JP3553781B2 - Electrolysis method using gas diffusion cathode - Google Patents

Electrolysis method using gas diffusion cathode Download PDF

Info

Publication number
JP3553781B2
JP3553781B2 JP35416597A JP35416597A JP3553781B2 JP 3553781 B2 JP3553781 B2 JP 3553781B2 JP 35416597 A JP35416597 A JP 35416597A JP 35416597 A JP35416597 A JP 35416597A JP 3553781 B2 JP3553781 B2 JP 3553781B2
Authority
JP
Japan
Prior art keywords
gas diffusion
cathode
electrolysis
exchange membrane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35416597A
Other languages
Japanese (ja)
Other versions
JPH11172480A (en
Inventor
孝之 島宗
正志 田中
幸一 青木
善則 錦
修平 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Kaneka Corp
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Mitsui Chemicals Inc
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Mitsui Chemicals Inc, Kaneka Corp filed Critical Permelec Electrode Ltd
Priority to JP35416597A priority Critical patent/JP3553781B2/en
Publication of JPH11172480A publication Critical patent/JPH11172480A/en
Application granted granted Critical
Publication of JP3553781B2 publication Critical patent/JP3553781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ガス拡散陰極へのガス供給を円滑に行ないながら塩化アルカリを電解して、低電解電圧で水酸化アルカリを得るための電解方法に関し、より詳細には前記ガス拡散陰極へのガス供給を円滑にして水酸化アルカリ製造において大きな省エネルギー効果を達成でき、かつ電極物質の溶出に起因するイオン交換膜の汚染も防止できる酸素ガス拡散陰極を使用する塩化アルカリ電解方法に関する。
【0002】
【従来技術とその問題点】
クロルアルカリ電解を代表とする電解工業は素材産業として重要な役割を果たしている。このように重要な役割を持つが、クロルアルカリ電解に要する消費エネルギーが大きく、日本のようにエネルギーコストが高い国ではその省エネルギー化が大きな問題となる。例えばクロルアルカリ電解では環境問題の解決とともに省エネルギー化を達成するために、水銀法から隔膜法を経てイオン交換膜法へと転換され、約25年で約40%の省エネルギー化を達成してきた。しかしこの省エネルギー化でも不十分で、エネルギーである電力コストが全製造費の50%を占めている。現行の方法を使用する限りこれ以上の電力節約は不可能なところまで来ている。さらなる省エネルギー化を達成するためには、従来と異なる電極反応を用いる等の抜本的に変えなければならない。その例として燃料電池等で採用されているガス拡散電極の使用は現在考えられる中で最も可能性が高く、電力節約が大きい手段である。
【0003】
ガス拡散電極は、反応物質としてガスを電極表面に供給しやすい性質を有することを特徴とし、燃料電池等の用途を踏まえて開発されてきた。最近になってガス拡散電極を工業電解に利用することが検討され始め、例えばアルカリ製造や各種回収プロセスでは対極反応としての陽極の酸素発生あるいは陰極の水素発生の代替として、陽極での水素酸化あるいは陰極での酸素還元反応をガス拡散電極を用いて行ない、消費電力の低減を図っている。又亜鉛採取等の金属回収あるいは亜鉛めっきの対極としても水素陽極による減極が可能であることが報告されている。
