JP2004002993A - Ion exchange membrane electrolytic cell - Google Patents

Ion exchange membrane electrolytic cell Download PDF

Info

Publication number
JP2004002993A
JP2004002993A JP2003098900A JP2003098900A JP2004002993A JP 2004002993 A JP2004002993 A JP 2004002993A JP 2003098900 A JP2003098900 A JP 2003098900A JP 2003098900 A JP2003098900 A JP 2003098900A JP 2004002993 A JP2004002993 A JP 2004002993A
Authority
JP
Japan
Prior art keywords
flat spring
electrolytic cell
flat
holding member
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098900A
Other languages
Japanese (ja)
Other versions
JP3501453B2 (en
Inventor
Shinji Katayama
片山 眞二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2003098900A priority Critical patent/JP3501453B2/en
Publication of JP2004002993A publication Critical patent/JP2004002993A/en
Application granted granted Critical
Publication of JP3501453B2 publication Critical patent/JP3501453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion exchange membrane electrolytic cell capable of maintaining a prescribed spacing between electrodes. <P>SOLUTION: In this ion exchange membrane electrolytic cell, at least either of the anodes or the cathodes are energized in contact with a plurality of pairs of comb-like flat springs extending askant from flat spring supports disposed on electrode partition walls in the electrolytic cell, the comb-like flat spring of each pair being so constituted as to be mutually inserted between the adjacent springs to the opposite direction to each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はイオン交換膜電解槽に関するものであり、電極間の間隔を所定の大きさに保持することが可能なイオン交換膜電解槽に関するものである。
【0002】
【従来の技術】
水溶液の電気分解に用いる電解槽においては、電気分解に要する電圧は各種の要因によって左右される。なかでも陽極と陰極との間の間隔が電解槽電圧に大きく影響を及ぼす。そこで、電極間の間隔を小さくし、電解槽電圧を低下させて電気分解に要するエネルギー消費量を低下させることが行なわれている。
食塩水の電気分解に使用するイオン交換膜電解槽等においては、陽極、イオン交換膜、陰極の三者を密着状態に配置して電解槽電圧を低下させているが、電極面積が数平方メートルにも達する大型の電解槽では、陽極、陰極を剛性の部材によって電極室に結合した場合には、両電極をイオン交換膜に密着させて電極間隔を小さくして所定の値に保持することは困難であった。
【0003】
そこで、陽極または陰極の少なくともいずれか一方に可撓性の部材を使用して電極間の間隔を調整可能とした電解槽が提案されている。
可撓性の部材を電極間の間隔を小さくする手段として使用した各種の電解槽が提案されており、金属の細線の織布、不織布、網等からなる可撓性の部材を多孔性の電極基体上に配置した電極が提案されている。
これらの電極は、可撓性の部材が金属細線から構成されているので、対極からの逆圧によって過度に押圧された場合には、部分的に変形して電極間の間隔が不均一なものとなったり、細線が、イオン交換膜が突き刺さる等の問題点があった。
また、多数の平板状のばね材によって電極室隔壁側と電極との間に導電接続を形成した電解槽が提案されている(例えば、特許文献1又は特許文献2)。
【0004】
図10は、従来の平板ばね状体を設けた電解槽を説明する図である。
図10(A)は、従来の平板ばね状体を用いたイオン交換膜電解槽の一部の断面図であり、図10(B)は、平板ばね状体の平面図であり、図10(C)は、平板ばね状体の断面図である。
電解槽51の陽極室52および陰極室53には、陽極室隔壁54および陰極室隔壁55に、それぞれ所定の間隔で陽極リブ56、および陰極リブ57が接合され、陽極リブ56には陽極取付基材58が取り付けられており、陽極取付基材58には、陽極59が取り付けられている。
【0005】
また、陰極リブ57には平板ばね状体60を多数設けた陰極保持部材61が取り付けられ、平板ばね状体60によって陰極62が保持されているので、電極間の間隔を小さくした場合にも陽極59と陰極62との間に配置されたイオン交換膜63は大きな力で押圧されることはないというものであった。
平板ばね状体を用いた可撓性の電極にあっては、細線からなる部材等を用いたものに比べると押圧の際の部分的な変形に対する挙動は優れているものの、これらの電解槽では、平板ばね状体は、可撓性の陰極保持部材からすべて同一の方向へと斜めに延びるものである。
【0006】
したがって、電極面側から力が作用すると、電極面には平板ばね状体の変位によってばね材が変形する一方向へと移動する力が作用することとなり、その結果、平板ばね状体と接触する電極の位置ずれが生じたり、イオン交換膜に電極が接している場合には、電極の位置ずれの際にイオン交換膜に傷が生じるおそれがあった。
【0007】
【特許文献1】
特開昭57−108278号公報
【特許文献2】
特開昭58−37183号公報
【0008】
【発明が解決しようとする課題】
本発明は、可撓性の通電手段を用いて電極と集電体とを結合した電解槽に関するものであり、大面積の電極であっても電極面を平滑に保持し、可撓性の通電手段によって電極がいずれかの方向へ移動したり、あるいはイオン交換膜電解槽に使用した場合にはイオン交換膜面に対して過度の圧力が加わることがない電解槽を提供することを課題とするものである。
【0009】
【課題を解決するための手段】
本発明の課題は、イオン交換膜電解槽において、少なくとも一方の電極は、電極室内に設けた電極隔壁上に配置した平板ばね状体保持部材から傾斜して延びる複数対の櫛状の平板ばね状体と接触して通電されており、各対の櫛状の平板ばね状体は、隣接する平板ばね状体が相互に対向して差し込まれて構成されたイオン交換膜電解槽によって解決することができる。
このように、本発明のイオン交換膜電解槽では、電極隔壁上に配置した部材から伸びた複数対の櫛状の平板ばね状体によって電極が通電されており、各対が相互に差し込まれているので、電極は平板ばね状体と接触して通電した状態で隔壁面と平行に移動することができるので、電極面からイオン交換膜が不均一に押圧されることがなく、安定した電極間隔を保持したイオン交換膜電解槽とすることができる。
【0010】
また、各対の櫛状の平板ばね状体の相互に差し込まれた長さが同一の長さである前記のイオン交換膜電解槽である。
このように、各対の櫛状の平板ばね状体の相互に差し込まれた長さを同一の長さとすることによって、平板ばね状体と接触した電極の動きをより均一なものとすることができる。
【0011】
また、平板ばね状体は、先端部に平板ばね状体保持部材側に折り曲げられた接触部を有し、平板ばね状体の接触部と電極が接触した前記のイオン交換膜電解槽である。
このように平板ばね状体の先端部が折り曲げられた形状とすることによって、エキスパンデッドメタル、網状部材等を基体とした電極の表面に凹凸が形成された場合であっても、平板ばね状体と電極とは円滑に接触するので、電極の動きを円滑なものとすることができる。
【0012】
櫛状の平板ばね状体の平板ばね状体保持部材への投影面には、開口部が存在し、隣接する平板ばね状体の間の投影面には平板ばね状体保持部材が存在する前記のイオン交換膜電解槽である。
櫛状の平板ばね状体の平板ばね状体保持部材への投影面には、開口部が存在し、隣接する複数個の平板ばね状体の外側の投影面に平板ばね状体保持部材が存在する前記のイオン交換膜電解槽である。
このように、平板ばね状体保持部材への投影面の間、あるいは外側に平板ばね状体保持部材が存在することによって、平板ばね状体保持部材の剛性を高めることができ、各平板ばね状体の動きを均一化することができる。
【0013】
平板ばね状体保持部材は、平板状の電極室隔壁に帯状の接合部によって接合された、電極室隔壁との間に空間を形成した電極室隔壁と平行部に形成されたものであり、電極室隔壁との間に形成した空間を電解液の下降流路とし、電極側には電解液の上昇流路を形成した前記のイオン交換膜電解槽である。
このように、平板ばね状体保持部材と電極室隔壁との間に空間を形成することによって電極室内での電解液の循環を高めることができ、電気分解を効率的に進めることができる。
【0014】
また、平板ばね状体が結合された平板ばね状体保持部材は、平板状ばね状体が接触する電極よりも開口部の径が大きな多孔性の部材に接合された前記のイオン交換膜電解槽である。
このように、開口を有する部材に接合することによって、電解槽内での電解液の流動の自由度が大きな電解槽を提供することが可能となる。
【0015】
【発明の実施の形態】
本発明は、平板ばね状体を設けた板を平板状の電極室隔壁、集電体等に配置した電解槽において、平板ばね状体を互いに櫛状に対向させて相互に差し込んで配置したので、電極面を平板ばね状体に押圧した場合には、電極の横ずれ等は生じず対極との間隔を所定の大きさに保持した電解槽を得ることができる。
その結果、電極面に接触するイオン交換膜等に損傷を及ぼす危険はなくなるとともに、大面積の電極にあっても対極あるいはイオン交換膜との距離を所望の大きさに設定することが可能としたものである。
【0016】
以下に図面を参照して本発明を説明する。
図1は、本発明の電解槽の一実施例を説明する図であり、図1(A)は、複数個の電解槽ユニットを積層したイオン交換膜電解槽の断面を説明する図であり、図1(B)は、電解槽ユニットの陰極側から見た平面図であり、図1(C)は、図1(B)において、A−A’線で切断した断面図である。
図1(A)に示すように、イオン交換膜電解槽1は複数の複極式の電解槽ユニット2をイオン交換膜3を介して積層して組み立てられている。
電解槽ユニット2には、陽極室隔壁4から間隔を設けて陽極5が配置され、陽極室6が形成されている。また、陰極室隔壁7から間隔を設けて陰極8が配置されており、陰極室隔壁7とイオン交換膜3の間に陰極室9が形成されている。
また、陽極室6、陰極室9の上部には、それぞれ陽極室側気液分離手段40、陰極室側気液分離手段41が設けられている。
また、電解槽ユニット2の陽極室6には、陽極液供給管18が取り付けられ、陽極室側気液分離手段40には、濃度が低下した陽極液と気体を排出する陽極液排出管19が取り付けられている。
また、電解槽ユニット2の陰極室6には、陰極液供給管22が取り付けられ、陽極室側気液分離手段41には、濃度が低下した陽極液と気体を排出する陰極液排出管23が取り付けられている。
なお、陽極液供給管、陽極液排出管は、図に示すように、それぞれを同一の側に配置する例を示したが、供給管と排出管を対向して配置しても良く、また陽極液供給管と陰極液供給管を同一の側に配置しても良い。
【0017】
図1(B)および図1(C)に示すように、陰極室隔壁4には、平板ばね状体保持部材12が取り付けられており、平板ばね状保持部材12から傾斜して延びる複数対の櫛状の平板ばね状体11の先端部に陰極8が接触して通電されており、各対の櫛状の平板ばね状体は、隣接する平板ばね状体が相互に対向して差し込まれ相互に差し込んで配置されている。また、陰極8面上にはイオン交換膜3が配置されている。
陰極8は平板ばね状体保持部材12から相互に反対方向へ延びた平板ばね状体11と接しているので、陰極には、陰極室隔壁と垂直方向の力のみが作用することとなる。その結果、平板ばね状体11の反発力によって陰極室隔壁7と直角の方向へと陰極を変位させ、陰極8を陰極室隔壁7と平行に移動させることはないので、イオン交換膜面を傷つける等の問題を生じることなく所定の位置に調整することが可能となる。
