニッケル6水和物と水を用いて白金含有量がモル比で0.5、混合液中の白金とニッケルの合計濃度が金属換算で5wt%の塗布液を調製した。   Subsequently, a platinum content of the dinitrodiammine platinum nitrate solution (manufactured by Tanaka Kikinzoku, platinum concentration: 4.5% by weight, solvent: 8% by weight nitric acid solution), nickel nitrate hexahydrate and water in a molar ratio of 0. 5. A coating solution in which the total concentration of platinum and nickel in the mixed solution was 5 wt% in terms of metal was prepared.

次いで、この塗布液を前記第二のエキスパンドメタルに刷毛を用い全面に塗布し、熱風式乾燥機内で80℃15分間乾燥後、箱型マッフル炉(アドバンテック東洋製 型式KM−600、内容積27L)を用いて空気流通下のもと500℃で15分熱分解した。この一連の操作を5回繰り返した。   Next, this coating solution was applied to the entire surface of the second expanded metal using a brush, dried in a hot air dryer at 80 ° C. for 15 minutes, and then a box-type muffle furnace (Advantech Toyo model KM-600, internal volume 27 L). Was pyrolyzed at 500 ° C. for 15 minutes under air flow. This series of operations was repeated 5 times.

前記第二のエキスパンドメタル(7b)を、第一のエキスパンドメタル(7a)にスポット溶接で取り付け、イオン交換膜膜法電解槽の陰極(7)とした。   Said 2nd expanded metal (7b) was attached to the 1st expanded metal (7a) by spot welding, and it was set as the cathode (7) of the ion exchange membrane membrane method electrolytic cell.

陽極はペルメレック電極社製のDSE(登録商標)を、イオン交換膜は旭化成ケミカルズ社製のアシプレックス(登録商標)を用いて、前記の陰極(7)を取り付けた陰極室と組み合わせ、電解槽を組み立てた。この時、ガスケット厚みを調整し、イオン交換膜と陰極(7)との距離が、0.5mm、1.0mm、1.5mm、2.0mmの4種類の電解槽を組み立てた。   Using the DSE (registered trademark) manufactured by Permerek Electrode Co., Ltd. and the Aciplex (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd. in combination with the cathode chamber to which the cathode (7) is attached, Assembled. At this time, the gasket thickness was adjusted, and four types of electrolytic cells in which the distance between the ion exchange membrane and the cathode (7) was 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm were assembled.

前記の4種類の電解槽を用い、陽極室の圧力に対し、陰極室の圧力を5kPa高く設定しイオン交換膜を陽極表面に密着させ、電流密度6kA/m、陽極室出口塩水濃度:200〜210g/l、陰極室出口水酸化ナトリウム水溶液濃度:31〜33wt%、温度:90℃にて食塩電解試験を行い、電解電圧を測定した。電解電圧は、5分間にわたり、1秒間隔で測定・記録し、それを平均した値を表1に示した。 Using the above four types of electrolytic cells, the pressure in the cathode chamber was set higher by 5 kPa than the pressure in the anode chamber, the ion exchange membrane was brought into close contact with the anode surface, the current density was 6 kA / m 2 , and the anode chamber outlet brine concentration: 200 A salt electrolysis test was conducted at ˜210 g / l, a sodium hydroxide aqueous solution concentration at the cathode chamber outlet: 31-33 wt%, and a temperature: 90 ° C., and an electrolysis voltage was measured. The electrolytic voltage was measured and recorded at intervals of 1 second over 5 minutes, and the averaged values are shown in Table 1.

イオン交換膜と陰極との距離が1〜2mmの時は、極間距離に対し電解電圧がほぼ比例し、比例定数は約0.04V/mmを示し、電圧は安定していた。   When the distance between the ion exchange membrane and the cathode was 1 to 2 mm, the electrolytic voltage was almost proportional to the distance between the electrodes, the proportionality constant was about 0.04 V / mm, and the voltage was stable.

イオン交換膜と陰極との距離が0.5mmの場合の電解電圧は、イオン交換膜と陰極との距離が1mmの場合の電解電圧に比較し高い値を示し、電圧の瞬時値は3.09〜3.13Vの範囲で振動した。   The electrolysis voltage when the distance between the ion exchange membrane and the cathode is 0.5 mm is higher than the electrolysis voltage when the distance between the ion exchange membrane and the cathode is 1 mm, and the instantaneous value of the voltage is 3.09. Vibrated in the range of ~ 3.13V.

実施例2
実機電解槽(電解面積3.3m)で10年間作動し劣化した陰極から、縦:7.5cm、横:4.0cmを切り出した。この陰極は、板厚:1.5mm、長径:13mm、短径:6mm、刻み巾:1.7mmのNi製のエキスパンドメタルに電気めっきで、Ni−Fe−Cの水素発生用触媒を担持したものである。
Example 2
Length: 7.5 cm and width: 4.0 cm were cut out from a cathode which had been deteriorated by operating for 10 years in an actual electrolytic cell (electrolytic area of 3.3 m 2 ). In this cathode, a Ni-Fe-C hydrogen generation catalyst was supported by electroplating on a Ni expanded metal having a plate thickness of 1.5 mm, a major axis: 13 mm, a minor axis: 6 mm, and a step width of 1.7 mm. Is.