しかしながらこれらの工業電解系では、溶液やガスの組成あるいは運転条件が燃料電池の場合と比較して単純でないために、前記電極の寿命や性能が十分に得られないという問題点がある。
【0004】
食塩電解による水酸化ナトリウム製造プロセスにおける一例を述べる。工業用原料として重要である水酸化ナトリウム及び塩素は主として食塩電解により製造されている。この電解プロセスは前述の通りの変遷を経て、イオン交換膜を隔膜とし、過電圧の小さい活性化陰極を使用するイオン交換膜法に移行してきた。この間、水酸化ナトリウム1トンの製造の電力原単位は2000kWhまで減少した。更に従来法のように陰極で水素発生を行なわせる代わりに水素発生を伴わない酸素還元反応を行なわせれば、理論分解電圧は従来の2.19Vから0.96Vとなり、1.23Vの低減が可能になり、大幅な省エネルギー化が期待できる。
この新プロセスを工業的に実現するためには高性能かつ上記電解系で十分な安定性を有する酸素ガス拡散陰極(酸素を供給ガスとするガス拡散陰極)の開発が不可欠になる。
現在最も一般的に行なわれている酸素ガス拡散陰極を用いた食塩電解槽の概略図を図1に示す。
【0005】
この電解槽1では、陽イオン交換膜2により該電解槽1が陽極室3と陰極室4に区画され、更に該陰極室4は酸素ガス拡散陰極5により溶液室6とガス室7に区画されている。原料となる酸素ガスはガス室7側から酸素ガス拡散陰極5のガス相面に供給され、酸素ガス拡散陰極5内を拡散し該陰極5内の触媒層で水と反応して水酸化ナトリウムを生成する。従ってこの電解法に用いられる陰極は、酸素のみを十分に透過し、かつ水酸化ナトリウムの溶液室からガス室への透過を妨げ、いわゆる気液分離型のガス拡散電極でなければならない。このような要求を満たす電極として現在食塩電解用として提案されている酸素ガス拡散陰極は、カーボン粉末とPTFEを混合しシート状に成形した電極基体に銀、白金等の触媒を担持させたガス拡散電極が中心となっている。
従来の食塩電解における陽極反応及び陰極反応はそれぞれ次の通りであり、理論分解電圧は2.19Vとなる。
陽極反応:2Cl→Cl+ 2e (1.36V)
陰極反応:2HO + 2e → 4OH + H (−0.83V)
【0006】
ここで陰極に酸素を供給しながら電解すると、水素が供給酸素で消費されて陰極反応は次のようになる。
陰極反応:2HO+O+4e → 4OH (0.40V)
従って理論的には1.23V、実用的電流密度範囲でも0.8 V程度の電力消費を低減でき、水酸化ナトリウム1トン当たり700 kWhの節減になる。このような省エネルギー化の観点から1980年代以降、ガス拡散電極を利用する食塩電解の実用化が検討されている。
クロルアルカリ電解に使用されるガス拡散電極の構造はその電解条件の特殊性から半疎水型と称せられるもので、親水性の反応層と疎水性のガス拡散層が張り合わされた構造となっている。反応層及びガス拡散層とも炭素を材料としバインダーとしてPTFE樹脂を使用している。このPTFE樹脂は疎水性であり、その使用量により前記両層の特性を出すようにしてあり、つまりガス拡散層ではその使用量を多くして該ガス拡散層の疎水性を向上させ、反応層ではその使用量を少なくして反応層の親水性を向上させるようにしている。
【0007】
食塩電解に炭素を主成分とするガス拡散電極を使用すると、生成する水酸化ナトリウムがガス拡散電極の炭素と反応して炭酸ナトリウムとしてガス拡散電極の細孔内に析出し該ガス拡散電極のガス拡散能を低下させ、かつガス拡散電極の骨格が脆弱化することがある。この問題点を解決するためには炭素の代わりに銀等の金属を使用すれば良く、親水性部と疎水性部の制御が困難である等の不都合を有するものの、その使用が検討されている。
しかしこの電極材料である炭素の劣化の問題点を解決しても、なおガス拡散電極の工業電解への適用には他の問題点、つまり液圧差により供給ガスを均一に電解面全体に供給できないという問題点が残る。通常の電解槽では高さ方向に液による圧力差を有し、これに抗して電解面全体に供給ガスを均一に供給することは極めて困難で、実験室規模では高さ方向の長さが比較的短い複数の単位電極を上下方向に並べて均一なガス供給を達成するようにしているが、実用槽ではこの手法は複雑すぎて実用例はない。
【0008】
この欠点を解消するために、本発明者らは図2に示すいわゆるゼロギャップタイプのガス拡散電極を使用する電解槽を提案した。この電解槽8では、酸素ガス拡散陰極9とイオン交換膜10を密着させることにより図1の溶液室をなくし、原料である酸素ガス及び水を供給し、又生成物である水酸化ナトリウムも同じ側から回収することを特徴としている。