【0018】
図1(B)および図1(C)に示すように、陰極室隔壁4には、多数の平板ばね状体11を櫛状に設け、互いに対向する一対の櫛状の平板ばね状体を相互に差し込んで配置した板状体からなる平板ばね状体保持部材12が接合されている。また、平板ばね状体11の先端部に接して陰極8が配置され、陰極8面上にはイオン交換膜3が配置されている。
陰極8は平板ばね状体保持部材12から相互に反対方向へ延びた平板ばね状体11と接しているので、陰極には、陰極室隔壁と垂直方向の力のみが作用することとなる。その結果、平板ばね状体11の反発力によって陰極室隔壁7と直角の方向へと陰極を変位させ、陰極8を陰極室隔壁7と平行に移動させることはないので、イオン交換膜面を傷つける等の問題を生じることなく所定の位置に調整することが可能となる。
【0019】
また、各対の櫛状の平板ばね状体の相互に差し込まれた長さを同一の長さとすることによって、平板ばね状体が押圧された場合には、電極面との接触部の距離が大きくなるとともに、その距離の大きさは、いずれの対においても同一のものとなるので、電極面への通電個所の分布が均等化される。
これに対して、各対の櫛状の平板ばね状体の櫛歯の方向を対向させるのみで、相互に差し込まれたものとしない場合には、電極面と押圧すると電極面との接触部の距離が小さくなるので、電極への通電される電流分布が不均一なものとなるので好ましくない。
陰極室隔壁に装着する平板ばね状体保持部材12は、陰極面と同等の大きさの1個の部材であっても、あるいは複数個の部材を所定の個数配置しものであっても良い。
【0020】
一方、陽極室隔壁4には、陽極保持部材13が帯状の接合部14を形成して接合されており、帯状の接合部14において陽極室隔壁4と陽極保持部材13が密着して接合されている。両者は、連続的な溶接部に限らず、両者を密着した状態で多数のスポット溶接部等によって接合することによって陽極保持部材13と陽極室隔壁4とが密着し、両者の導電接続と陽極保持部材13と陽極室隔壁4の間で形成される空間が反対側の空間と分離されていれば良い。
【0021】
陽極保持部材13の隣接する帯状の接合部14の間には凸条部15が形成され、凸条部15と帯状の接合部14の間は平面部16で結合されている。また、凸状部15には、陽極5が複数の個所において接合されている。
凸条部15は、頂部に電極を接合することができる幅を有したものであれば十分であり、金属板に角を形成するように折り曲げ加工して形成された凸条部であっても、電極保持部材が隔壁に平行な平面を有しているものであっても良い。また、陽極保持部材を別個の部材として作製しても、プレス成形によって複数個が連結した部材を作製しても良く、あるいは陽極室隔壁に配置するすべての陽極保持部材を、一枚の金属板を成形して製造したものであっても良い。
【0022】
また、接合部14と凸状部15とが平面部16で結合されている場合には、断面形状がトラス型となり、薄板で作製した陽極室の剛性を高めることができる。陽極保持部材13、陽極室隔壁4および隣接する帯状の接合部14によって形成される空間には、陽極液循環通路17が形成され、陽極保持部材13の陽極5面側の空間を上昇した気液混合流体が陽極室の上部で気液分離した電解液の一部は陽極液排出管19から流出する。そして陽極液循環通路17を下降し、陽極室の下部において陽極面側の空間へ流出し、電解槽に設けた陽極液供給管18から供給されて陽極室内へ噴出する陽極液とともに、混合されて陽極において電気分解が行われる。
【0023】
図2は、本発明の平板ばね状体を説明する図である。
図2(A)は、斜視図であり、図2(B)は作製過程を説明する平面図であり、図2(C)は、作製過程を説明する断面図である。
図2(A)に示すように、板状の平板ばね状体保持部材12には、平板ばね状体11が斜め方向に起伏した複数対の櫛状の部材が取り付けられている。図では、3対の櫛状の部材が示されている。また、各対の櫛状の部材を形成する隣接する平板ばね状体11は、互いに反対方向へ延びて相互に差し込まれている。
平板ばね状体11は、平板にばね状体を任意の方法によって接合することによって作製することができるが、以下に示すように板材の切断と、その後に一方向へ起こすことによって容易に作製することができる。
【0024】
図2(B)に示すように、平板25を平板ばね状体形成部26の切断線27に沿って切断するとともに、平板ばね状体形成部26を残して打ち抜いて部材を取り除き開口部28を形成する。次いで、図2(C)に示すように平板ばね状体形成部26に、力Fを加えて平板25から平板ばね状体形成部26を一方向へ起こして平板ばね状体11が形成される。
平板ばね状体形成部26の間に形成される開口部28の間に残存部29が残されており、平板ばね状体を平板ばね状体保持部材に投影した場合には、隣接する平板ばね状体の間の間隙に、平板ばね状体保持部材が存在している。平板ばね状体の間に間隙に存在する平板ばね状体保持部材は、平板ばね状体保持部材12の剛性を高める作用を果たし、平板ばね状体11に接する陰極の動きをより円滑なものとすことができる。
また、残存部29は、すべての開口部28の間に設けなくても良く、部材の剛性等を考慮して決定することができる。
【0025】
図3は、本発明の平板ばね状体の他の実施態様を説明する図である。
図3(A)は、斜視図であり、図3(B)は、図3(A)の平板ばね状体を用いた電解槽の電極室の水平方向断面を説明する図である。
板状の平板ばね状体保持部材12には、平板ばね状体11が斜め方向に起伏した複数対の櫛状の部材が取り付けられている。図では、3対の櫛状の部材が示されている。また、各対の櫛状の部材を形成する隣接する平板ばね状体11は、互いに反対方向へ延びて相互に差し込まれている。
また、平板ばね状体11は、電極に接触する先端部が平板ばね状体保持部材12側にほぼ平行に折り曲げられた接触部11Aを有しており、接触部11Aが電極と接触している。
【0026】
図3(B)に示すように、陰極室9には、陰極側に本発明の平板ばね状体保持部材12とほぼ平行な接触部11Aを有した平板ばね状体を設けた場合には、陰極8と平板ばね状体保持部材12との間の間隔を小さくした場合に陰極8と平板ばね状体11との動きが円滑なものとなり、電極間の間隔の調整が円滑に行われるとともに、電極と平板ばね状体との導電接続も確実なものとなる。
【0027】
図4は、本発明の平板ばね状体の他の実施態様を説明する図である。
図4(A)は、斜視図であり、図4(B)は製作過程の一例を説明する平面図であり、図4(C)は、平板ばね状体の断面図であり、図4(D)は他の例を平板ばね状体を説明する断面図である。
図4(A)に示すように、板状の平板ばね状体保持部材12には、平板ばね状体11が斜め方向に起伏した複数対の櫛状の部材が取り付けられている。図では、3対の櫛状の部材が示されている。また、各対の櫛状の部材を形成する隣接する平板ばね状体11は、互いに反対方向へ延びて相互に差し込まれている。
【0028】
図4(B)に示すように、平板25に平板ばね状体形成部26を平板25に切断線27に沿って切断し、平板ばね状体形成部26を残して打ち抜いて部材を取り除くことによって開口部28が形成されたものである。また、平板ばね状体形成部26には、平板ばね状体の先端部に接触部が形成するために折り曲げ線26Aが形成される。
【0029】
図4(C)に示すように、平板ばね状体形成部26は、力Fを加えて平板25から平板ばね状体形成部26を一方向へ起こして平板ばね状体が形成される。また、折り曲げ部26Bは折り曲げ線26Aに沿って、平板25に平行となるように折り曲げられる。
【0030】
また、図4(D)に示すように、折り曲げ線26Aを用いて、曲面状折り曲げ部26Cを形成しても良い。
また、平板ばね状体を平板ばね状体保持部材に投影した場合には、隣接する平板ばね状体の間の間隙に、平板ばね状体保持部が存在した強度保持部12Cが設けられている。図4に示した例では、互いに反対方向に延びて差し込まれた5組の平板ばね状体11毎に強度保持部12Cが設けられて平板ばね状体保持部材12の剛性が高められている。強度保持部12Cを設ける間隔は、平板ばね状体保持部を形成する部材の剛性等を考慮して決定することができる。
また、このように強度保持部12Cを間隔を設けて設置することによって、図3に示したものに比べて、単位面積当たりの平板ばね状体と電極との接触部を多く配置することが可能となり、通電量の増加に伴う電気的な損失を減少させることができる。
また、本発明の平板ばね状体を設けた平板ばね状体保持部材は、板状体から部材の切断、打ち抜きとともに折り曲げ加工をプレス成形機によって連続的に作製することが可能である。
【0031】
図5は、本発明の電解槽の他の実施例を説明する図であり、図5(A)は、電解槽の陰極側から見た一部を切り欠いた図であり、図5(B)は、図5(A)において、B−B’線で切断した断面図である。
イオン交換膜電解槽の複極型の電解槽ユニット2は、陽極室6と陰極室9とから構成されており、平板状の陽極室隔壁4と陰極室隔壁7が電気的および機械的に接合一体化されている。
陰極室隔壁7には、多数の平板ばね状体11を櫛状に設けて互いに対向する櫛状の平板ばね状体11を相互に差し込んだ複数対の櫛状の平板ばね状体が設けられた平板ばね状体保持部材12が配置されて通電されており、各対の櫛状の平板ばね状体は、隣接する平板ばね状体が相互に対向して差し込まれている。
【0032】
また、平板ばね状体保持部材12が、帯状の接合部20を形成して接合され、帯状の接合部20において陰極室隔壁7と平板ばね状体保持部材12が密着して接合されている。平板ばね状体保持部材12は、接合部20に接続された縦方向部12Aと、縦方向部に直角に交わる陰極室隔壁に平行な横方向部12Bとから構成されており、横方向部12Bに平板ばね状体11が櫛状に互いに対向する平板ばね状体11を相互に差し込んで設けられており、平板ばね状体保持部材12と陰極室隔壁7の間に陰極液循環通路21が形成されている。
【0033】
その結果、陰極8面側の空間を上昇した気液混合流体が陰極室の上部で気液分離した電解液の一部は陰極液排出管23を通じて電解槽外へ流出するとともに、一部は陰極液循環通路21を下降し、陰極室の下部において陰極面側の空間へ流出し、電解槽に設けた陰極液供給管22から供給されて、陰極液供給口24から陰極室内へ噴出する陰極液と共に混合されて陰極において電気分解を受ける。
このように、陰極室内における電解液の循環が促進されるので、陰極液の濃度分布が小さなものとなり、電気分解が効率的なものとなる。
【0034】
一方、陽極室隔壁4には、陽極保持部材13が帯状の接合部14を形成して接合されており、帯状の接合部14において陽極室隔壁4と陽極保持部材13が密着して接合されている。
陽極保持部材13の隣接する帯状の接合部14の間には凸条部15が形成され、凸条部15と帯状の接合部14の間は平面部16で結合されている。また、凸状部15には、陽極5が複数の個所において接合されている。
陽極保持部材13、陽極室隔壁4および隣接する帯状の接合部14によって形成される空間には、陽極液循環通路17が形成されている。
【0035】
そして、陽極保持部材13の陽極5面側の空間を上昇した気液混合流体が陽極室の上部で気液分離した電解液の電解液の一部は陽極液排出管19から流出する。そして陽極液循環通路17を下降し、陽極電極室の下部において陽極面側の空間へ流出し、電解槽に設けた陽極液供給管18から供給されて、陽極室内へ噴出する陽極液とともに混合されて陽極面において電気分解を受ける。
【0036】
図6は、図5で示した平板ばね状体保持部材の説明する図である。図6(A)は、斜視図であり、図6(B)および、図6(C)は、電解槽へ装着した場合の断面を説明する図である。
平板ばね状体保持部材12は、陰極室隔壁との接合部20を有し、接合部に接続された縦方向部12Aと、縦方向部に直角に交わる陰極室隔壁に平行な横方向部12Bとから構成されており、横方向部12Bには平板ばね状体11を櫛状に設けて互いに対向する櫛状の平板ばね状体11を相互に差し込んで形成された一対の部材を有しており、平板ばね状体保持部材12は縦方向部12Aと横方向部12Bによって、陰極室隔壁7の間に陰極液循環通路21が形成される。
【0037】
また、電解槽の組立前には、図6(B)に示すように、平板ばね状体11の反発力によって、陰極8は陰極室隔壁7から離れた位置にあるが、電解槽の組立後には、対極との間隔を所定の位置に保持した電解槽を得ることができる。
平板ばね状体保持部材11は、図2に示したものと同様に、平板ばね状体11を形成した部材を凸状体に成形することによって製造することができ、またプレス成形して凸状体を形成した後に平板ばね状体11を形成することによって製造することができる。
【0038】
また、電解槽の陰極室隔壁7には、一個の凸状体からなる平板ばね状体保持部材12の所定の個数を接合したものであっても、数個の凸状体を有する平板ばね状体保持部材の所定の個数を接合したものであっても、あるいは陰極室隔壁と同等の大きさの一個の平板ばね状体保持部材を作製して陰極室隔壁に配置したものであっても良い。
【0039】
