JP2003041388A - Electrolysis cell with ion exchange membrane and electrolysis method - Google Patents

Electrolysis cell with ion exchange membrane and electrolysis method

Info

Publication number
JP2003041388A
JP2003041388A JP2001231624A JP2001231624A JP2003041388A JP 2003041388 A JP2003041388 A JP 2003041388A JP 2001231624 A JP2001231624 A JP 2001231624A JP 2001231624 A JP2001231624 A JP 2001231624A JP 2003041388 A JP2003041388 A JP 2003041388A
Authority
JP
Japan
Prior art keywords
exchange membrane
gas diffusion
ion exchange
diffusion electrode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001231624A
Other languages
Japanese (ja)
Inventor
Koji Saiki
幸治 斎木
Kenji Nonomura
健二 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASS FOR PROGRESS OF NEW CH
ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY
Original Assignee
ASS FOR PROGRESS OF NEW CH
ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASS FOR PROGRESS OF NEW CH, ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY filed Critical ASS FOR PROGRESS OF NEW CH
Priority to JP2001231624A priority Critical patent/JP2003041388A/en
Publication of JP2003041388A publication Critical patent/JP2003041388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolysis cell with a cation exchange membrane, which enables operation in low voltage and high current efficiency, and provide an electrolysis method. SOLUTION: The vertical type electrolysis cell with the ion exchange membrane, which arranges a gas diffusion electrode in a cathode chamber of the electrolysis cell having the ion exchange film which partitions the cell into an anode chamber and the cathode chamber, comprises arranging a drain hole for catholyte, which communicates with a region formed between the ion exchange membrane and the gas diffusion cathode, at a lower part of the cathode chamber, and forming an opening in the gas diffusion electrode, in order to supply moisture to a boundary between the gas diffusion electrode and the ion exchange membrane, from a gas chamber of the gas diffusion electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス拡散電極を使
用した塩化ナトリウム水溶液等のアルカリ金属ハロゲン
化物水溶液の電気分解用のイオン交換膜電解槽およびイ
オン交換膜電解方法に関し、とくに効率的な電解方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion exchange membrane electrolytic cell and an ion exchange membrane electrolysis method for electrolyzing an aqueous solution of an alkali metal halide such as an aqueous solution of sodium chloride using a gas diffusion electrode, and particularly efficient electrolysis. Regarding the method.

【0002】[0002]

【従来の技術】食塩水に代表されるアルカリ金属ハロゲ
ン化物水溶液の電気分解は陽イオン交換膜を使用したイ
オン交換膜電解法によって行われている。イオン交換膜
法による電気分解方法では、工程における省エネルギー
も進んでいる。しかしながら併産される水素に関しては
化学原料等として有効に利用されている場合もあるが、
燃料として利用したり、あるいは大気中へ放棄処理され
るといった高度な用途がない立地条件の工場がある。陰
極として一般的な水素発生電極に代えて酸素ガス拡散電
極を用いた場合には、陰極においては水素は発生せず、
理論的には水の電気分解電圧に相当する1.2Vの電気
分解電圧の低下が可能であり、実用的な電流密度の範囲
において0.9Vという極めて大きな電気分解電圧の低
下が得られる。したがって、ガス拡散電極を用いた場合
には電気分解に要する電気エネルギーを減少させること
ができるので、酸素ガス拡散電極を陰極とした電気分解
方法は、水素の高度な利用条件のない工場においては極
めて有効な電気分解方法である。
2. Description of the Related Art Electrolysis of an aqueous solution of an alkali metal halide typified by saline is carried out by an ion exchange membrane electrolysis method using a cation exchange membrane. In the electrolysis method using the ion exchange membrane method, energy saving in the process is also advanced. However, the hydrogen produced by the co-production may be effectively used as a chemical raw material, etc.
There are some factories whose location is not so high that they are used as fuel or abandoned in the atmosphere. When an oxygen gas diffusion electrode is used instead of a general hydrogen generation electrode as the cathode, hydrogen is not generated at the cathode,
Theoretically, the electrolysis voltage of 1.2 V corresponding to the electrolysis voltage of water can be reduced, and an extremely large electrolysis voltage of 0.9 V can be obtained in a practical current density range. Therefore, when a gas diffusion electrode is used, the electric energy required for electrolysis can be reduced, so the electrolysis method using the oxygen gas diffusion electrode as a cathode is extremely difficult in a factory without advanced utilization conditions for hydrogen. It is an effective electrolysis method.

【0003】ガス拡散電極を用いた従来のイオン交換膜
電解槽においては、ガス拡散電極またはその周囲を通じ
て電解液がガス室側に漏洩することが問題となってい
た。こうした3室型のガス室を有するイオン交換膜電解
槽の問題点を解決する方法として、イオン交換膜によっ
て区画した陰極室内において、ガス拡散電極の対極と面
する側には親水性の液体透過材を設け、ガス室に酸素含
有気体を供給すると共に、電解槽で生成したアルカリ金
属水酸化物を下部から取り出すことによってイオン交換
膜とガス拡散電極との間に水酸化ナトリウムが滞留する
時間を短くし、ガス拡散電極の背面側からの酸素含有気
体の供給を円滑に行う2室型のイオン交換膜電解槽(特
開平11−124698号公報等)が提案されている。
2室型のガス拡散電極を有するイオン交換膜電解槽は、
ガス拡散電極のガス室から陰極室で生成した液体の取り
出しを行うことにより電解槽の構造が簡単なものとな
り、商業的な電解槽においては極めて有利なものとな
る。
In a conventional ion exchange membrane electrolytic cell using a gas diffusion electrode, it has been a problem that the electrolyte leaks to the gas chamber side through the gas diffusion electrode or its periphery. As a method of solving the problems of the ion exchange membrane electrolytic cell having such a three-chamber gas chamber, a hydrophilic liquid permeable material is provided on the side facing the counter electrode of the gas diffusion electrode in the cathode chamber partitioned by the ion exchange membrane. The oxygen-containing gas is supplied to the gas chamber and the alkali metal hydroxide generated in the electrolytic cell is taken out from the lower part to shorten the time during which sodium hydroxide stays between the ion exchange membrane and the gas diffusion electrode. However, a two-chamber type ion-exchange membrane electrolytic cell that smoothly supplies the oxygen-containing gas from the back side of the gas diffusion electrode has been proposed (JP-A-11-124698, etc.).
An ion exchange membrane electrolytic cell having a two-chamber type gas diffusion electrode is
By taking out the liquid generated in the cathode chamber from the gas chamber of the gas diffusion electrode, the structure of the electrolytic cell becomes simple, which is extremely advantageous in a commercial electrolytic cell.