前記の切り出した陰極は、40℃の10wt%の塩酸に30分間浸漬し、水素発生用触媒を溶解・除去し、第一のエキスパンド電極として用いた。   The cut out cathode was immersed in 10 wt% hydrochloric acid at 40 ° C. for 30 minutes to dissolve and remove the hydrogen generating catalyst, and used as the first expanded electrode.

それ以外は、実施例1同様に小型電解槽を組み立て、食塩電解試験を実施した。   Other than that, the small electrolytic cell was assembled similarly to Example 1, and the salt electrolysis test was implemented.

電解電圧は、表1に示した通り、実施例1と同じであった。   The electrolysis voltage was the same as in Example 1 as shown in Table 1.

比較例1
第二のエキスパンドメタル(7b)を、板厚:0.8mm、長径:8mm、短径:4mm、刻み巾:1mmのNi製エキスパンドメタルを用いた以外は、実施例1と同様に食塩電解試験を行い、電解電圧を測定した。その結果は表1に示した。なお、比較例の陰極は、第二のエキスパンドメタルの短径:4mmは、第一のエキスパンドメタルの刻み巾:1.5mmの2倍より大きい。
Comparative Example 1
Salt electrolysis test in the same manner as in Example 1 except that the second expanded metal (7b) was a Ni expanded metal having a plate thickness of 0.8 mm, a major axis: 8 mm, a minor axis: 4 mm, and a step width of 1 mm. The electrolytic voltage was measured. The results are shown in Table 1. In the cathode of the comparative example, the short diameter of the second expanded metal: 4 mm is larger than twice the step width of the first expanded metal: 1.5 mm.

比較例で用いた陰極は、第二のエキスパンドメタルの短径は4mmで、第一のエキスパンドメタルの短径:6mmの半分より大きいため、本発明の実施例1や2に比較して電解電圧が高くなっている。   The cathode used in the comparative example has a short diameter of the second expanded metal of 4 mm and is larger than half of the short diameter of the first expanded metal: 6 mm. Therefore, the electrolysis voltage is compared with Examples 1 and 2 of the present invention. Is high.

イオン交換膜と陰極との距離が変化しても、電解電圧の平均値はほぼ同じ値を示した。イオン交換膜と陰極との距離が0.5、及び、1.0mmの場合、電圧の瞬時値は、各々、3.13〜3.17V、3.13〜3.16Vの範囲で振動した。極間距離が1.5mm以上になると、電圧の振動がなくなり、安定した。   Even when the distance between the ion exchange membrane and the cathode was changed, the average value of the electrolysis voltage was almost the same. When the distance between the ion exchange membrane and the cathode was 0.5 and 1.0 mm, the instantaneous voltage value oscillated in the range of 3.13 to 3.17V and 3.13 to 3.16V, respectively. When the distance between the electrodes was 1.5 mm or more, voltage oscillation disappeared and was stable.

Figure 2010037619
Figure 2010037619

イオン交換膜法電解槽を説明する断面図である。It is sectional drawing explaining an ion exchange membrane method electrolytic cell. 図1のa部の拡大図であり、陰極を説明する図である。It is an enlarged view of the a part of FIG. 1, and is a figure explaining a cathode. エキスパンドメタルを説明する図である。It is a figure explaining an expanded metal. 本発明の陰極を説明する図である。It is a figure explaining the cathode of this invention.

符号の説明Explanation of symbols

1 陽極室
2 イオン交換膜
3 陰極室
4 陽極リブ
5 陽極
6 陰極リブ
7 陰極
8 短径
9 長径
10 刻み巾
11 陽極側ガスケット
12 陰極側ガスケット
13 エキスパンドメタルのメッシュ部
14 エキスパンドメタルの孔部
DESCRIPTION OF SYMBOLS 1 Anode chamber 2 Ion exchange membrane 3 Cathode chamber 4 Anode rib 5 Anode 6 Cathode rib 7 Cathode 8 Short diameter 9 Long diameter 10 Step width 11 Anode side gasket 12 Cathode side gasket 13 Expanded metal mesh part 14 Expanded metal hole part

Claims (4)