図7は、本発明の実施態様の他の平板ばね状体保持部材を説明する図である。図7(A)は、斜視図であり、図7(B)および、図7(C)は、電解槽へ装着した場合の断面を説明する図である。
平板ばね状体保持部材12は、陰極室隔壁との接合部20を有し、接合部に接続された縦方向部12Aと、縦方向部に直角に交わる陰極室隔壁に平行な横方向部12Bとから構成されており、横方向部12Bには平板ばね状体11を櫛状に設けて互いに対向する一対の櫛状の平板ばね状体11を相互に差し込んで形成されている。また、平板ばね状体保持部材12は縦方向部12Aと横方向部12Bによって、陰極室隔壁7の間に陰極液循環通路21が形成される。
【0040】
平板ばね状体11には、その先端部に、平板ばね状体保持部と平行に成形した接触部11Aが形成されており、電極面と接触部11Aが接触して電気的接続が形成される。
そして、平板ばね状体を平板ばね状体保持部材に投影した場合には、隣接する平板ばね状体の間の間隙に、平板ばね状体保持部材が存在した強度保持部12Cが形成されている。
また、電解槽の組立前には、図7(B)に示すように、平板ばね状体11の反発力によって、平板ばね状体11の接触部11Aは陰極8に接触した状態で、陰極8は陰極室隔壁7から離れた位置に保持されているが、図7(C)に示すように、電解槽の組立後には、対極との間隔を所定の位置に保持した電解槽が形成される。
【0041】
平板ばね状体保持部材12は、図2に示したものと同様に、平板ばね状体をプレス成形によって凸状部を形成した後に、切断加工等を施した後に、凸状部に平板ばね状体11を形成することができる。
また、電解槽の陰極室隔壁7には、一個の凸状体からなる平板ばね状体保持部材12の所定の個数を接合したものであっても、数個の凸状体を有する平板ばね状体保持部材の所定の個数を接合したものであっても、あるいは陰極室隔壁と同等の大きさの一個の平板ばね状体保持部材を作製して陰極室隔壁に配置したものであっても良い。
【0042】
図8は、本発明の他の実施例を説明する図であり、電解槽の一部を水平な面によって切断した図である。
図8(A)に示した電解槽は、図1に示した電解槽とは陽極室の構造が相違した電解槽であり、図1(A)におけるA−A’線の部分の断面を説明する図である。また図8(B)に示した電解槽は、図5に示した電解槽とは、陽極室側の構造が相違するものであり、図5(A)におけるB−B’線の部分の断面を説明する図である。また、図8(C)、および図8(D)は、それぞれ図8(A)、図8(B)に示したものと平板ばね状体の形状が相違するものである。また、それぞれの電解槽は、図1(C)および図5(B)における陰極室と同様の構造を有するものであるので、陽極室についてのみ説明する。
【0043】
電解槽は、陽極室隔壁4に設けた陽極保持部材13が帯状の接合部14を形成して接合されており、帯状の接合部14に接続された縦方向部13Aと、縦方向部に直角に交わる陽極室隔壁に平行な横方向部13Bとから構成されており、横方向部13Bに設けた凸状部13Cには、陽極5が取り付けられており、陽極保持部材13の縦方向部13Aと横方向部13Bによって、陽極室隔壁4の間に陽極液循環通路17が形成され、陽極液の循環を高めたものである。
また、図8(C)および図8(D)に示した平板ばね状体11の先端部は折り曲げられて接触部11Aが形成されており、平板ばね状体保持部材12の横方向部12Bとほぼ平行な接触部11Aが形成されている。その結果、電解槽の組立時に陰極8と平板ばね状体11の接触が円滑なものとされる。
以上の説明では、本発明の電解槽は、複極式電解槽の隔壁に平板ばね状体保持部材を接合したものに限らず、その他の集電部体、保持部材に設置することも可能である。
【0044】
図9は、本発明の他の実施例を説明する図であり、単極式の電解槽に平板ばね状体を設けた例を説明する図である。
図9(A)は、フィルタープレス型単極式電解槽の単位電解槽の一部を切り欠いた図であり、図9(B)は、図9(A)において、C−C’線で切断した断面図である。
単極式の単位電解槽31の電解槽枠体32に導電体33が係合されており、単位電解槽が陰極室である場合について説明する図である。導電体33には、内部に電解液の下降流路を形成すると共に、導電体33と陰極側集電体34との間に導電接続を形成するとともに、陰極側集電体34を保持する電解液循環通電手段35を有している。
陰極側集電体34は、エキスパンデッドメタル等の多孔性の部材で作製されており、単位電解槽の内部を電解液が自由に流通する構造を有している。陰極集電体34には、平板ばね状体11を多数設けた平板ばね状体保持部材12が接合されている。平板ばね状体11は、陰極8が接して導電接続を形成するとともに、電極を電極面と直角方向に調整可能としている。
【0045】
平板ばね状体保持部材12には、平板ばね状体6を作製する際に、部材を除去して形成した開口部28の面積を広くすることによって平板ばね状体保持部材12を陰極側集電体34に装着した場合に、平板ばね状体保持部材12の開口部28を通じた電解液の流通を実現している。
また、電解槽内においては、電極面に沿って上昇した気泡を含んだ電解液は、電解液の上部において、気体を分離した後に電解液循環通電手段35内を下降して、陰極液供給管36および陰極液供給ノズル37を通じて供給された陰極液とともに電解槽内で電気分解を受け、陰極液排出口38から排出される。
以上の説明においては、平板ばね状体および平板ばね状体保持部材は、陰極側に設ける点について述べたが、陰極側に限らず陽極側に設けても良い。
【0046】
陰極側に設ける場合には、陰極室内部の環境において、良好な耐食性を示すニッケル、ニッケル合金、ステンレス等を用いることができ、陰極には、ニッケル、ニッケル合金の多孔体、網状体、エキスパンデッドメタル、あるいはこれらを基体として、表面に白金族金属含有層、ラネーニッケル含有層、活性炭含有ニッケル層等の電極触媒物質の被覆を形成し、水素過電圧を低下させたものを用いることができる。
【0047】
また、陽極側に設ける場合には、チタン、タンタル、ジルコニウム等の薄膜形成性金属あるいはこれらの合金を用いることができる。陽極には、チタン、タンタル、ジルコニウム等の薄膜形成性金属あるいはこれらの合金の表面に、白金族金属、白金族金属の酸化物を含有する電極触媒物質の被覆を形成した陽極を用いることができる。
また、平板ばね状体の大きさは、電解槽の電極面積等に応じて定めることができるが、厚さ0.2mmないし0.5mm、幅2mmないし10mm、長さ20mmないし50mmのものを挙げることができる。
【0048】
本発明の電解槽をアルカリ金属ハロゲン化物の水溶液の電気分解、例えば食塩水の電気分解に用いる場合には、陽極室には、飽和食塩水を供給し、陰極室には水または希薄水酸化ナトリウム水溶液を供給し、所定の分解率で電気分解を行った後に電解槽から取り出される。
また、食塩水のイオン交換膜電解槽による電気分解においては、陰極室の圧力を陽極室の圧力よりも高く保持して電気分解が行われ、イオン交換膜は陽極に密着した状態で運転が行われるが、陰極は可撓性の平板ばね状体によって保持されているので、陰極をイオン交換膜面に所定の距離に近づけて電気分解をすることができることができる。また、異常時に陽極室側の圧力が大きくなった場合においても、平板ばね状体は復元力が大きく、圧力が取り除かれた後には所定の間隔を保持した運転が可能となる。
【0049】
【発明の効果】
本発明のイオン交換膜電解槽によれば、少なくとも一方の電極を、相互に差し込まれた平板ばね状体によって保持したので、電極を面方向への横ずれ等を生じることなく電極間の間隔を所定の大きさに保持するとともに、圧力の異常時に対極側から押圧された場合にも、圧力が取り除かれた後は元の状体へ復帰して運転することが可能なイオン交換膜電解槽を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の電解槽の一実施例を説明する図である。
【図2】図2は、本発明の平板ばね状体を説明する図である。
【図3】図3は、本発明の平板ばね状体の他の実施態様を説明する図である。
【図4】図4は、本発明の平板ばね状体の他の実施態様を説明する図である。
【図5】図5は、本発明の電解槽の他の実施例を説明する図である。
【図6】図6は、図5で示した平板ばね状体保持部材を説明する図である。
【図7】図7は、本発明の実施態様の他の平板ばね状体保持部材を説明する図である。
【図8】図8は、本発明の他の実施例を説明する図であり、電解槽の一部を水平な面によって切断した図である。
【図9】図9は、本発明の他の実施例を説明する図であり、単極式の電解槽に平板ばね状体を設けた例を説明する図である。
【図10】図10は、従来の平板ばね状体を設けた電解槽を説明する図である。
【符号の説明】
1…イオン交換膜電解槽、2…電解槽ユニット、3…イオン交換膜、4…陽極室隔壁、5…陽極、6…陽極室、7…陰極室隔壁、8…陰極、9…陰極室、11…平板ばね状体、12…平板ばね状体保持部材、12A…縦方向部、12B…横方向部、12C…強度保持部、13…陽極保持部材、14…接合部、15…凸条部、16…平面部、17…陽極液循環通路、18…陽極液供給管、19…陽極液排出管、20…接合部、21…陰極液循環通路、22…陰極液供給管、23…陰極液排出管、24…陰極液供給口、25…平板、26…平板ばね状体形成部、26A…折り曲げ線、26B…折り曲げ部、26C…曲面状折り曲げ部、27…切断線、28…開口部、29…残存部、31…単位電解槽、32…電解槽枠体、33…導電体、34…陰極側集電体、35…電解液循環通電手段、36…陰極液供給管、37…陰極液供給ノズル、38…陰極液排出口、40…陽極室側気液分離手段、41…陰極室側気液分離手段、51…電解槽、52…陽極室、53…陰極室、54…陽極室隔壁、55…陰極室隔壁、56…陽極リブ、57…陰極リブ、58…陽極取付基材、59…陽極、60…平板ばね状体、61…陰極保持部材、62…陰極、63…イオン交換膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion exchange membrane electrolytic cell, and more particularly to an ion exchange membrane electrolytic cell capable of maintaining a predetermined distance between electrodes.
[0002]
[Prior art]
In an electrolytic cell used for electrolysis of an aqueous solution, the voltage required for electrolysis depends on various factors. Among these, the distance between the anode and the cathode greatly affects the electrolytic cell voltage. Therefore, the energy consumption required for electrolysis is reduced by reducing the distance between the electrodes and reducing the electrolytic cell voltage.
In an ion exchange membrane electrolytic cell used for the electrolysis of saline solution, the anode, ion exchange membrane, and cathode are placed in close contact to reduce the electrolytic cell voltage, but the electrode area is several square meters. In a large electrolytic cell that reaches the maximum, when the anode and cathode are joined to the electrode chamber by a rigid member, it is difficult to keep both electrodes in close contact with the ion exchange membrane and to keep the electrode interval small. Met.
[0003]
Therefore, an electrolytic cell has been proposed in which a flexible member is used for at least one of the anode and the cathode and the distance between the electrodes can be adjusted.