【0004】2室法での間隙の水分は大部分が陽極室か
ら移動するナトリウムイオンに同伴する電気浸透水とし
て持ち込まれる。現在の陽イオン交換膜においては、電
気浸透水はナトリウムイオン1イオン当たり4分子程度
であり、得られる水酸化ナトリウム水溶液の濃度は39
質量%前後になる。このような高濃度では陽イオン交換
膜の導電率は急低下し、槽電圧が上昇することになる。
そのため陽イオン交換膜にとって適度な濃度である32
−33質量%まで下げるために水分を追加する必要があ
る。しかも、追加する水は陽イオン交換膜・ガス拡散陰
極の間隙へ供給する必要がある。そこで、特開昭61−
250187号公報、特開平7−126880号公報に
は、ガス室へ供給する酸素に水分を含ませガス拡散電極
を通して間隙に供給する方法、陽極液の濃度を低下さ
せ、電気浸透水の量を多くする方法が提案されている。
しかしながら、前者は従来のガス拡散電極に水蒸気を透
過させることが困難であるという問題点があった。ま
た、後者では電流効率の低下等、陽イオン交換膜が本来
の性能を発揮できなくなる等の問題があった。
Most of the water in the gap in the two-chamber method is brought in as electro-osmotic water accompanied by sodium ions moving from the anode chamber. In the current cation exchange membrane, the electroosmotic water is about 4 molecules per sodium ion, and the concentration of the obtained sodium hydroxide aqueous solution is 39.
It will be around mass%. At such a high concentration, the conductivity of the cation exchange membrane drops sharply and the cell voltage rises.
Therefore, the concentration is appropriate for the cation exchange membrane 32
It is necessary to add water to reduce the content to -33% by mass. Moreover, it is necessary to supply the added water to the gap between the cation exchange membrane and the gas diffusion cathode. Therefore, Japanese Patent Laid-Open No. 61-
Japanese Patent No. 250187 and Japanese Patent Laid-Open No. 7-126880 disclose a method in which oxygen supplied to a gas chamber contains water and is supplied to a gap through a gas diffusion electrode, the concentration of anolyte is reduced, and the amount of electroosmotic water is increased. The method of doing is proposed.
However, the former has a problem that it is difficult to allow water vapor to pass through the conventional gas diffusion electrode. Further, in the latter case, there are problems that the cation exchange membrane cannot exhibit its original performance, such as a decrease in current efficiency.

【0005】また、湿った酸素含有気体を供給するとと
もに、濃度160〜190g/lの塩化ナトリウム水溶
液を供給することが特許第3073968号公報に記載
されている。ところが、イオン交換膜電解槽に用いられ
ている陽イオン交換膜は、200g/l程度の濃度の食
塩水を用いた場合に最高の性能が得られるように設計さ
れており、濃度の低い食塩水を用いた場合には、充分な
性能が得られないばかりか、陽イオン交換膜の寿命等に
悪影響を及ぼすことも考えられる。また、米国特許43
32662号には、穿孔したガス拡散電極を使用し、陽
極、イオン交換膜、ガス拡散電極を密着させて食塩水を
電解し、穿孔から生成した水酸化ナトリウム水溶液を取
り出す方法について記載されているが、実施例で用いら
れている陽イオン交換膜は、イオン交換膜電解槽の開発
初期の頃のものであり、低濃度の水酸化ナトリウムの製
造用のものであり、現在の商業的なイオン交換膜電解槽
の要求を満足するものではなかった。
Further, Japanese Patent Publication No. 3073968 describes that a wet oxygen-containing gas is supplied and an aqueous sodium chloride solution having a concentration of 160 to 190 g / l is supplied. However, the cation-exchange membrane used in the ion-exchange membrane electrolyzer is designed so that the best performance can be obtained when a salt solution having a concentration of about 200 g / l is used. When used, not only is it impossible to obtain sufficient performance, but it is also possible that the life of the cation exchange membrane is adversely affected. Also, US Pat.
No. 32662 describes a method in which a perforated gas diffusion electrode is used, and an anode, an ion exchange membrane, and a gas diffusion electrode are brought into close contact with each other to electrolyze a saline solution, and an aqueous sodium hydroxide solution produced from the perforation is taken out. The cation exchange membranes used in the examples are those in the early stages of the development of the ion exchange membrane electrolyzer, which are for the production of low concentration sodium hydroxide, and are used in the current commercial ion exchange. It did not meet the requirements of the membrane electrolytic cell.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ガス拡散電
極を用いたイオン交換膜電解槽において、陽イオン交換
膜とガス拡散電極との間の間隙に酸素に混合された水分
を供給して、生成するアルカリ金属水酸化物水溶液の濃
度を陽イオン交換膜にとって好適な濃度に維持すると共
に、生成したアルカリ金属水酸化物水溶液を電解槽内か
ら速やかに取り出すことによって、過電圧の上昇を防止
し、低電圧で高電流効率での運転を可能とした陽イオン
交換膜電解槽および電解方法を提供することを課題とす
るものである。
DISCLOSURE OF THE INVENTION The present invention is an ion exchange membrane electrolytic cell using a gas diffusion electrode, in which water mixed with oxygen is supplied to the gap between the cation exchange membrane and the gas diffusion electrode. , The concentration of the produced alkali metal hydroxide aqueous solution is maintained at a concentration suitable for the cation exchange membrane, and the produced alkali metal hydroxide aqueous solution is quickly taken out from the electrolytic cell to prevent an increase in overvoltage. It is an object of the present invention to provide a cation exchange membrane electrolyzer and an electrolysis method that enable operation at low voltage and high current efficiency.

【0007】[0007]

【課題を解決するための手段】本発明の課題は、イオン
交換膜によって陽極室と陰極室に区画されたイオン交換
膜電解槽の陰極室にガス拡散電極を配置した縦型のイオ
ン交換膜電解槽において、陰極室の下部にはイオン交換
膜とガス拡散陰極との間に形成される領域に連通する陰
極液排出口を設けるとともに、ガス拡散電極にはガス拡
散電極のガス室からガス拡散電極とイオン交換膜の間に
形成される領域へ水分を供給する開口を形成したイオン
交換膜電解槽によって解決することができる。開口の大
きさの幅、もしくは径が0.5−5mmであり、隣接す
る開口間の距離が5−50mm、開口部の占有面積が電
極の投影面積の10%以下である前記のイオン交換膜電
解槽である。また、イオン交換膜によって陽極室と陰極
室に区画された縦型のイオン交換膜電解槽の陰極室にガ
ス拡散電極を配置し、陽極室へアルカリ金属塩化物水溶
液を供給し、ガス拡散陰極の背面から酸素含有気体を供
給するイオン交換膜電解方法において、ガス拡散陰極に
設けた開口から酸素含有気体に含まれる水分をイオン交
換膜とガス拡散電極との間の領域に供給するとともに、
陰極室の下部のイオン交換膜とガス拡散電極との間に形
成される領域に連通する陰極液排出開口からアルカリ金
属水酸化物水溶液を取り出しながら電気分解を行うイオ
ン交換膜電解方法である。
An object of the present invention is to provide a vertical type ion exchange membrane electrolysis in which a gas diffusion electrode is arranged in the cathode chamber of an ion exchange membrane electrolytic cell divided into an anode chamber and a cathode chamber by an ion exchange membrane. In the tank, a catholyte discharge port communicating with a region formed between the ion exchange membrane and the gas diffusion cathode is provided in the lower part of the cathode chamber, and the gas diffusion electrode is connected from the gas chamber of the gas diffusion electrode to the gas diffusion electrode. This can be solved by an ion exchange membrane electrolytic cell having an opening for supplying water to a region formed between the ion exchange membrane and the ion exchange membrane. The ion-exchange membrane, wherein the width or diameter of the openings is 0.5-5 mm, the distance between adjacent openings is 5-50 mm, and the area occupied by the openings is 10% or less of the projected area of the electrode. It is an electrolytic cell. Further, a gas diffusion electrode is arranged in the cathode chamber of a vertical ion exchange membrane electrolytic cell divided into an anode chamber and a cathode chamber by an ion exchange membrane, an alkali metal chloride aqueous solution is supplied to the anode chamber, and a gas diffusion cathode In the ion exchange membrane electrolysis method of supplying an oxygen-containing gas from the back surface, along with supplying water contained in the oxygen-containing gas from the opening provided in the gas diffusion cathode to the region between the ion exchange membrane and the gas diffusion electrode,
This is an ion exchange membrane electrolysis method in which an alkaline metal hydroxide aqueous solution is electrolyzed while taking out an aqueous alkali metal hydroxide solution from a catholyte discharge opening that communicates with a region formed between an ion exchange membrane and a gas diffusion electrode below a cathode chamber.