イオン交換膜で陽極室と陰極室とに区画されたイオン交換膜法電解槽において、前記陰極室は第一のエキスパンドメタルと第二のエキスパンドメタルとが積層されてなる陰極を備えており、かつ、イオン交換膜に近接した第二のエキスパンドメタルの刻み巾、短径及び長径が、他方の第一のエキスパンドメタルの刻み巾、短径及び長径の半分より小さい、イオン交換膜法電解槽。 In an ion exchange membrane method electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, the cathode chamber includes a cathode in which a first expanded metal and a second expanded metal are laminated, and An ion exchange membrane method electrolytic cell in which the step width, minor axis and major axis of the second expanded metal adjacent to the ion exchange membrane are smaller than half of the step width, minor axis and major axis of the other first expanded metal. イオン交換膜の陰極側表面と陰極のイオン交換膜側表面との距離が1mm〜3mmである、請求項1記載のイオン交換膜法電解槽。 The ion exchange membrane method electrolytic cell according to claim 1, wherein the distance between the cathode side surface of the ion exchange membrane and the ion exchange membrane side surface of the cathode is 1 mm to 3 mm. 陰極室に第一のエキスパンドメタルを取り付けた後、第二のエキスパンドメタルを前記第一のエキスパンドメタルに密着させて取り付ける、請求項1又は請求項2記載のイオン交換膜法電解槽の製造方法。 The method for producing an ion exchange membrane electrolytic cell according to claim 1 or 2, wherein after the first expanded metal is attached to the cathode chamber, the second expanded metal is attached in close contact with the first expanded metal. 第一のエキスパンドメタルからなる陰極により電気分解を開始し、電気分解中に当該陰極が劣化したときに、第二のエキスパンドメタルを前記第一のエキスパンドメタルに密着させて取り付け、請求項1又は請求項2記載のイオン交換膜法電解槽を構成する、陰極の性能回復方法。 Electrolysis is started with a cathode made of the first expanded metal, and when the cathode deteriorates during electrolysis, the second expanded metal is attached in close contact with the first expanded metal, or the claim 1 or claim Item 3. A method for recovering the performance of a cathode, which constitutes the ion exchange membrane method electrolytic cell according to Item 2.
JP2008203853A 2008-08-07 2008-08-07 Ion exchange membrane system electrolytic cell and method of recovering performance of cathode Pending JP2010037619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203853A JP2010037619A (en) 2008-08-07 2008-08-07 Ion exchange membrane system electrolytic cell and method of recovering performance of cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203853A JP2010037619A (en) 2008-08-07 2008-08-07 Ion exchange membrane system electrolytic cell and method of recovering performance of cathode

Publications (1)

Publication Number Publication Date
JP2010037619A true JP2010037619A (en) 2010-02-18

Family

ID=42010468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203853A Pending JP2010037619A (en) 2008-08-07 2008-08-07 Ion exchange membrane system electrolytic cell and method of recovering performance of cathode

Country Status (1)

Country Link
JP (1) JP2010037619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045550A (en) * 2018-09-21 2020-03-26 旭化成株式会社 Method for manufacturing electrode
KR20200102845A (en) * 2019-02-22 2020-09-01 주식회사 엘지화학 Electrode for Electrolysis
JP2020147843A (en) * 2019-03-06 2020-09-17 株式会社東芝 Electrolytic tank and hydrogen production apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045550A (en) * 2018-09-21 2020-03-26 旭化成株式会社 Method for manufacturing electrode
JP7260272B2 (en) 2018-09-21 2023-04-18 旭化成株式会社 Electrode manufacturing method
KR20200102845A (en) * 2019-02-22 2020-09-01 주식회사 엘지화학 Electrode for Electrolysis
JP2022509659A (en) * 2019-02-22 2022-01-21 エルジー・ケム・リミテッド Electrode for electrolysis
JP7121861B2 (en) 2019-02-22 2022-08-18 エルジー・ケム・リミテッド electrode for electrolysis
KR102503553B1 (en) * 2019-02-22 2023-02-27 주식회사 엘지화학 Electrode for Electrolysis
JP2020147843A (en) * 2019-03-06 2020-09-17 株式会社東芝 Electrolytic tank and hydrogen production apparatus

Similar Documents

Publication Publication Date Title
JP4927006B2 (en) Cathode for hydrogen generation
JP4673628B2 (en) Cathode for hydrogen generation
JP2017119895A (en) Alkaline water electrolysis method
JP4341838B2 (en) Electrode cathode
JPH0581677B2 (en)
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
JP5632780B2 (en) Electrolytic cell manufacturing method
JP2010037619A (en) Ion exchange membrane system electrolytic cell and method of recovering performance of cathode
JP2014037586A (en) Electrolytic cell and electrolytic bath
JP2017088952A (en) Ion exchange membrane electrolytic tank
JP3608880B2 (en) Method for reactivating active cathode and ion-exchange membrane electrolyzer with reactivated cathode
EP3819401B1 (en) Electrode structure, method for producing electrode structure, electrolysis cell, and electrolysis tank
JP5271429B2 (en) Cathode for hydrogen generation
US10815578B2 (en) Catalyzed cushion layer in a multi-layer electrode
JPS6327432B2 (en)
JP2000119889A (en) Cathode structure and reactivation method
JP2003147565A (en) Method of restoring performance of gas diffusion electrode
JP3167054B2 (en) Electrolytic cell
JPS5896886A (en) Electrolyzing method for aqueous alkali metal salt solution
JPS5867881A (en) Regeneration of electrode
JP2023516263A (en) Electrode assembly and electrolytic cell
JP2020050924A (en) Gasket for electrolytic cell and electrolytic cell
JPS5891178A (en) Diaphragm type electrolyzing method
JPS6367558B2 (en)
JPS586983A (en) Electrolytic cell