Various electrolyzers using a flexible member as a means for reducing the distance between electrodes have been proposed, and a flexible member made of a fine metal wire woven fabric, non-woven fabric, mesh, etc. is used as a porous electrode. An electrode arranged on a substrate has been proposed.
Since these flexible electrodes are made of fine metal wires, when they are pressed excessively by the counter pressure from the counter electrode, they are partially deformed and the spacing between the electrodes is non-uniform. There was a problem that the ion exchange membrane was pierced.
In addition, an electrolytic cell has been proposed in which a conductive connection is formed between the electrode chamber partition wall side and the electrode by a large number of flat spring materials (for example, Patent Document 1 or Patent Document 2).
[0004]
FIG. 10 is a diagram for explaining an electrolytic cell provided with a conventional flat spring-like body.
FIG. 10 (A) is a partial cross-sectional view of an ion exchange membrane electrolytic cell using a conventional flat spring-like body, and FIG. 10 (B) is a plan view of the flat spring-like body. C) is a cross-sectional view of a flat spring-like body.
The anode chamber 52 and the cathode chamber 53 of the electrolytic cell 51 are joined to the anode chamber partition wall 54 and the cathode chamber partition wall 55 with anode ribs 56 and 57 at predetermined intervals, respectively. A material 58 is attached, and an anode 59 is attached to the anode attachment base material 58.
[0005]
The cathode rib 57 is provided with a cathode holding member 61 provided with a large number of flat spring-like bodies 60, and the cathode 62 is held by the flat spring-like body 60. The ion exchange membrane 63 disposed between 59 and the cathode 62 is not pressed with a large force.
In the case of a flexible electrode using a flat spring-like body, the behavior against partial deformation at the time of pressing is superior to that using a member made of fine wire, but in these electrolytic cells, The flat spring-like body extends obliquely from the flexible cathode holding member in the same direction.
[0006]
Therefore, when a force is applied from the electrode surface side, a force that moves in one direction in which the spring material is deformed by the displacement of the flat spring-like body acts on the electrode surface, and as a result, comes into contact with the flat spring-like body. When the electrode is displaced or the electrode is in contact with the ion exchange membrane, the ion exchange membrane may be damaged when the electrode is displaced.
[0007]
[Patent Document 1]
JP-A-57-108278
[Patent Document 2]
JP 58-37183 A
[0008]
[Problems to be solved by the invention]
The present invention relates to an electrolytic cell in which an electrode and a current collector are combined using a flexible energizing means, and the electrode surface is kept smooth even with a large area electrode, and the flexible energizing It is an object of the present invention to provide an electrolytic cell in which excessive pressure is not applied to the surface of the ion exchange membrane when the electrode moves in any direction by means or is used in an ion exchange membrane electrolytic cell. Is.
[0009]
[Means for Solving the Problems]
An object of the present invention is to provide a plurality of pairs of comb-like flat springs extending in an inclined manner from a flat spring-like body holding member disposed on an electrode partition provided in an electrode chamber in an ion exchange membrane electrolytic cell. Each pair of comb-shaped flat springs can be solved by an ion-exchange membrane electrolytic cell constructed by inserting adjacent flat springs facing each other. it can.
Thus, in the ion exchange membrane electrolytic cell of the present invention, the electrodes are energized by a plurality of pairs of comb-like flat springs extending from members arranged on the electrode partition walls, and the pairs are inserted into each other. As a result, the electrode can move in parallel with the partition wall surface while being in contact with the flat spring-like body, so that the ion exchange membrane is not pressed unevenly from the electrode surface, and stable electrode spacing is achieved. The ion-exchange membrane electrolytic cell holding can be made.
[0010]
Further, in the above ion exchange membrane electrolytic cell, the lengths inserted into each pair of comb-like flat springs are the same.
In this way, by making the lengths inserted into each pair of comb-like flat springs into the same length, the movement of the electrodes in contact with the flat springs can be made more uniform. it can.
[0011]
The flat spring-like body is the above-described ion exchange membrane electrolytic cell having a contact portion bent toward the flat spring-like body holding member at the tip, and the contact portion of the flat spring-like body and the electrode are in contact with each other.
In this way, even if irregularities are formed on the surface of an electrode having an expanded metal, a net-like member or the like as a base, the flat spring shape is formed by bending the tip of the flat spring-like body. Since the body and the electrode are in smooth contact with each other, the movement of the electrode can be made smooth.
[0012]
The projection surface of the comb-shaped flat spring body on the flat spring body holding member has an opening, and the flat spring body holding member exists on the projection surface between adjacent flat spring bodies. This is an ion exchange membrane electrolytic cell.
There is an opening in the projection surface of the comb-shaped flat spring body on the flat spring body holding member, and there is a flat spring body holding member on the projection surface outside the adjacent flat spring bodies. The ion exchange membrane electrolytic cell.