【0008】[0008]

【発明の実施の形態】本発明者は、従来の2室式のガス
拡散電極を用いた縦型のイオン交換膜電解槽について鋭
意検討の結果、本発明を想到したものである。すなわ
ち、ガス拡散電極に設けた開口からイオン交換膜とガス
拡散電極との界面にガス拡散電極から水分を含んだ酸素
含有気体を供給することによって、陽極室には、陽イオ
ン交換膜に好適な濃度としたアルカリ金属塩化物水溶液
を供給して電気分解を行っても界面に充分に水分が供給
されるので、生成するアルカリ金属水酸化物水溶液の濃
度を所定の範囲内とすることができ、その結果効率的な
電気分解を行うことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present invention has conceived the present invention as a result of extensive studies on a vertical type ion exchange membrane electrolytic cell using a conventional two-chamber type gas diffusion electrode. That is, by supplying an oxygen-containing gas containing water from the gas diffusion electrode to the interface between the ion exchange membrane and the gas diffusion electrode through an opening provided in the gas diffusion electrode, the anode chamber is suitable for a cation exchange membrane. Since sufficient water is supplied to the interface even when the alkali metal chloride aqueous solution having a concentration is supplied and electrolysis is performed, the concentration of the alkali metal hydroxide aqueous solution produced can be within a predetermined range, As a result, efficient electrolysis can be performed.

【0009】本発明のイオン交換膜電解槽のガス拡散電
極に形成する開口は、その断面積が大きいほど水分の供
給は容易となるが、反面ガス拡散電極の電気分解に作用
する有効面積が低下し、実効電流密度を高め、その結果
電解槽電圧を上昇させる。ガス拡散電極に設ける開口
は、大きな開口を少し設けるよりも、小さい開口を数多
く設ける方が好ましい。例えば開口として断面が円形の
開口を形成する場合には、開口径は0.5−5mmとす
ることが好ましく、より好ましくは1−3mmである。
開口径が0.5mmよりも小さくなると、水蒸気の通過
自体が困難になる。また、開口径が5mmよりも大きく
なると電流密度を高め電解槽電圧が上昇してしまう。
The opening formed in the gas diffusion electrode of the ion-exchange membrane electrolytic cell of the present invention has a larger cross-sectional area, so that it is easier to supply water, but the effective area of electrolysis of the gas diffusion electrode is reduced. Then, the effective current density is increased and, as a result, the electrolytic cell voltage is increased. It is preferable that the gas diffusion electrode has a large number of small openings rather than a few large openings. For example, when forming an opening having a circular cross section, the opening diameter is preferably 0.5-5 mm, more preferably 1-3 mm.
If the opening diameter is smaller than 0.5 mm, it becomes difficult for water vapor to pass through. Further, when the opening diameter is larger than 5 mm, the current density is increased and the electrolytic cell voltage is increased.

【0010】また、開口の間隔は5mm−50mmが好
ましく、より好ましくは10−20mmである。開口の
間隔が、5mmよりも小さいと、電気分解に作用する領
域の減少によって実質的に電流密度を高めることとな
る。また50mmよりも大きくなると開口を設けても効
果が得られない。また、開口全体の面積は、電極の投影
面積の10%以下が好ましく、より好ましくは5%以下
である。開口径と開口間隔が上記の条件を満たしている
場合であっても開口面積が10%を超えると電圧が電解
槽槽電圧が上昇するので好ましくない。
The distance between the openings is preferably 5 mm-50 mm, more preferably 10-20 mm. If the distance between the openings is smaller than 5 mm, the current density is substantially increased due to the reduction of the area that affects electrolysis. If it is larger than 50 mm, the effect cannot be obtained even if the opening is provided. Further, the area of the entire opening is preferably 10% or less of the projected area of the electrode, and more preferably 5% or less. Even if the opening diameter and the opening interval satisfy the above conditions, if the opening area exceeds 10%, the voltage of the electrolytic cell increases, which is not preferable.

【0011】図1に、本発明におけるガス拡散電極に設
ける開口の開口径と開口ピッチを示す。図1において斜
線で示した領域の開口径と開口ピッチを有することが好
ましい。以上の説明では、円形状の開口について説明を
したが、開口は、円形に限らず、楕円状、多角形状、溝
状等の任意の形状のものであっても良い。また、開口は
作製したガス拡散電極の所定の場所に、ドリル、ポンチ
等の穿孔手段により製造することができる。また、酸素
含有気体と共に供給した水分は、ガス拡散電極の開口か
らイオン交換膜とガス拡散電極との間の領域に供給され
る。生成する水酸化ナトリウム水溶液の濃度は、陽極室
からイオン交換膜を通じて浸透したナトリウムイオン等
の陽イオン1当量に対して、電気浸透水4分子が加えら
れ、反応水0.5分子が消費されるので、これらの電気
浸透水、反応水に加えてイオン交換膜に設定された最適
な濃度の水酸化ナトリウム水溶液となる量の水分濃度の
酸素含有気体が供給される。
FIG. 1 shows the opening diameter and the opening pitch of the openings provided in the gas diffusion electrode according to the present invention. It is preferable to have the opening diameter and the opening pitch of the region shown by hatching in FIG. In the above description, the circular opening has been described, but the opening is not limited to a circular shape, and may have an arbitrary shape such as an elliptical shape, a polygonal shape, or a groove shape. Further, the opening can be manufactured at a predetermined place of the produced gas diffusion electrode by a drilling means such as a drill or a punch. Further, the water supplied together with the oxygen-containing gas is supplied from the opening of the gas diffusion electrode to the region between the ion exchange membrane and the gas diffusion electrode. Regarding the concentration of the generated aqueous sodium hydroxide solution, 4 molecules of electroosmotic water are added to 1 equivalent of cations such as sodium ions permeated from the anode chamber through the ion exchange membrane, and 0.5 molecule of reaction water is consumed. Therefore, in addition to these electroosmotic water and the reaction water, the oxygen-containing gas having the water concentration of the amount that becomes the optimum concentration of the sodium hydroxide aqueous solution set in the ion exchange membrane is supplied.

【0012】アルカリ金属がナトリウムである場合に
は、電気浸透水と反応水のみでは生成するアルカリ金属
水酸化物水溶液の濃度は39質量%程度になるが、商業
的に用いられているイオン交換膜において最高の電流効
率と最低の電圧での動作が可能な32−33質量%の濃
度まで生成水酸化ナトリウム水溶液の濃度を低下させる
量の濃度の水分を含む酸素含有気体が供給される。水は
水蒸気、またはミストの状態が好ましい。また、本発明
の縦型のイオン交換膜電解槽の陰極室の下部にはイオン
交換膜とガス拡散電極との間の領域に連通する陰極液排
出口が形成されている。したがって生成したアルカリ金
属水酸化物水溶液を電解槽の下部から速やかに取り出す
ことが可能となる。電解槽の下部に設ける陰極液排出口
は、ガス拡散電極の全幅にわたり形成されていることが
好ましい。電解槽下部に所定の間隔で孔を設けたり、あ
るいは下部の全面に帯状の開口を設けることができる。
これらの開口は、電解槽外へ直接に連結しても良いが、
ガス拡散電極のガス室側と連通させて、ガス拡散電極あ
るいはガス拡散電極に設けた開口部を浸透したアルカリ
金属水酸化物水溶液とともに取り出す構造とすることが
好ましい。
When the alkali metal is sodium, the concentration of the aqueous alkali metal hydroxide solution produced by only the electroosmotic water and the reaction water is about 39% by mass, but the ion exchange membrane used commercially is used. Is supplied with an oxygen-containing gas containing water in an amount that reduces the concentration of the produced aqueous sodium hydroxide solution to a concentration of 32-33% by mass that enables operation at the highest current efficiency and the lowest voltage. Water is preferably steam or mist. Further, a catholyte discharge port communicating with a region between the ion exchange membrane and the gas diffusion electrode is formed in the lower portion of the cathode chamber of the vertical ion exchange membrane electrolytic cell of the present invention. Therefore, it becomes possible to promptly take out the generated aqueous alkali metal hydroxide solution from the lower portion of the electrolytic cell. The catholyte outlet provided in the lower part of the electrolytic cell is preferably formed over the entire width of the gas diffusion electrode. Holes may be provided at a predetermined interval in the lower part of the electrolytic cell, or a strip-shaped opening may be provided in the entire lower part.
These openings may be directly connected to the outside of the electrolytic cell,
It is preferable that the gas diffusion electrode is connected to the gas chamber side and is taken out together with the permeated aqueous solution of alkali metal hydroxide through the gas diffusion electrode or the opening provided in the gas diffusion electrode.