この電解槽では、溶液室が存在せず、従って高さ方向による液圧変化を受けないため、高さに起因する液圧差が生じることはない。
このようにガス拡散電極を工業電解系に適合させる試みは継続的に行なわれ、種々の改良が施され、成果が上がっている。しかし高さが1mにも達する既存の電解槽を利用する場合には、上述の構造を有するガス拡散電極でも本来の電解性能が充分に得られない。その理由として、酸素供給側に移動するアルカリ溶液に加えて、重力により高さ方向に移動した液が、電極内部に滞留するので、ガス供給が阻害されることが挙げられる。
【0009】
【発明の目的】
本発明は、前述の従来技術の問題点、つまりガス拡散電極方式の電解、特に酸素ガス拡散電極をイオン交換膜に密着させて電解を行なうゼロギャップ型の塩化アルカリ電解や過酸化水素生成電解における陰極表面へのガス供給が円滑でないという問題点を解決し、低電解電圧下で水酸化アルカリ等を製造でき、かつ電解槽を大型化する際に高電流密度下でも低電圧を維持したまま安定な電解を継続できるガス拡散電極を使用する電解方法を提供することを目的とする。
【0010】
【問題点を解決するための手段】
本発明に係わる電解方法は、イオン交換膜により陽極室と陰極室に区画された電解槽の該陰極室にガス拡散陰極を配置し、陽極室に塩化アルカリ溶液を陰極室に酸素含有ガスをそれぞれ供給しながら電解して水酸化アルカリを得るための電解方法において、前記イオン交換膜と前記ガス拡散陰極間に親水性の液透過層を設け、生成する水酸化アルカリの全部又は一部を前記液透過層を通して前記イオン交換膜及びガス拡散陰極の周縁部へ抜き出すことを特徴とする電解方法である。
【0011】
以下本発明を詳細に説明する。
従来から酸素ガス拡散陰極の食塩電解等の工業電解への適用は検討され報告されている。陰極室を酸素ガス拡散陰極により溶液室とガス室とに区画するタイプの電解槽では、イオン交換膜と陰極間の液による液抵抗は無視できないほど大きい。
イオン交換膜と陰極を密着させるゼロギャップタイプは、この液抵抗を低減させるために開発された技術であり、それに付随して液圧差による不都合も解消できる。例えば食塩電解の場合、前述した陰極反応:2HO+2e→4OH+Hがイオン交換膜と陰極との界面で生じ、生成した水酸化ナトリウムは溶液として酸素ガス拡散陰極を透過して該陰極のガス相側から取り出される。この場合水酸化ナトリウムの流れ方向と酸素含有ガスの流れ方向が逆であるため、溶液が酸素電極内に滞留したり、ガス供給速度が遅くなったりする。
【0012】
例えば酸素ガス拡散陰極を食塩電解に使用する場合とガス発生電極を食塩電解に使用する場合における電流密度の増加に対する電解電圧の上昇は、前者の方が後者の約1.5 〜2倍であることが知られている。これは酸素ガス拡散陰極の特性として捉えられ、その主要因は反応の種類ではなく、電極反応以外の過電圧に依るものであることが判っている。その過電圧上昇の原因の1つが酸素ガス拡散陰極に対する供給ガス不足であり、例えば食塩電解の場合、ガス源を空気とする場合と純酸素とする場合では前者の方が約200 mV過電圧が高くなることが知られている。又供給量を増加した方が過電圧が低くなるが、生成物の取り出しに支障を来たし、結局円滑なガス供給もできなくなる。
【0013】
本発明は、この生成物を含む溶液と酸素含有ガスの供給を共に円滑に行ない得る電解方法を提供することも目的とし、これにより酸素ガス拡散陰極を使用する工業電解槽の実現の可能性が高くなる。
本発明では、イオン交換膜と酸素ガス拡散陰極を密着させて設置するゼロギャップ型電解槽の前記イオン交換膜と酸素ガス拡散陰極間に液透過層を設けて前記イオン交換膜とガス拡散電極を実質的かつ物理的に一体化し、これにより従来は電圧上昇の主要因であった生成水酸化アルカリによる細孔の閉塞に基づくガス供給の阻害を抑制するとともに、ガス拡散陰極へ掛かる液圧差による不都合も解消できる。
更に従来の食塩電解特にゼロギャップ型食塩電解では正常運転の場合は問題がないが、シャットダウンが起こるとガス拡散陰極の電極物質が溶出し、該電極物質が密着したイオン交換膜中へ拡散してイオン交換膜を被毒してしまうことがあり、この被毒により電流効率の低下や槽電圧の上昇が生ずることがある。これに対し本発明方法ではイオン交換膜とガス拡散陰極に存在する液透過層がガス拡散陰極から溶出した電極物質を生成する水酸化アルカリ溶液とともに抜き出してイオン交換膜に達することが殆どないためイオン交換膜に悪影響を与えることがない。更に陽極室から透過して来ることのある塩素や次亜塩素酸も前記液透過層中に拡散してガス拡散陰極を腐食することが殆どない。