In this way, the presence of the flat spring-like body holding member between the projection surface to the flat spring-like body holding member or the outer side makes it possible to increase the rigidity of the flat spring-like body holding member. The movement of the body can be made uniform.
[0013]
The flat spring-like body holding member is formed in a parallel portion with the electrode chamber partition wall formed between the electrode chamber partition wall and the electrode chamber partition wall bonded to the flat electrode chamber partition wall by the strip-shaped bonding portion. In the above-described ion exchange membrane electrolytic cell, the space formed between the chamber partition walls is used as a descending flow path for the electrolytic solution, and the rising flow path for the electrolytic solution is formed on the electrode side.
Thus, by forming a space between the flat spring-like body holding member and the electrode chamber partition wall, the circulation of the electrolytic solution in the electrode chamber can be enhanced, and the electrolysis can be efficiently advanced.
[0014]
The flat plate spring-like body holding member to which the flat plate spring-like body is coupled is the ion-exchange membrane electrolytic cell as described above, which is joined to a porous member having a larger opening diameter than the electrode with which the flat spring-like body contacts. It is.
Thus, by joining to the member which has opening, it becomes possible to provide the electrolytic cell with a large freedom degree of the flow of the electrolyte solution in an electrolytic cell.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in the electrolytic cell in which the plate provided with the plate spring-like body is arranged in the plate-like electrode chamber partition wall, the current collector, etc., the plate spring-like bodies are arranged so as to be opposed to each other in a comb shape. When the electrode surface is pressed against the flat spring-like body, an electrode having a predetermined distance from the counter electrode can be obtained without causing lateral displacement of the electrode.
As a result, there is no risk of damaging the ion exchange membrane contacting the electrode surface, and the distance from the counter electrode or the ion exchange membrane can be set to a desired size even with a large area electrode. Is.
[0016]
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the electrolytic cell of the present invention, and FIG. 1 (A) is a diagram for explaining a cross section of an ion exchange membrane electrolytic cell in which a plurality of electrolytic cell units are laminated, FIG. 1B is a plan view seen from the cathode side of the electrolytic cell unit, and FIG. 1C is a cross-sectional view taken along line AA ′ in FIG.
As shown in FIG. 1A, an ion exchange membrane electrolytic cell 1 is assembled by laminating a plurality of bipolar electrode cell units 2 with an ion exchange membrane 3 interposed therebetween.
In the electrolytic cell unit 2, an anode 5 is disposed at a distance from the anode chamber partition wall 4, and an anode chamber 6 is formed. Further, a cathode 8 is disposed at a distance from the cathode chamber partition wall 7, and a cathode chamber 9 is formed between the cathode chamber partition wall 7 and the ion exchange membrane 3.
In addition, an anode chamber side gas / liquid separation means 40 and a cathode chamber side gas / liquid separation means 41 are provided above the anode chamber 6 and the cathode chamber 9, respectively.
Further, an anolyte supply pipe 18 is attached to the anode chamber 6 of the electrolytic cell unit 2, and an anolyte discharge pipe 19 for discharging the anolyte and gas having a reduced concentration is provided in the anode chamber side gas-liquid separation means 40. It is attached.
Further, a catholyte supply pipe 22 is attached to the cathode chamber 6 of the electrolytic cell unit 2, and a catholyte discharge pipe 23 for discharging the anolyte and gas having a reduced concentration is provided in the anode chamber side gas-liquid separation means 41. It is attached.
As shown in the figure, the anolyte supply pipe and the anolyte discharge pipe are shown as being arranged on the same side, but the supply pipe and the discharge pipe may be arranged facing each other. The liquid supply tube and the catholyte supply tube may be arranged on the same side.
[0017]
As shown in FIGS. 1 (B) and 1 (C), a flat spring holding member 12 is attached to the cathode chamber partition wall 4, and a plurality of pairs extending obliquely from the flat spring holding member 12 is provided. The cathode 8 is in contact with the tip of the comb-shaped flat spring-shaped body 11 and is energized. Each pair of comb-shaped flat spring-shaped bodies is inserted so that adjacent flat spring-shaped bodies are opposed to each other. It is inserted and placed. An ion exchange membrane 3 is disposed on the surface of the cathode 8.
Since the cathode 8 is in contact with the plate spring 11 extending in the opposite direction from the plate spring holding member 12, only the force perpendicular to the cathode chamber partition acts on the cathode. As a result, the repulsive force of the flat spring-like body 11 displaces the cathode in the direction perpendicular to the cathode chamber partition 7 and does not move the cathode 8 in parallel with the cathode chamber partition 7, thereby damaging the ion exchange membrane surface. It is possible to adjust to a predetermined position without causing such problems.
[0018]
As shown in FIGS. 1 (B) and 1 (C), the cathode compartment partition 4 is provided with a large number of flat spring-like bodies 11 in a comb shape, and a pair of comb-like flat spring-like bodies facing each other are mutually connected. A flat spring-like body holding member 12 made of a plate-like body that is inserted into and disposed on is joined. Further, the cathode 8 is disposed in contact with the tip of the flat spring-like body 11, and the ion exchange membrane 3 is disposed on the surface of the cathode 8.
Since the cathode 8 is in contact with the plate spring 11 extending in the opposite direction from the plate spring holding member 12, only the force perpendicular to the cathode chamber partition acts on the cathode. As a result, the repulsive force of the flat spring-like body 11 displaces the cathode in the direction perpendicular to the cathode chamber partition 7 and does not move the cathode 8 in parallel with the cathode chamber partition 7, thereby damaging the ion exchange membrane surface. It is possible to adjust to a predetermined position without causing such problems.
[0019]
In addition, by making the lengths inserted between the pairs of comb-shaped flat spring bodies into the same length, when the flat spring bodies are pressed, the distance of the contact portion with the electrode surface is reduced. As the distance increases, the distance is the same in any pair, so that the distribution of the energization points on the electrode surface is equalized.
On the other hand, when the comb teeth of each pair of comb-shaped flat springs are only opposed to each other and are not inserted into each other, when the electrode surface is pressed, the contact portion with the electrode surface Since the distance becomes small, the distribution of current supplied to the electrodes becomes non-uniform, which is not preferable.
The flat spring-like body holding member 12 attached to the cathode compartment partition may be a single member having a size equivalent to the cathode surface, or a predetermined number of members may be arranged.
[0020]
On the other hand, an anode holding member 13 is bonded to the anode chamber partition 4 by forming a band-shaped joint portion 14, and the anode chamber partition 4 and the anode holding member 13 are closely bonded to each other at the band-shaped bonding portion 14. Yes. Both are not limited to continuous welds, but are joined together by a large number of spot welds while the two are in close contact with each other, so that the anode holding member 13 and the anode chamber partition 4 are in close contact with each other. It is only necessary that the space formed between the member 13 and the anode chamber partition 4 is separated from the space on the opposite side.
[0021]
A protruding strip portion 15 is formed between adjacent strip-shaped joint portions 14 of the anode holding member 13, and the protruding strip portion 15 and the strip-shaped joint portion 14 are joined by a flat portion 16. The anode 5 is joined to the convex portion 15 at a plurality of locations.
The protrusion 15 is sufficient if it has a width that allows the electrode to be joined to the top, and may be a protrusion formed by bending a metal plate to form a corner. The electrode holding member may have a plane parallel to the partition wall. Further, the anode holding member may be manufactured as a separate member, or a plurality of members connected by press molding may be manufactured, or all the anode holding members arranged in the anode chamber partition wall may be formed as a single metal plate. It may be produced by molding.
[0022]
Moreover, when the junction part 14 and the convex-shaped part 15 are couple | bonded by the plane part 16, a cross-sectional shape becomes a truss type, and the rigidity of the anode chamber produced with the thin plate can be improved. An anolyte circulation passage 17 is formed in a space formed by the anode holding member 13, the anode chamber partition wall 4, and the adjacent band-shaped joint portion 14, and the gas-liquid that has moved up the space on the anode 5 surface side of the anode holding member 13. A part of the electrolytic solution obtained by gas-liquid separation of the mixed fluid in the upper part of the anode chamber flows out from the anolyte discharge pipe 19. Then, the anolyte circulating passage 17 descends, flows out into the space on the anode surface side in the lower part of the anode chamber, and is mixed with the anolyte supplied from the anolyte supply pipe 18 provided in the electrolytic cell and ejected into the anode chamber. Electrolysis is performed at the anode.
[0023]
FIG. 2 is a view for explaining a flat spring-like body of the present invention.
2A is a perspective view, FIG. 2B is a plan view illustrating the manufacturing process, and FIG. 2C is a cross-sectional view illustrating the manufacturing process.
As shown in FIG. 2A, a plurality of pairs of comb-like members in which the flat spring-like bodies 11 undulate in an oblique direction are attached to the plate-like flat spring-like body holding member 12. In the figure, three pairs of comb-like members are shown. Adjacent flat spring-like bodies 11 forming each pair of comb-like members extend in opposite directions and are inserted into each other.
The flat spring-like body 11 can be manufactured by joining the spring-like body to the flat plate by an arbitrary method. However, as shown below, the flat spring-like body 11 is easily manufactured by cutting the plate material and then raising it in one direction. be able to.
[0024]
As shown in FIG. 2 (B), the flat plate 25 is cut along the cutting line 27 of the flat spring-like body forming portion 26, and the member is removed by leaving the flat spring-like body forming portion 26 to remove the opening 28. Form. Next, as shown in FIG. 2C, the flat spring-like body 11 is formed by applying a force F to the flat-plate spring-like body forming portion 26 and raising the flat spring-like body forming portion 26 from the flat plate 25 in one direction. .
When the remaining portion 29 is left between the openings 28 formed between the flat spring-like body forming portions 26 and the flat spring-like body is projected onto the flat spring-like body holding member, the adjacent flat springs Flat spring-like body holding members are present in the gaps between the shaped bodies. The flat spring-like body holding member existing in the gap between the flat spring-like bodies serves to increase the rigidity of the flat spring-like body holding member 12, and the movement of the cathode in contact with the flat spring-like body 11 is made smoother. I can do it.