【0013】また、本発明のイオン交換膜電解槽におい
ては、イオン交換膜とガス拡散電極の間の領域には充分
にアルカリ金属水酸化物水溶液が存在していることが好
ましい。このために、イオン交換膜とガス拡散電極との
間の領域には、電解槽の上部からアルカリ金属水酸化物
水溶液を流下させたり、あるいはイオン交換膜とガス拡
散電極との間に親水性部材を配置することができる。親
水性部材としては、高温、高濃度のアルカリ金属水酸化
物水溶液に対して耐食性が優れた材料が好ましい。具体
的には、合成樹脂材料、炭素繊維等を挙げることができ
る。また、織布状、フェルト状のものを挙げることがで
きる。またこれらの親水性部材の厚みは、0.1−2m
mのものが好ましく、0.5−1mmのものがより好ま
しい。
Further, in the ion exchange membrane electrolytic cell of the present invention, it is preferable that the aqueous alkali metal hydroxide solution is sufficiently present in the region between the ion exchange membrane and the gas diffusion electrode. For this reason, in the region between the ion exchange membrane and the gas diffusion electrode, an aqueous alkali metal hydroxide solution is made to flow down from the upper part of the electrolytic cell, or a hydrophilic member is provided between the ion exchange membrane and the gas diffusion electrode. Can be placed. As the hydrophilic member, a material having excellent corrosion resistance against high temperature and high concentration aqueous solution of alkali metal hydroxide is preferable. Specific examples include synthetic resin materials and carbon fibers. Further, a woven cloth-like material and a felt-like material can be used. The thickness of these hydrophilic members is 0.1-2 m.
m is preferable, and 0.5-1 mm is more preferable.

【0014】以下に、図面を参照して本発明を説明す
る。図2は、本発明のイオン交換膜電解槽の一実施例を
説明する図であり、一対の陽極と陰極を有する単位電解
槽を説明する図である。本発明の電解槽1は、陽イオン
交換膜2により陽極室3と陰極室4に区画され、陽イオ
ン交換膜2の陽極室3側には多孔性の陽極5が配置さ
れ、陽イオン交換膜2の陰極室4側には、親水性液透過
層6が存在し、更に親水性液透過層6の陽イオン交換膜
2側とは反対側に、ガス拡散電極からなる陰極7が設け
られており、陰極7は、ガス拡散電極8を多孔性の陰極
支持体9上に有している。
The present invention will be described below with reference to the drawings. FIG. 2 is a diagram for explaining an embodiment of the ion exchange membrane electrolytic cell of the present invention, and is a diagram for explaining a unit electrolytic cell having a pair of an anode and a cathode. The electrolytic cell 1 of the present invention is divided into an anode chamber 3 and a cathode chamber 4 by a cation exchange membrane 2, and a porous anode 5 is arranged on the side of the cation exchange membrane 2 on the anode chamber 3 side. 2 has a hydrophilic liquid permeable layer 6 on the cathode chamber 4 side, and a cathode 7 composed of a gas diffusion electrode is provided on the opposite side of the hydrophilic liquid permeable layer 6 from the cation exchange membrane 2 side. The cathode 7 has a gas diffusion electrode 8 on a porous cathode support 9.

【0015】電解槽1には、陽極室3の底部に設けた陽
極液供給口10から陽極液調整装置(図示せず)におい
て濃度等が調整された食塩水が供給され陽極液排出口1
1から、電気分解で生成した塩素と濃度が減少した淡塩
水が排出される。塩素は気液分離装置において分離され
た後に、淡塩水は陽極液調整装置へ返送されて、所定の
処理を経た後に陽極室3に供給される。一方、陰極室4
にはガス拡散電極8を有する陰極7の多孔性の陰極支持
体9で形成される空間はガス室12を形成している。
The electrolytic cell 1 is supplied with a saline solution whose concentration is adjusted by an anolyte adjusting device (not shown) from an anolyte supply port 10 provided at the bottom of the anolyte chamber 3, and the anolyte discharge port 1 is provided.
From 1, the chlorine produced by electrolysis and the fresh salt water with reduced concentration are discharged. After chlorine is separated in the gas-liquid separator, the fresh salt water is returned to the anolyte adjusting device, and after being subjected to a predetermined treatment, supplied to the anode chamber 3. On the other hand, the cathode chamber 4
The space formed by the porous cathode support 9 of the cathode 7 with the gas diffusion electrode 8 forms a gas chamber 12.

【0016】ガス拡散電極8には、酸素含有気体供給口
13から水分含有量を調整した酸素含有気体が供給され
る。酸素は、ガス拡散電極において反応し、また水分は
ガス拡散電極8に設けた電極開口14からガス拡散電極
8と陽イオン交換膜2の間に存在する親水性液透過層6
に到達し、電気分解の結果生じるアルカリ金属水酸化物
水溶液の濃度を希釈する。電気分解の結果生成するアル
カリ金属水酸化物水溶液は、電解槽の下部に設けた陽イ
オン交換膜とガス拡散電極との間の領域に連通した陰極
液排出口15から排出されて、陰極室出口16から残存
した酸素含有気体と共に電解槽外へ取り出すことができ
る。
An oxygen-containing gas whose water content is adjusted is supplied to the gas diffusion electrode 8 from an oxygen-containing gas supply port 13. Oxygen reacts in the gas diffusion electrode, and moisture reacts from the electrode opening 14 provided in the gas diffusion electrode 8 to the hydrophilic liquid permeable layer 6 existing between the gas diffusion electrode 8 and the cation exchange membrane 2.
And dilute the concentration of the aqueous alkali metal hydroxide solution resulting from electrolysis. The alkali metal hydroxide aqueous solution generated as a result of the electrolysis is discharged from the catholyte discharge port 15 communicating with the region between the cation exchange membrane and the gas diffusion electrode provided in the lower part of the electrolytic cell, and the cathode chamber outlet. The oxygen-containing gas remaining from 16 can be taken out of the electrolytic cell.

【0017】本発明のイオン交換膜電解槽に供給する水
分含有量を調整した酸素は、ガス拡散電極あるいは電解
槽内での炭酸塩の生成の原因となる二酸化炭素を除去し
たものであれば、液化分離、PSA法、気体濃縮膜法等
の任意の方法によって濃縮したものを用いることがで
き、酸素濃度が高いものの方が電気分解電圧が低下する
ので好ましい。酸素含有気体の水分含有容量は、電気分
解において、所望の濃度のアルカリ金属水酸化物水溶液
が得られる量とすることが必要であり、概ね必要とする
酸素の量の4倍である。水分は、電解槽の運転温度に加
熱して水蒸気の状態で供給することが好ましい。
The oxygen of which the water content is adjusted to be supplied to the ion exchange membrane electrolytic cell of the present invention can be any oxygen as long as it removes carbon dioxide which causes the formation of carbonate in the gas diffusion electrode or the electrolytic cell. Those concentrated by any method such as liquefaction separation, PSA method, and gas concentration membrane method can be used, and those having a high oxygen concentration are preferable because the electrolysis voltage decreases. The water content capacity of the oxygen-containing gas is required to be an amount capable of obtaining an alkali metal hydroxide aqueous solution having a desired concentration in electrolysis, and is approximately four times the required amount of oxygen. It is preferable that the moisture is heated to the operating temperature of the electrolytic cell and supplied in the state of steam.

【0018】本発明で陰極として使用するガス拡散電極
は、ステンレス、ニッケル、銀などの耐食性材料から成
る金網、エキスパンデッドメタル、粉末焼結体、金属繊
維焼結体、発泡体等の材料を、陰極集電体とすることが
できる。そして、陰極集電体には電極触媒を含有したガ
ス拡散電極層を形成している。電極触媒としては、白
金、パラジウム、ルテニウム、イリジウム,銅、銀、コ
バルト、鉛等の金属又はそれらの酸化物を使用できる。
これらの電極触媒は、フッ化黒鉛、フッ素樹脂等の疎水
性材料、フッ素樹脂バインダーとを混練して塗布する等
の方法によって形成することができる。
The gas diffusion electrode used as the cathode in the present invention is made of a material such as a wire mesh made of a corrosion resistant material such as stainless steel, nickel or silver, an expanded metal, a powder sintered body, a metal fiber sintered body or a foamed body. , A cathode current collector. Then, a gas diffusion electrode layer containing an electrode catalyst is formed on the cathode current collector. As the electrode catalyst, metals such as platinum, palladium, ruthenium, iridium, copper, silver, cobalt and lead, or oxides thereof can be used.
These electrode catalysts can be formed by a method such as kneading and coating a fluorinated graphite, a hydrophobic material such as a fluororesin, or a fluororesin binder.

【0019】また、本発明において陰極室に形成するガ
ス室は、酸素含有気体をガス拡散電極に均一に供給する
ことが可能な空間を形成するものであれば任意のものを
用いることができるが、ガス室を通じてガス拡散電極に
電流を供給するために、気体の流通を妨げない導電性の
網状体、多孔体、発泡体等を配置したものであっても良
い。ガス室内に導電性の網状体、多孔体等を配置するこ
とによってイオン交換膜、親水性液透過層、およびガス
拡散電極の積層体の密着性を向上させることができる。
特に、可撓性を有する材料を用いると、積層体の密着の
均一性を向上させることができる。これらの目的で使用
可能な材料としては、ニッケル、銀、あるいはこれらの
金属を被覆した銅等の材料を挙げることができる。ガス
室内に配置する導電性の網状体、多孔体には、ガス拡散
電極の作製に使用した陰極集電体の一部を用いても良
く、そのようにすることによって、別体の網状体、多孔
体を用いた場合に比べてガス電極に対する導電接続を良
好なものとすることができ、また電解槽の厚みを小さく
することが可能となる。
In the present invention, the gas chamber formed in the cathode chamber may be any gas chamber as long as it forms a space in which the oxygen-containing gas can be uniformly supplied to the gas diffusion electrode. In order to supply an electric current to the gas diffusion electrode through the gas chamber, a conductive mesh body, a porous body, a foam body or the like that does not prevent the flow of gas may be arranged. By disposing a conductive mesh body, a porous body, or the like in the gas chamber, it is possible to improve the adhesion of the laminate of the ion exchange membrane, the hydrophilic liquid permeable layer, and the gas diffusion electrode.
In particular, the use of a flexible material can improve the uniformity of adhesion of the stacked body. Examples of materials that can be used for these purposes include nickel, silver, and copper coated with these metals. The conductive reticulate body to be placed in the gas chamber, the porous body may be a part of the cathode current collector used in the production of the gas diffusion electrode, by doing so, a separate reticulated body, As compared with the case where the porous body is used, the conductive connection to the gas electrode can be improved, and the thickness of the electrolytic cell can be reduced.

【0020】[0020]

【実施例】以下に本発明の実施例、および比較例を示し
本発明を説明する。 実施例1 (ガス拡散電極の作製)ポリテトラフルオロエチレンデ
ィスパージョン(ダイキン工業製 D−1)と撥水性カ
ーボンブラック(電気化学工業製 AB−6 平均粒径
50nm)を固形分の重量比で4:6の割合で混合した
もの30重量部を界面活性剤(ローム・アンド・ハース
製 トライトンX−100)20質量%を含む水溶液1
00重量部中に分散、混合し、ろ過してガス拡散層用泥
漿を得た。この泥漿からシートを作製し、2枚のシート
の間に、銀製の集電体用の網を挟んで両側からプレスし
てガス拡散層を作製した。
EXAMPLES The present invention will be described below by showing Examples of the present invention and Comparative Examples. Example 1 (Production of Gas Diffusion Electrode) Polytetrafluoroethylene dispersion (D-1 manufactured by Daikin Industries, Ltd.) and water-repellent carbon black (AB-6 manufactured by Denki Kagaku Kogyo, average particle size 50 nm) were used in a weight ratio of 4 to a solid content. : Aqueous solution 1 containing 30 parts by weight of a mixture of 6 parts and 20% by mass of a surfactant (Triton X-100 manufactured by Rohm and Haas).
It was dispersed in 100 parts by weight, mixed and filtered to obtain a gas diffusion layer slurry. A sheet was produced from this slurry, and a gas diffusion layer was produced by pressing a mesh for silver collector between two sheets and pressing from both sides.

【0021】別途、銀微粒子(平均粒径1ミクロン、田
中優貴金属製)とポリテトラフルオロエチレンディスパ
ージョン(ダイキン工業製 D−1)と親水性カーボン
ブラック(電気化学工業製 AB−11 平均粒径40
nm)と撥水性カーボンブラック(電気化学工業製 A
B−6 平均粒径50nm)を重量比で20:1:1:
1の割合で混合したもの30重量部を界面活性剤(トラ
イトン X−100)20質量%を含む水溶液100重
量部中に分散、混合し、ろ過して反応層用泥漿を得た。
この泥漿を先に作製したガス拡散層に100ミクロン塗
布し、ガス拡散電極を作製した。エタノールで界面活性
剤を抽出した後、380℃、4.9MPa、60秒の条
件でホットプレスした。ガス拡散電極の周辺の集電体用
の銀網をガス拡散層側へ折り返した。ガス拡散電極には
ポンチを使用し、図3(A)に示すように、20mmピ
ッチで直径2.15mmの円形の孔を設けた。
Separately, fine silver particles (average particle size 1 micron, made by Yutaka Tanaka), polytetrafluoroethylene dispersion (D-1 manufactured by Daikin Industries, Ltd.) and hydrophilic carbon black (AB-11 average particle size manufactured by Denki Kagaku Kogyo). 40
nm) and water repellent carbon black (A, manufactured by Denki Kagaku Kogyo)
B-6 average particle size 50 nm) in a weight ratio of 20: 1: 1 :.
30 parts by weight of the mixture of 1 were dispersed and mixed in 100 parts by weight of an aqueous solution containing 20% by mass of a surfactant (Triton X-100) to obtain a reaction layer slurry.
This gas was applied to the gas diffusion layer prepared above by 100 μm to prepare a gas diffusion electrode. After extracting the surfactant with ethanol, hot pressing was performed under the conditions of 380 ° C., 4.9 MPa, and 60 seconds. The silver net for the current collector around the gas diffusion electrode was folded back to the gas diffusion layer side. A punch was used as the gas diffusion electrode, and as shown in FIG. 3 (A), circular holes having a diameter of 2.15 mm were provided at a pitch of 20 mm.