Further, the remaining portion 29 may not be provided between all the openings 28, and can be determined in consideration of the rigidity of the member.
[0025]
FIG. 3 is a view for explaining another embodiment of the flat spring-like body of the present invention.
3A is a perspective view, and FIG. 3B is a diagram for explaining a horizontal section of an electrode chamber of an electrolytic cell using the flat spring-like body of FIG. 3A.
A plurality of pairs of comb-shaped members in which the flat spring-like bodies 11 undulate in an oblique direction are attached to the plate-like flat spring-like body holding member 12. In the figure, three pairs of comb-like members are shown. Adjacent flat spring-like bodies 11 forming each pair of comb-like members extend in opposite directions and are inserted into each other.
Further, the flat spring-like body 11 has a contact portion 11A in which a tip portion that contacts the electrode is bent substantially in parallel to the flat spring-like body holding member 12 side, and the contact portion 11A is in contact with the electrode. .
[0026]
As shown in FIG. 3 (B), when the cathode chamber 9 is provided with a flat spring-like body having a contact portion 11A substantially parallel to the flat spring-like body holding member 12 of the present invention on the cathode side, When the distance between the cathode 8 and the flat spring-like body holding member 12 is reduced, the movement between the cathode 8 and the flat spring-like body 11 becomes smooth, and the adjustment of the distance between the electrodes is performed smoothly. The conductive connection between the electrode and the flat spring-like body is also ensured.
[0027]
FIG. 4 is a diagram for explaining another embodiment of the flat spring-like body of the present invention.
4A is a perspective view, FIG. 4B is a plan view for explaining an example of the manufacturing process, FIG. 4C is a cross-sectional view of a flat spring-like body, and FIG. D) is a sectional view for explaining another example of a flat spring-like body.
As shown in FIG. 4A, a plurality of pairs of comb-like members in which the flat spring-like bodies 11 undulate in an oblique direction are attached to the flat flat spring-like body holding member 12. In the figure, three pairs of comb-like members are shown. Adjacent flat spring-like bodies 11 forming each pair of comb-like members extend in opposite directions and are inserted into each other.
[0028]
As shown in FIG. 4 (B), the flat spring 25 is cut along the cutting line 27 on the flat plate 25 along the cutting line 27, and the member is removed by punching leaving the flat spring forming portion 26. An opening 28 is formed. Further, a folding line 26A is formed in the flat spring-like body forming portion 26 in order to form a contact portion at the tip end portion of the flat spring-like body.
[0029]
As shown in FIG. 4C, the flat spring-like body forming portion 26 applies a force F to raise the flat spring-like body forming portion 26 from the flat plate 25 in one direction to form a flat spring-like body. The bent portion 26B is bent along the fold line 26A so as to be parallel to the flat plate 25.
[0030]
Further, as shown in FIG. 4D, a curved bent portion 26C may be formed using a folding line 26A.
Further, when the flat spring-like body is projected onto the flat spring-like body holding member, the strength holding portion 12C in which the flat spring-like body holding portion exists is provided in the gap between the adjacent flat spring-like bodies. . In the example shown in FIG. 4, the strength holding portion 12 </ b> C is provided for each of the five sets of flat spring-like bodies 11 that extend in opposite directions to increase the rigidity of the flat spring-like body holding member 12. The interval at which the strength holding portion 12C is provided can be determined in consideration of the rigidity of the member forming the flat spring-like body holding portion.
Further, by arranging the strength holding portions 12C at intervals as described above, it is possible to arrange a larger number of contact portions between the flat spring-like body and the electrode per unit area than those shown in FIG. Thus, the electrical loss accompanying the increase in the energization amount can be reduced.
In addition, the flat spring-like body holding member provided with the flat spring-like body of the present invention can be continuously produced by a press molding machine by bending and cutting the member from the plate-like body.
[0031]
FIG. 5 is a diagram for explaining another embodiment of the electrolytic cell of the present invention, and FIG. 5 (A) is a diagram in which a part of the electrolytic cell viewed from the cathode side is cut away, and FIG. FIG. 5A is a cross-sectional view taken along line BB ′ in FIG.
The bipolar electrolytic cell unit 2 of the ion exchange membrane electrolytic cell is composed of an anode chamber 6 and a cathode chamber 9, and the plate-like anode chamber partition 4 and cathode chamber partition 7 are electrically and mechanically joined. It is integrated.
The cathode compartment wall 7 is provided with a plurality of pairs of comb-like flat spring bodies in which a large number of flat spring-like bodies 11 are provided in a comb shape and the comb-like flat spring-like bodies 11 facing each other are inserted into each other. The flat spring-like body holding member 12 is arranged and energized, and the adjacent flat spring-like bodies are inserted into each pair of comb-like flat spring-like bodies.
[0032]
Further, the flat spring-like body holding member 12 is joined by forming a belt-like joining portion 20, and the cathode chamber partition wall 7 and the flat spring-like body holding member 12 are closely joined to each other at the belt-like joining portion 20. The flat spring-like body holding member 12 includes a vertical portion 12A connected to the joint portion 20, and a horizontal portion 12B parallel to the cathode chamber partition intersecting at right angles to the vertical portion, and the horizontal portion 12B. The flat plate spring-like body 11 is provided by inserting the flat plate-like spring bodies 11 facing each other in a comb shape, and a catholyte circulation passage 21 is formed between the flat plate spring-like body holding member 12 and the cathode chamber partition wall 7. Has been.
[0033]
As a result, a part of the electrolytic solution obtained by gas-liquid separation of the gas-liquid mixed fluid that has risen in the space on the cathode 8 surface side flows out of the electrolytic cell through the catholyte discharge pipe 23 and a part of the electrolytic solution. The catholyte descends the liquid circulation passage 21, flows out into the space on the cathode surface side at the lower part of the cathode chamber, is supplied from the catholyte supply pipe 22 provided in the electrolytic cell, and is ejected from the catholyte supply port 24 into the cathode chamber. And undergoes electrolysis at the cathode.
Thus, since the circulation of the electrolyte solution in the cathode chamber is promoted, the concentration distribution of the catholyte becomes small, and the electrolysis becomes efficient.
[0034]
On the other hand, an anode holding member 13 is bonded to the anode chamber partition 4 by forming a band-shaped joint portion 14, and the anode chamber partition 4 and the anode holding member 13 are closely bonded to each other at the band-shaped bonding portion 14. Yes.
A protruding strip portion 15 is formed between adjacent strip-shaped joint portions 14 of the anode holding member 13, and the protruding strip portion 15 and the strip-shaped joint portion 14 are joined by a flat portion 16. The anode 5 is joined to the convex portion 15 at a plurality of locations.
An anolyte circulation passage 17 is formed in a space formed by the anode holding member 13, the anode chamber partition wall 4, and the adjacent band-shaped joint portion 14.
[0035]
A part of the electrolytic solution of the electrolytic solution obtained by gas-liquid separation of the gas-liquid mixed fluid rising in the space on the anode 5 surface side of the anode holding member 13 in the upper part of the anode chamber flows out from the anolyte discharge pipe 19. Then, the anolyte circulation passage 17 descends, flows out into the space on the anode surface side below the anode electrode chamber, is supplied from the anolyte supply pipe 18 provided in the electrolytic cell, and is mixed with the anolyte ejected into the anode chamber. And undergoes electrolysis on the anode surface.
[0036]
FIG. 6 is a diagram illustrating the flat spring-like body holding member shown in FIG. FIG. 6A is a perspective view, and FIG. 6B and FIG. 6C are diagrams illustrating a cross-section when mounted on an electrolytic cell.
The flat spring-like body holding member 12 has a joint portion 20 with the cathode compartment partition, and a longitudinal portion 12A connected to the joint portion and a transverse portion 12B parallel to the cathode compartment partition that intersects the longitudinal portion at a right angle. The lateral portion 12B has a pair of members formed by inserting the flat spring bodies 11 in a comb shape and inserting the opposing comb-shaped flat spring bodies 11 into each other. In the flat spring-like body holding member 12, a catholyte circulation passage 21 is formed between the cathode chamber partition walls 7 by the vertical portion 12A and the horizontal portion 12B.
[0037]
Before assembling the electrolytic cell, as shown in FIG. 6 (B), the cathode 8 is located away from the cathode chamber partition wall 7 due to the repulsive force of the flat spring-like body 11, but after assembling the electrolytic cell. Can obtain an electrolytic cell in which the distance from the counter electrode is maintained at a predetermined position.
The flat spring-like body holding member 11 can be manufactured by molding the member forming the flat spring-like body 11 into a convex body, as shown in FIG. It can be manufactured by forming the flat spring-like body 11 after forming the body.
[0038]
Further, even when a predetermined number of flat spring-like body holding members 12 made of one convex body are joined to the cathode chamber partition wall 7 of the electrolytic cell, a flat spring shape having several convex bodies is provided. A predetermined number of body holding members may be joined, or one flat spring-like body holding member having a size equivalent to that of the cathode chamber partition may be manufactured and disposed on the cathode chamber partition. .
[0039]
FIG. 7 is a view for explaining another flat spring holding member according to the embodiment of the present invention. FIG. 7A is a perspective view, and FIG. 7B and FIG. 7C are diagrams for explaining a cross section when mounted on an electrolytic cell.
The flat spring-like body holding member 12 has a joint portion 20 with the cathode compartment partition, and a longitudinal portion 12A connected to the joint portion and a transverse portion 12B parallel to the cathode compartment partition that intersects the longitudinal portion at a right angle. In the lateral portion 12B, a flat spring 11 is provided in a comb shape and a pair of comb flat springs 11 facing each other are inserted into each other. Further, in the flat spring-like body holding member 12, a catholyte circulation passage 21 is formed between the cathode chamber partition walls 7 by the vertical portion 12A and the horizontal portion 12B.
[0040]
The flat spring body 11 has a contact portion 11A formed in parallel with the flat spring body holding portion at the tip, and the electrode surface and the contact portion 11A are in contact with each other to form an electrical connection. .
When the flat spring-like body is projected onto the flat spring-like body holding member, the strength holding portion 12C in which the flat spring-like body holding member exists is formed in the gap between the adjacent flat spring-like bodies. .