【0022】(電解槽構成)陰極室にガス背板となるニ
ッケル板に陰極支持体である厚み1mmのニッケル製コ
ルゲートメッシュを溶接し、その上にガス拡散電極のガ
ス拡散層側をコルゲートメッシュ側になるように載置
し、更に厚み0.4mmの親水性層形成用の炭素繊維製
織布を載置した。陽イオン交換膜(旭硝子製フレミオン
8934)で陽極室と陰極室に区画し、陽極室には白金
族金属酸化物を含有する電極触媒被覆をチタン製エキス
パンデッドメタル基体上に形成して不溶性電極(ペルメ
レック電極製)を配置して両側から締め付けて縦型のイ
オン交換膜電解槽を作製した。電極有効面積は、幅10
cm、高さ60cmで0.06m2 である。また、電解
槽の陽イオン交換膜と陰極との領域の陰極室の下部に
は、全幅にわたり幅10mmの陰極液排出口を設けた。
(Electrolyzer configuration) In the cathode chamber, a nickel plate serving as a gas back plate is welded with a nickel corrugated mesh having a thickness of 1 mm as a cathode support, and the gas diffusion layer side of the gas diffusion electrode is placed on the corrugated mesh side. Then, a carbon fiber woven fabric for forming a hydrophilic layer having a thickness of 0.4 mm was placed. A cation exchange membrane (Flemion 8934 manufactured by Asahi Glass) is used to partition the anode chamber and the cathode chamber, and an electrode catalyst coating containing a platinum group metal oxide is formed on the titanium expanded metal substrate to form an insoluble electrode in the anode chamber. (Made of Permelek electrode) was arranged and tightened from both sides to produce a vertical ion exchange membrane electrolytic cell. The effective area of the electrode is 10
cm, height 60 cm is 0.06 m 2 . Further, a catholyte outlet having a width of 10 mm was provided in the lower part of the cathode chamber in the area between the cation exchange membrane and the cathode of the electrolytic cell.

【0023】(電解方法)陽極室には飽和食塩水を供給
し、陽極液濃度が200g/lとなるように供給量を調
節し、陽極液は87℃に温度調節した。180Aの電流
を通電して電流密度は3kA/m2 で運転した。また、
陰極室のガス拡散電極のガス室側へは濃度93容量%の
酸素を理論必要量の1.2倍の流量で供給した。同時に
酸素中には、2.0g/分の供給量で水分を供給した。
電解槽から流出する水酸化ナトリウム水溶液濃度は3
3.0質量%、水酸化ナトリウム水溶液濃度の生成電流
効率は97.0%、電解槽電圧は2.03Vであった。
また、電解槽電圧等について表1に示した。
(Electrolysis method) Saturated saline was supplied to the anode chamber, the supply amount was adjusted so that the concentration of the anolyte was 200 g / l, and the temperature of the anolyte was adjusted to 87 ° C. A current of 180 A was applied and the device was operated at a current density of 3 kA / m 2 . Also,
Oxygen having a concentration of 93% by volume was supplied to the gas chamber side of the gas diffusion electrode of the cathode chamber at a flow rate 1.2 times the theoretical required amount. At the same time, moisture was supplied into oxygen at a supply rate of 2.0 g / min.
The concentration of sodium hydroxide aqueous solution flowing out of the electrolytic cell is 3
The generation current efficiency of 3.0% by mass, the sodium hydroxide aqueous solution concentration was 97.0%, and the electrolytic cell voltage was 2.03V.
Table 1 shows the electrolytic cell voltage and the like.

【0024】実施例2−5 ガス拡散電極に設ける開口径、ピッチ等を表1に記載の
ように変えた点を除き実施例1と同様に電気分解を行い
その結果を表1に示す。
Example 2-5 Electrolysis was performed in the same manner as in Example 1 except that the opening diameter, pitch, etc. provided in the gas diffusion electrode were changed as shown in Table 1, and the results are shown in Table 1.

【0025】比較例1 ガス拡散電極に開口を設けなかった点を除き実施例1と
同様に電気分解を行いその結果を表1に示す。
Comparative Example 1 Electrolysis was carried out in the same manner as in Example 1 except that no opening was provided in the gas diffusion electrode, and the results are shown in Table 1.

【0026】比較例2−3 ガス拡散電極に設ける開口径、ピッチ等を表1に記載の
ように変えた点を除き実施例1と同様に電気分解を行い
その結果を表1に示す。
Comparative Example 2-3 Electrolysis was performed in the same manner as in Example 1 except that the opening diameter, pitch, etc. provided in the gas diffusion electrode were changed as shown in Table 1, and the results are shown in Table 1.

【0027】[0027]

【表1】 孔径 ピッチ 孔の配置 孔占有面積 槽電圧 オーム損 (mm) (mm) (%) (V) (V) 実施例1 2.15 20 図3(A) 0.91 2.03 0.43 実施例2 2.15 14 図3(B) 1.81 2.00 0.40 実施例3 2.15 10 図3(C) 3.63 2.02 0.41 実施例4 2.15 7 図3(D) 7.25 2.04 0.43 実施例5 0.50 7 図3(D) 0.39 1.99 0.39 比較例1 なし − − 0 2.14 0.54 比較例2 2.15 60 − 0.10 2.12 0.52 比較例3 5.00 7 図3(D) 39.4 2.20 0.60[Table 1] Hole diameter Pitch Hole arrangement Hole occupied area Battery voltage Ohm loss (mm) (mm) (%) (V) (V) Example 1 2.15 20 Figure 3 (A) 0.91 2.03 0.43 Example 2 2.15 14 Figure 3 (B) 1.81 2.00 0.40 Example 3 2.15 10 Fig. 3 (C) 3.63 2.02 0.41 Example 4 2.15 7 Fig. 3 (D) 7.25 2.04 0.43 Example 5 0.50 7 Fig. 3 (D) 0.39 1.99 0.39 Comparative Example 1 None − − 0 2.14 0.54 Comparative Example 2 2.15 60 − 0.10 2.12 0.52 Comparative Example 3 5.00 7 FIG. 3 (D) 39.4 2.20 0.60

【0028】[0028]

【発明の効果】陰極としてガス拡散電極を用いたイオン
交換膜電解槽において、ガス拡散電極に水分の供給用の
開口を形成するとともに、イオン交換膜とガス拡散電極
との間の空間に生成したアルカリ金属水酸化物水溶液を
取り出す開口を形成したので、イオン交換膜とガス拡散
電極との間で生成するアルカリ金属水酸化物水溶液の濃
度を陽イオン交換膜にとって適度な濃度に維持すること
を可能とするとともに、生成物の円滑な取り出しによっ
て低電圧、高電流効率での運転を可能する。
INDUSTRIAL APPLICABILITY In an ion exchange membrane electrolytic cell using a gas diffusion electrode as a cathode, an opening for supplying water is formed in the gas diffusion electrode, and the gas is generated in the space between the ion exchange membrane and the gas diffusion electrode. Since the opening for taking out the alkali metal hydroxide aqueous solution is formed, it is possible to maintain the concentration of the alkali metal hydroxide aqueous solution generated between the ion exchange membrane and the gas diffusion electrode at an appropriate concentration for the cation exchange membrane. In addition, smooth removal of the product enables operation at low voltage and high current efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1に、本発明におけるガス拡散電極に設ける
開口の開口径と開口ピッチを示す。
FIG. 1 shows an opening diameter and an opening pitch of openings provided in a gas diffusion electrode according to the present invention.

【図2】本発明のイオン交換膜電解槽を説明する断面図
である。
FIG. 2 is a cross-sectional view illustrating an ion exchange membrane electrolytic cell of the present invention.

【図3】本発明のガス拡散電極の開口の配置を説明する
図である。
FIG. 3 is a diagram illustrating the arrangement of openings of the gas diffusion electrode of the present invention.

【符号の説明】[Explanation of symbols]

1…電解槽、2…陽イオン交換膜、3…陽極室、4…陰
極室、5…陽極、6…親水性液透過層、7…陰極、8…
ガス拡散電極、9…陰極支持体、10…陽極液供給口、
11…陽極液排出口、12…ガス室、13…酸素含有気
体供給口、14…電極開口、15…陰極液排出口、16
…陰極室出口
DESCRIPTION OF SYMBOLS 1 ... Electrolyte tank, 2 ... Cation exchange membrane, 3 ... Anode chamber, 4 ... Cathode chamber, 5 ... Anode, 6 ... Hydrophilic liquid permeable layer, 7 ... Cathode, 8 ...
Gas diffusion electrode, 9 ... Cathode support, 10 ... Anolyte supply port,
11 ... Anolyte discharge port, 12 ... Gas chamber, 13 ... Oxygen-containing gas supply port, 14 ... Electrode opening, 15 ... Catholyte discharge port, 16
… Cathode chamber outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜によって陽極室と陰極室に
区画されたイオン交換膜電解槽の陰極室にガス拡散電極
を配置した縦型のイオン交換膜電解槽において、陰極室
の下部にはイオン交換膜とガス拡散陰極との間に形成さ
れる領域に連通する陰極液排出口を設けるとともに、ガ
ス拡散電極にはガス拡散電極のガス室からガス拡散電極
とイオン交換膜の間に形成される領域へ水分を供給する
開口を形成したことを特徴とするイオン交換膜電解槽。
1. A vertical type ion exchange membrane electrolytic cell in which a gas diffusion electrode is arranged in a cathode chamber of an ion exchange membrane electrolytic cell divided into an anode chamber and a cathode chamber by an ion exchange membrane, and ions are provided below the cathode chamber. A catholyte outlet is provided which communicates with a region formed between the exchange membrane and the gas diffusion cathode, and the gas diffusion electrode is formed between the gas chamber of the gas diffusion electrode and the gas diffusion electrode and the ion exchange membrane. An ion-exchange membrane electrolytic cell having an opening for supplying water to the region.
【請求項2】 開口の大きさの幅、もしくは径が0.5
−5mmであり、隣接する開口間の距離が5−50m
m、開口部の占有面積が電極の投影面積の10%以下で
あることを特徴とする前記イオン交換膜電解槽。
2. The opening has a width or diameter of 0.5.
-5 mm, the distance between adjacent openings is 5-50 m
m, the occupied area of the opening is 10% or less of the projected area of the electrode.
【請求項3】 イオン交換膜によって陽極室と陰極室に
区画された縦型のイオン交換膜電解槽の陰極室にガス拡
散電極を配置し、陽極室へアルカリ金属塩化物水溶液を
供給し、ガス拡散陰極の背面から酸素含有気体を供給す
るイオン交換膜電解方法において、ガス拡散陰極に設け
た開口から酸素含有気体に含まれる水分をイオン交換膜
とガス拡散電極との間の領域に供給するとともに、陰極
室の下部のイオン交換膜とガス拡散電極との間に形成さ
れる領域に連通する陰極液排出開口からアルカリ金属水
酸化物水溶液を取り出しながら電気分解を行うことを特
徴とするイオン交換膜電解方法。
3. A gas diffusion electrode is arranged in the cathode chamber of a vertical type ion exchange membrane electrolytic cell divided into an anode chamber and a cathode chamber by an ion exchange membrane, and an alkali metal chloride aqueous solution is supplied to the anode chamber to supply gas. In the ion exchange membrane electrolysis method of supplying an oxygen-containing gas from the back surface of the diffusion cathode, the water contained in the oxygen-containing gas is supplied to the region between the ion exchange membrane and the gas diffusion electrode through an opening provided in the gas diffusion cathode. An ion exchange membrane characterized by performing electrolysis while taking out an aqueous alkali metal hydroxide solution from a catholyte discharge opening communicating with a region formed between an ion exchange membrane below a cathode chamber and a gas diffusion electrode. Electrolysis method.
JP2001231624A 2001-07-31 2001-07-31 Electrolysis cell with ion exchange membrane and electrolysis method Pending JP2003041388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231624A JP2003041388A (en) 2001-07-31 2001-07-31 Electrolysis cell with ion exchange membrane and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231624A JP2003041388A (en) 2001-07-31 2001-07-31 Electrolysis cell with ion exchange membrane and electrolysis method

Publications (1)

Publication Number Publication Date
JP2003041388A true JP2003041388A (en) 2003-02-13

Family

ID=19063652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231624A Pending JP2003041388A (en) 2001-07-31 2001-07-31 Electrolysis cell with ion exchange membrane and electrolysis method

Country Status (1)

Country Link
JP (1) JP2003041388A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119881A (en) * 2005-10-31 2007-05-17 Permelec Electrode Ltd Oxygen reducing gas diffusion cathode and sodium chloride electrolytic method
WO2009070938A1 (en) * 2007-12-03 2009-06-11 Bluestar (Beijing) Chemical Machinery Co., Ltd. Multielectrodes-type ion-membrane electrolytic cell with oxygen-cathodes
US7744761B2 (en) 2007-06-28 2010-06-29 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
US7754169B2 (en) 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US7753618B2 (en) 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
US7771684B2 (en) 2008-09-30 2010-08-10 Calera Corporation CO2-sequestering formed building materials
US7790012B2 (en) 2008-12-23 2010-09-07 Calera Corporation Low energy electrochemical hydroxide system and method
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US7829053B2 (en) 2008-10-31 2010-11-09 Calera Corporation Non-cementitious compositions comprising CO2 sequestering additives
US7875163B2 (en) 2008-07-16 2011-01-25 Calera Corporation Low energy 4-cell electrochemical system with carbon dioxide gas
US7887694B2 (en) 2007-12-28 2011-02-15 Calera Corporation Methods of sequestering CO2
CN102031534A (en) * 2010-12-29 2011-04-27 蓝星(北京)化工机械有限公司 Ionic membrane electrolytic bath device for preparing alkali through oxygen cathode
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US7966250B2 (en) 2008-09-11 2011-06-21 Calera Corporation CO2 commodity trading system and method
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US8137444B2 (en) 2009-03-10 2012-03-20 Calera Corporation Systems and methods for processing CO2
US8357270B2 (en) 2008-07-16 2013-01-22 Calera Corporation CO2 utilization in electrochemical systems
US8491858B2 (en) 2009-03-02 2013-07-23 Calera Corporation Gas stream multi-pollutants control systems and methods
JP2013144853A (en) * 2006-04-12 2013-07-25 Industrie De Nora Spa Electrochemical percolation cell
JP2013194323A (en) * 2012-03-15 2013-09-30 Bayer Intellectual Property Gmbh Electrolysis method of alkali metal chloride using oxygen-consuming electrode having orifice
CN103498167A (en) * 2013-10-11 2014-01-08 苏州竞立制氢设备有限公司 Plate net water electrolysis tank
EP2746429A1 (en) 2012-12-19 2014-06-25 Uhdenora S.p.A Electrolytic cell
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
WO2018154643A1 (en) * 2017-02-22 2018-08-30 日本碍子株式会社 Brine electrolysis device for producing caustic soda
WO2018180726A1 (en) * 2017-03-30 2018-10-04 株式会社カネカ Method for manufacturing sodium hydroxide and/or chlorine and 2 chamber type saltwater electrolytic cell
CN110023541A (en) * 2017-01-13 2019-07-16 旭化成株式会社 The update method of electrode for electrolysis, electrolytic cell, electrode laminate and electrode
DE102021103185A1 (en) 2021-02-11 2022-08-11 WEW GmbH Method of sealing an electrolytic cell
DE102021103877A1 (en) 2021-02-18 2022-08-18 WEW GmbH PROCESS FOR MANUFACTURING AN ELECTROLYTIC CELL AND A CORRESPONDING ELECTROLYTIC STACK
DE102021103699A1 (en) 2021-02-17 2022-08-18 WEW GmbH electrolytic cell