Before the assembly of the electrolytic cell, as shown in FIG. 7B, the contact portion 11A of the flat spring-like body 11 is in contact with the negative electrode 8 due to the repulsive force of the flat spring-like body 11. Is held at a position away from the cathode chamber partition wall 7, but as shown in FIG. 7C, after the electrolytic cell is assembled, an electrolytic cell is formed in which the distance from the counter electrode is maintained at a predetermined position. .
[0041]
In the same manner as shown in FIG. 2, the flat spring-like body holding member 12 is formed by pressing a flat spring-like body by press molding, and after performing cutting or the like, the flat spring-like body holding member 12 is flat. The body 11 can be formed.
Further, even when a predetermined number of flat spring-like body holding members 12 made of one convex body are joined to the cathode chamber partition wall 7 of the electrolytic cell, a flat spring shape having several convex bodies is provided. A predetermined number of body holding members may be joined, or one flat spring-like body holding member having a size equivalent to that of the cathode chamber partition may be manufactured and disposed on the cathode chamber partition. .
[0042]
FIG. 8 is a diagram for explaining another embodiment of the present invention, in which a part of the electrolytic cell is cut by a horizontal surface.
The electrolytic cell shown in FIG. 8A is an electrolytic cell in which the structure of the anode chamber is different from the electrolytic cell shown in FIG. 1, and a cross section taken along the line AA ′ in FIG. It is a figure to do. Further, the electrolytic cell shown in FIG. 8B is different from the electrolytic cell shown in FIG. 5 in the structure on the anode chamber side, and is a cross section taken along the line BB ′ in FIG. FIG. 8C and 8D are different from those shown in FIGS. 8A and 8B in the shape of the flat spring-like body. Since each electrolytic cell has the same structure as the cathode chamber in FIGS. 1C and 5B, only the anode chamber will be described.
[0043]
In the electrolytic cell, the anode holding member 13 provided in the anode chamber partition 4 is joined by forming a strip-shaped joint portion 14, and the vertical portion 13 </ b> A connected to the strip-shaped joint portion 14 is perpendicular to the vertical portion. The anode 5 is attached to the convex portion 13C provided in the lateral portion 13B, and the longitudinal portion 13A of the anode holding member 13 is formed. The lateral portion 13B forms an anolyte circulation passage 17 between the anode chamber partition walls 4 to enhance the circulation of the anolyte.
8 (C) and 8 (D), the distal end portion of the flat spring-like body 11 is bent to form a contact portion 11A, and the lateral portion 12B of the flat spring-like body holding member 12 is formed. A substantially parallel contact portion 11A is formed. As a result, the contact between the cathode 8 and the flat spring-like body 11 is made smooth when the electrolytic cell is assembled.
In the above description, the electrolytic cell of the present invention is not limited to the plate spring-like body holding member joined to the partition wall of the bipolar electrolytic cell, but can be installed on other current collectors and holding members. is there.
[0044]
FIG. 9 is a diagram for explaining another embodiment of the present invention, and is a diagram for explaining an example in which a flat spring is provided in a monopolar electrolytic cell.
FIG. 9A is a diagram in which a part of a unit electrolytic cell of a filter press type monopolar electrolytic cell is cut out, and FIG. 9B is a CC ′ line in FIG. 9A. It is sectional drawing cut | disconnected.
It is a figure explaining the case where the conductor 33 is engaged with the electrolytic cell frame 32 of the monopolar unit electrolytic cell 31, and a unit electrolytic cell is a cathode chamber. In the conductor 33, an electrolytic downflow passage is formed inside, and a conductive connection is formed between the conductor 33 and the cathode side current collector 34, and the cathode 33 holds the cathode side current collector 34. Liquid circulation energizing means 35 is provided.
The cathode-side current collector 34 is made of a porous member such as expanded metal, and has a structure in which an electrolytic solution freely flows inside the unit electrolytic cell. A flat plate spring holding member 12 provided with a large number of flat plate springs 11 is joined to the cathode current collector 34. The flat spring-like body 11 is in contact with the cathode 8 to form a conductive connection, and the electrode can be adjusted in a direction perpendicular to the electrode surface.
[0045]
The flat spring-like body holding member 12 is provided with a cathode-side current collector 12 by widening the area of the opening 28 formed by removing the member when the flat spring-like body 6 is produced. When attached to the body 34, the electrolyte solution is circulated through the opening 28 of the flat spring-like body holding member 12.
Further, in the electrolytic cell, the electrolytic solution containing bubbles rising along the electrode surface descends in the electrolytic solution circulation energizing means 35 after separating the gas in the upper portion of the electrolytic solution, and the catholyte supply pipe 36 and the catholyte supplied through the catholyte supply nozzle 37 are electrolyzed in the electrolytic cell and discharged from the catholyte outlet 38.
In the above description, the flat spring-like body and the flat spring-like body holding member have been described as being provided on the cathode side, but may be provided not only on the cathode side but also on the anode side.
[0046]
When provided on the cathode side, nickel, nickel alloy, stainless steel, etc. exhibiting good corrosion resistance can be used in the environment inside the cathode chamber, and the cathode, nickel, nickel alloy porous body, net-like body, expander, etc. A dead metal, or a base material containing a catalyst such as a platinum group metal-containing layer, a Raney nickel-containing layer, or an activated carbon-containing nickel layer formed on the surface to reduce the hydrogen overvoltage can be used.
[0047]
Moreover, when providing in an anode side, thin film forming metals, such as titanium, a tantalum, a zirconium, or these alloys can be used. As the anode, an anode in which a coating of an electrocatalyst substance containing a platinum group metal or an oxide of a platinum group metal is formed on the surface of a thin film forming metal such as titanium, tantalum, or zirconium, or an alloy thereof can be used. .
Further, the size of the flat spring-like body can be determined according to the electrode area of the electrolytic cell, etc., and the thickness is 0.2 mm to 0.5 mm, the width is 2 mm to 10 mm, and the length is 20 mm to 50 mm. be able to.
[0048]
When the electrolytic cell of the present invention is used for electrolysis of an aqueous solution of an alkali metal halide, for example, electrolysis of saline, saturated saline is supplied to the anode chamber, and water or dilute sodium hydroxide is supplied to the cathode chamber. The aqueous solution is supplied, electrolyzed at a predetermined decomposition rate, and then taken out from the electrolytic cell.
Also, in the electrolysis using saline ion exchange membrane electrolytic cell, the electrolysis is performed with the pressure in the cathode chamber kept higher than the pressure in the anode chamber, and the ion exchange membrane is operated in close contact with the anode. However, since the cathode is held by a flexible flat spring-like body, electrolysis can be performed by bringing the cathode close to a predetermined distance on the surface of the ion exchange membrane. Further, even when the pressure on the anode chamber side becomes large at the time of abnormality, the flat spring-like body has a large restoring force, and after the pressure is removed, an operation with a predetermined interval is possible.
[0049]
【The invention's effect】
According to the ion exchange membrane electrolytic cell of the present invention, since at least one of the electrodes is held by the flat spring-like bodies inserted into each other, the distance between the electrodes is set to a predetermined value without causing lateral displacement in the surface direction. An ion-exchange membrane electrolytic cell that can be operated by returning to its original form after the pressure is removed even when pressed from the counter electrode side when the pressure is abnormal can do.
[Brief description of the drawings]
FIG. 1 is a view for explaining an embodiment of an electrolytic cell of the present invention.
FIG. 2 is a diagram illustrating a flat spring-like body according to the present invention.
FIG. 3 is a view for explaining another embodiment of the flat spring-like body of the present invention.
FIG. 4 is a view for explaining another embodiment of the flat spring-like body of the present invention.
FIG. 5 is a view for explaining another embodiment of the electrolytic cell of the present invention.
6 is a view for explaining the flat spring-like body holding member shown in FIG. 5. FIG.
FIG. 7 is a view for explaining another flat spring-like body holding member according to an embodiment of the present invention.
FIG. 8 is a diagram for explaining another embodiment of the present invention, in which a part of the electrolytic cell is cut by a horizontal surface.
FIG. 9 is a diagram for explaining another embodiment of the present invention, and is a diagram for explaining an example in which a flat spring is provided in a monopolar electrolytic cell.
FIG. 10 is a diagram for explaining an electrolytic cell provided with a conventional flat spring-like body.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ion exchange membrane electrolytic cell, 2 ... Electrolytic cell unit, 3 ... Ion exchange membrane, 4 ... Anode chamber partition, 5 ... Anode, 6 ... Anode chamber, 7 ... Cathode chamber partition, 8 ... Cathode, 9 ... Cathode chamber, DESCRIPTION OF SYMBOLS 11 ... Flat spring-like body, 12 ... Flat spring-like body holding member, 12A ... Longitudinal part, 12B ... Lateral part, 12C ... Strength holding part, 13 ... Anode holding member, 14 ... Joint part, 15 ... Convex line part , 16 ... plane part, 17 ... anolyte circulation path, 18 ... anolyte supply pipe, 19 ... anolyte discharge pipe, 20 ... junction, 21 ... catholyte circulation path, 22 ... catholyte supply pipe, 23 ... catholyte Exhaust pipe, 24 ... Catholyte supply port, 25 ... Flat plate, 26 ... Flat spring-like body forming part, 26A ... Folding line, 26B ... Bending part, 26C ... Curved bending part, 27 ... Cutting line, 28 ... Opening part, 29 ... remaining part, 31 ... unit electrolytic cell, 32 ... electrolytic cell frame, 33 ... conductor, 34 ... shade Side current collector, 35 ... Electrolyte circulation energizing means, 36 ... Catholyte supply pipe, 37 ... Catholyte supply nozzle, 38 ... Catholyte discharge port, 40 ... Anode chamber side gas-liquid separation means, 41 ... Cathode chamber side gas Liquid separation means, 51 ... electrolytic cell, 52 ... anode chamber, 53 ... cathode chamber, 54 ... anode chamber partition, 55 ... cathode chamber partition, 56 ... anode rib, 57 ... cathode rib, 58 ... anode mounting substrate, 59 ... Anode, 60 ... Flat spring, 61 ... Cathode holding member, 62 ... Cathode, 63 ... Ion exchange membrane

Claims (7)

イオン交換膜電解槽において、少なくとも一方の電極は、電極室内に設けた電極隔壁上に配置した平板ばね状体保持部材から傾斜して延びる複数対の櫛状の平板ばね状体と接触して通電されており、各対の櫛状の平板ばね状体は、隣接する平板ばね状体が相互に対向して差し込まれて構成されたことを特徴とするイオン交換膜電解槽。In the ion exchange membrane electrolytic cell, at least one electrode is energized by contacting with a plurality of pairs of comb-like flat springs extending from the flat spring holding member disposed on the electrode partition provided in the electrode chamber. An ion-exchange membrane electrolytic cell characterized in that each pair of comb-like flat springs is formed by inserting adjacent flat springs facing each other. 各対の櫛状の平板ばね状体の相互に差し込まれた長さが同一の長さであることを特徴とする請求項1記載のイオン交換膜電解槽。2. The ion exchange membrane electrolytic cell according to claim 1, wherein the length of each pair of comb-shaped flat springs inserted into each other is the same. 平板ばね状体は、先端部に平板ばね状体保持部材側に折り曲げられた接触部を有し、平板ばね状体の接触部と電極が接触したことを特徴とする請求項1または2記載のイオン交換膜電解槽。3. The flat spring-like body has a contact portion bent toward the flat-plate spring-like body holding member at the tip, and the contact portion of the flat spring-like body and the electrode are in contact with each other. Ion exchange membrane electrolytic cell. 櫛状の平板ばね状体の平板ばね状体保持部材への投影面には、開口部が存在し、隣接する平板ばね状体の間の投影面には平板ばね状体保持部材が存在することを特徴とする請求項1ないし3のいずれか1項に記載のイオン交換膜電解槽。There is an opening on the projection surface of the comb-like flat spring-like body onto the flat-plate spring-like body holding member, and there is a flat-plate spring-like body holding member on the projection plane between adjacent flat spring-like bodies. The ion exchange membrane electrolytic cell according to any one of claims 1 to 3, wherein: 櫛状の平板ばね状体の平板ばね状体保持部材への投影面には、開口部が存在し、隣接する複数個の平板ばね状体の外側の投影面に平板ばね状体保持部材が存在することを特徴とする請求項1ないし4のいずれか1項に記載のイオン交換膜電解槽。There is an opening in the projection surface of the comb-shaped flat spring body on the flat spring body holding member, and there is a flat spring body holding member on the projection surface outside the adjacent flat spring bodies. The ion exchange membrane electrolytic cell according to any one of claims 1 to 4, wherein 平板ばね状体保持部材は、平板状の電極室隔壁に帯状の接合部によって接合された、電極室隔壁との間に空間を形成した電極室隔壁と平行部に形成されたものであり、電極室隔壁との間に形成した空間を電解液の下降流路とし、電極側には電解液の上昇流路を形成したことを特徴とする請求項1ないし5のいずれか1項に記載のイオン交換膜電解槽。The flat spring-like body holding member is formed in a parallel portion with the electrode chamber partition wall formed between the electrode chamber partition wall and the electrode chamber partition wall bonded to the flat electrode chamber partition wall by the strip-shaped bonding portion. The ion according to any one of claims 1 to 5, wherein a space formed between the chamber partition walls is used as a descending flow path for the electrolytic solution, and an ascending flow path for the electrolytic solution is formed on the electrode side. Exchange membrane electrolytic cell. 平板ばね状体が結合された平板ばね状体保持部材は、平板状ばね状体が接触する電極よりも開口部の径が大きな多孔性の部材に接合されたことを特徴とする請求項1ないし5のいずれか1項に記載のイオン交換膜電解槽。2. The flat spring-shaped body holding member to which the flat spring-shaped body is coupled is joined to a porous member having a larger opening diameter than an electrode with which the flat spring-shaped body contacts. 6. The ion exchange membrane electrolytic cell according to any one of 5 above.
JP2003098900A 2002-04-05 2003-04-02 Ion exchange membrane electrolytic cell Expired - Lifetime JP3501453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098900A JP3501453B2 (en) 2002-04-05 2003-04-02 Ion exchange membrane electrolytic cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-104168 2002-04-05
JP2002104168 2002-04-05
JP2003098900A JP3501453B2 (en) 2002-04-05 2003-04-02 Ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JP2004002993A true JP2004002993A (en) 2004-01-08
JP3501453B2 JP3501453B2 (en) 2004-03-02

Family

ID=30446705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098900A Expired - Lifetime JP3501453B2 (en) 2002-04-05 2003-04-02 Ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP3501453B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070322A (en) * 2004-09-02 2006-03-16 Honda Motor Co Ltd High pressure hydrogen production device
JP2009523906A (en) * 2006-01-16 2009-06-25 ウデノラ・ソチエタ・ペル・アツィオーニ Elastic current distributor for filtration tanks
US7754058B2 (en) 2006-06-05 2010-07-13 Chlorine Engineers Corp., Ltd. Ion exchange membrane electrolyzer
WO2015068579A1 (en) 2013-11-06 2015-05-14 ダイソー株式会社 Ion exchange membrane electrolytic bath and elastic body
JP2017526808A (en) * 2014-06-16 2017-09-14 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Gas diffusion layer, electrochemical cell including the gas diffusion layer, and electrolysis apparatus
WO2017217427A1 (en) 2016-06-14 2017-12-21 Thyssenkrupp Uhde Chlorine Engineers Gmbh Electrolytic cell including elastic member
JP2018041570A (en) * 2016-09-06 2018-03-15 日本特殊陶業株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
WO2020022440A1 (en) * 2018-07-27 2020-01-30 株式会社大阪ソーダ Electroconductive elastic body for electrolytic bath, and electrolytic bath
KR20210092299A (en) * 2019-03-18 2021-07-23 아사히 가세이 가부시키가이샤 Elastic mats and electrolytic cells

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070322A (en) * 2004-09-02 2006-03-16 Honda Motor Co Ltd High pressure hydrogen production device
JP2009523906A (en) * 2006-01-16 2009-06-25 ウデノラ・ソチエタ・ペル・アツィオーニ Elastic current distributor for filtration tanks
JP2014088629A (en) * 2006-01-16 2014-05-15 Uhdenora Spa Elastic electric current distributor for filter tank
US7754058B2 (en) 2006-06-05 2010-07-13 Chlorine Engineers Corp., Ltd. Ion exchange membrane electrolyzer
US10208388B2 (en) 2013-11-06 2019-02-19 Osaka Soda Co., Ltd. Ion exchange membrane electrolyzer and elastic body
WO2015068579A1 (en) 2013-11-06 2015-05-14 ダイソー株式会社 Ion exchange membrane electrolytic bath and elastic body
KR20160083844A (en) 2013-11-06 2016-07-12 가부시키가이샤 오사카소다 Ion exchange membrane electrolyzer and elastic body
JP2017526808A (en) * 2014-06-16 2017-09-14 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Gas diffusion layer, electrochemical cell including the gas diffusion layer, and electrolysis apparatus
US10294572B2 (en) 2014-06-16 2019-05-21 Siemens Aktiengesellschaft Gas diffusion layer, electrochemical cell having such a gas diffusion layer, and electrolyzer
JP2017222897A (en) * 2016-06-14 2017-12-21 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 Electrolytic tank
WO2017217427A1 (en) 2016-06-14 2017-12-21 Thyssenkrupp Uhde Chlorine Engineers Gmbh Electrolytic cell including elastic member
US10988848B2 (en) 2016-06-14 2021-04-27 Thyssenkrupp Uhde Chlorine Engineers Gmbh Electrolytic cell including elastic member
JP2018041570A (en) * 2016-09-06 2018-03-15 日本特殊陶業株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
WO2020022440A1 (en) * 2018-07-27 2020-01-30 株式会社大阪ソーダ Electroconductive elastic body for electrolytic bath, and electrolytic bath
KR20210092299A (en) * 2019-03-18 2021-07-23 아사히 가세이 가부시키가이샤 Elastic mats and electrolytic cells
EP3943642A4 (en) * 2019-03-18 2022-09-14 Asahi Kasei Kabushiki Kaisha Elastic mat and electrolytic tank
AU2020240988B2 (en) * 2019-03-18 2023-02-02 Asahi Kasei Kabushiki Kaisha Elastic mattress and electrolyzer
KR102636392B1 (en) 2019-03-18 2024-02-13 아사히 가세이 가부시키가이샤 Elastic mats and electrolyzers

Also Published As

Publication number Publication date
JP3501453B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
KR100509300B1 (en) Ion exchange membrane electrolytic cell
JP4305929B2 (en) Ion exchange membrane electrolytic cell
JP4198726B2 (en) Ion exchange membrane electrolytic cell
JP4121137B2 (en) Ion exchange membrane electrolytic cell
JPS6024186B2 (en) Alkali metal halide electrolysis method
TW200409834A (en) Bipolar, zero-gap type electrolytic cell
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
CA3021831C (en) Electrolytic cell including elastic member
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
JPH0696786A (en) Electrolytic tank and cellular structure for fuel cell
JPH08507327A (en) Electrode device for gas generation electrolysis in diaphragm type electrolytic cell and its use
JP3501453B2 (en) Ion exchange membrane electrolytic cell
JPH1081986A (en) Horizontal double-polarity electrolytic cell
US7048838B2 (en) Ion exchange membrane electrolyzer
JPS59133384A (en) Electrolytic cell
JP2789288B2 (en) Electrode
JP5819790B2 (en) Electrolytic cell and electrolytic cell
JP3807676B2 (en) Ion exchange membrane electrolytic cell
JP7202759B2 (en) Elastic mat and electrolytic bath
JP7122181B2 (en) Electrode structure, electrolytic cell and electrolytic bath
JP3803248B2 (en) Bipolar ion exchange membrane electrolytic cell
JP3437123B2 (en) Ion exchange membrane type electrolytic cell and electrolytic method
JPS58217684A (en) Electrode body
JPS5881983A (en) Bipolar type electrolytic tank

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

R150 Certificate of patent or registration of utility model

Ref document number: 3501453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term