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119881A (en) * 2005-10-31 2007-05-17 Permelec Electrode Ltd Oxygen reducing gas diffusion cathode and sodium chloride electrolytic method
JP2013144853A (en) * 2006-04-12 2013-07-25 Industrie De Nora Spa Electrochemical percolation cell
US7914685B2 (en) 2007-06-28 2011-03-29 Calera Corporation Rocks and aggregate, and methods of making and using the same
US7744761B2 (en) 2007-06-28 2010-06-29 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US7931809B2 (en) 2007-06-28 2011-04-26 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US7753618B2 (en) 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
CN101849037B (en) * 2007-12-03 2011-12-21 蓝星(北京)化工机械有限公司 Multi-pole type oxygen cathode ion membrane electrolysis unit tank
WO2009070938A1 (en) * 2007-12-03 2009-06-11 Bluestar (Beijing) Chemical Machinery Co., Ltd. Multielectrodes-type ion-membrane electrolytic cell with oxygen-cathodes
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US7887694B2 (en) 2007-12-28 2011-02-15 Calera Corporation Methods of sequestering CO2
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
US7754169B2 (en) 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US8333944B2 (en) 2007-12-28 2012-12-18 Calera Corporation Methods of sequestering CO2
US8894830B2 (en) 2008-07-16 2014-11-25 Celera Corporation CO2 utilization in electrochemical systems
US7875163B2 (en) 2008-07-16 2011-01-25 Calera Corporation Low energy 4-cell electrochemical system with carbon dioxide gas
US8357270B2 (en) 2008-07-16 2013-01-22 Calera Corporation CO2 utilization in electrochemical systems
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US7966250B2 (en) 2008-09-11 2011-06-21 Calera Corporation CO2 commodity trading system and method
US8470275B2 (en) 2008-09-30 2013-06-25 Calera Corporation Reduced-carbon footprint concrete compositions
US8603424B2 (en) 2008-09-30 2013-12-10 Calera Corporation CO2-sequestering formed building materials
US7771684B2 (en) 2008-09-30 2010-08-10 Calera Corporation CO2-sequestering formed building materials
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US8006446B2 (en) 2008-09-30 2011-08-30 Calera Corporation CO2-sequestering formed building materials
US8431100B2 (en) 2008-09-30 2013-04-30 Calera Corporation CO2-sequestering formed building materials
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US7829053B2 (en) 2008-10-31 2010-11-09 Calera Corporation Non-cementitious compositions comprising CO2 sequestering additives
US7790012B2 (en) 2008-12-23 2010-09-07 Calera Corporation Low energy electrochemical hydroxide system and method
US9267211B2 (en) 2009-02-10 2016-02-23 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8491858B2 (en) 2009-03-02 2013-07-23 Calera Corporation Gas stream multi-pollutants control systems and methods
US8883104B2 (en) 2009-03-02 2014-11-11 Calera Corporation Gas stream multi-pollutants control systems and methods
US8137444B2 (en) 2009-03-10 2012-03-20 Calera Corporation Systems and methods for processing CO2
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
CN102031534A (en) * 2010-12-29 2011-04-27 蓝星(北京)化工机械有限公司 Ionic membrane electrolytic bath device for preparing alkali through oxygen cathode
JP2018048411A (en) * 2012-03-15 2018-03-29 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Electrolysis method of alkali metal chloride using oxygen consumption electrode having orifice
JP2013194323A (en) * 2012-03-15 2013-09-30 Bayer Intellectual Property Gmbh Electrolysis method of alkali metal chloride using oxygen-consuming electrode having orifice
EP2746429A1 (en) 2012-12-19 2014-06-25 Uhdenora S.p.A Electrolytic cell
CN103498167A (en) * 2013-10-11 2014-01-08 苏州竞立制氢设备有限公司 Plate net water electrolysis tank
CN110023541B (en) * 2017-01-13 2022-02-08 旭化成株式会社 Electrode for electrolysis, electrolytic cell, electrode laminate, and method for renewing electrode
CN110023541A (en) * 2017-01-13 2019-07-16 旭化成株式会社 The update method of electrode for electrolysis, electrolytic cell, electrode laminate and electrode
WO2018154643A1 (en) * 2017-02-22 2018-08-30 日本碍子株式会社 Brine electrolysis device for producing caustic soda
JPWO2018180726A1 (en) * 2017-03-30 2020-02-06 株式会社カネカ Method for producing sodium hydroxide and / or chlorine, and two-chamber type saline electrolyzer
WO2018180726A1 (en) * 2017-03-30 2018-10-04 株式会社カネカ Method for manufacturing sodium hydroxide and/or chlorine and 2 chamber type saltwater electrolytic cell
JP7061997B2 (en) 2017-03-30 2022-05-02 株式会社カネカ Method for producing sodium hydroxide and / or chlorine, and 2-chamber saline electrolytic cell
DE102021103185A1 (en) 2021-02-11 2022-08-11 WEW GmbH Method of sealing an electrolytic cell
WO2022171411A1 (en) 2021-02-11 2022-08-18 WEW GmbH Method for sealing an electrolysis cell
DE102021103699A1 (en) 2021-02-17 2022-08-18 WEW GmbH electrolytic cell
WO2022175011A1 (en) 2021-02-17 2022-08-25 WEW GmbH Electrolytic cell
DE102021103877A1 (en) 2021-02-18 2022-08-18 WEW GmbH PROCESS FOR MANUFACTURING AN ELECTROLYTIC CELL AND A CORRESPONDING ELECTROLYTIC STACK
WO2022175010A1 (en) 2021-02-18 2022-08-25 WEW GmbH Process for producing an electrolysis cell and a corresponding electrolysis stack

Similar Documents

Publication Publication Date Title
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
JP3553775B2 (en) Electrolyzer using gas diffusion electrode
CA1179630A (en) Halide electrolysis in cell with catalytic electrode bonded to hydraulically permeable membrane
JP5031336B2 (en) Oxygen gas diffusion cathode for salt electrolysis
US4732660A (en) Membrane electrolyzer
JPS6315354B2 (en)
JPH05214573A (en) Gas-depolarizable electrode structure and process and apparatus for performing electrochemical reaction by using same
NL2023775B1 (en) Compact electrochemical stack using corrugated electrodes
US7141147B2 (en) Electrolytic cell
JP2016527396A (en) Alkaline solution electrolysis cell
US4969981A (en) Cell and method of operating a liquid-gas electrochemical cell
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
JPH07126880A (en) Method for electrolyzing brine and electrolytic cell
JP3655975B2 (en) Gas diffusion cathode and salt water electrolytic cell using the gas diffusion cathode
JPH1025587A (en) Liquid permeation type gas diffusion electrode
US6797136B2 (en) Electrolytic cell
US4430177A (en) Electrolytic process using oxygen-depolarized cathodes
WO2001004383A1 (en) Method for electrolysis of alkali chloride
JP2004027267A (en) Salt electrolytic cell provided with gas diffusion cathode
JP4115686B2 (en) Electrode structure and electrolysis method using the structure
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
EP1425438B1 (en) Electrolytic cell
JPS6342710B2 (en)
JP3645703B2 (en) Gas diffusion electrode structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040122