更にイオン交換膜とガス拡散陰極間の全面に液が存在するため、電解面全面が確実に使用され、それによる電解電圧の低下が期待できる。
【0014】
本発明で使用する液透過層は、イオン交換膜で生成する水酸化アルカリを溶解した溶液の全部又は一部を、該液透過層を通して陰極室の周囲、特に下部に抜き出して前記溶液がイオン交換膜と酸素ガス拡散陰極間に滞留する時間を短くし、これにより酸素ガス拡散陰極背面からの酸素含有ガスの供給を円滑に行なうようにしたものである。この液透過層は、親水性であることに加えて、不活性で電解反応に寄与しない材料で構成する必要があるが、導電性でも絶縁性でも差し支えない。又当然高濃度アルカリに対する耐性と僅かではあるがイオン交換膜を透過してくる塩素や次亜塩素酸に対する耐性を有することが必要である。更にイオン交換膜とガス拡散陰極間に設置されるため柔軟性があり圧力の不均一が生ずる場合に変形して前記圧力を吸収でき、イオン交換膜及びガス拡散陰極と物理的に連結されて実質的にイオン交換膜、液透過層及びガス拡散陰極が一体化され、更に陰極液を常に保持し得る材料及び構造であることが望ましい。
【0015】
本発明における液透過層の親水性という要件を満たす物質として、酸化チタン、酸化ジルコニウム及び酸化錫等の酸化物、金及び銀等又はそれをめっきしたニッケルメッシュ等の金属や合金、フッ素樹脂等の耐酸性及び耐薬品性を有する樹脂、グラファイトやカーボンブラック等の炭素質材料及び炭化珪素等のセラミックスなどがある。前記樹脂を使用する場合には該樹脂は通常疎水性であるため、表面を親水化したり親水性の酸化物等と併用することが必要になる。液透過層の材料として銀を使用する場合、銀自身に電極活性があるため、その粒径を10μm以上として活性を抑える必要がある。炭素を使用する場合も同様であり粒径を5μm以上として活性を抑えることが必要である。
【0016】
本発明方法で使用する液透過層は、ガス拡散陰極又はイオン交換膜の表面に樹脂等と混練した材料粉末を塗布し焼成して形成することが望ましいが、シート状の液透過層を別途作製してそれを両者間に挟み込んでも良い。焼成により作製される液透過層は多数の細孔を有する多孔性となるが、シート状の液透過層を別途準備する場合には無孔性でも多孔性でも良い。しかし本発明方法ではガス供給を円滑に行うためには前記液透過層は多孔性であることが望ましい。液透過層の構造や孔径は焼成法の場合にはその条件により必然的に決定されるが、別途作製するシート状液透過層の構造としては、網、織物、不織物、発泡体があり、特に粉末を原料として孔形成剤と各種バインダーでシート状に成形した後、溶剤により孔形成粒子を除去した焼結板又はそれを重ねた物が好ましい。
【0017】
前者の焼成法を使用してイオン交換膜表面に液透過層を作製する場合には、表面に親水性が付与されたイオン交換膜として市販されている旭硝子株式会社製のイオン交換膜(商品名フレミオンF866 )等の表面に酸化ジルコニウム等の材料を被覆し、このイオン交換膜の酸化ジルコニウム側にそのままガス拡散陰極を密着させて使用できる。この材料被覆は、例えば酸化ジルコニウム等の粉末をフッ素樹脂の水分散液、例えばデュポン社製のテフロン(登録商標)ディスパージョン30J液と混練後、前処理を行ったイオン交換膜表面に塗布しホットプレスにより150 〜250 ℃で10〜30分程度焼き付ければ良い。その圧力は液透過層が平滑にイオン交換膜表面に形成される1〜30kg/cm程度で良い。
【0018】
この液透過層をガス拡散陰極表面に形成する場合も同様の条件で焼成すれば良く、この場合には更に効率良く操作を進行させるために、ガス拡散陰極作製時の電極層をホットプレスで形成する前に、前記液透過層の材料の分散液を塗布しておき、1回のホットプレスでガス拡散陰極の作製と液透過層の作製を同時に行うことも可能である。この場合前者及び後者の作製の最適条件が異なることがあるが、フッ素樹脂量や材料粒子の粒径を制御することにより空隙率等を調節して好適なガス拡散陰極及び液透過層を同時に作製できる。フッ素樹脂を使用する場合の液透過層の材料の好適な粒径は5〜30μm程度であり、フッ素樹脂を20〜40%使用して焼成すると、空隙率が50〜89%の液透過層が形成される。40%を越える量のフッ素樹脂を使用すると疎水性が強くなり液透過層内を水酸化アルカリ溶液が流れにくくなる。
網状体等の液透過層を使用する場合には、この網状体をガス拡散陰極表面にフッ素樹脂を使用して焼き付けても、単に前記網状体をガス拡散陰極とイオン交換膜間に挟み込んでも良い。
【0019】
液抵抗の面から見れば、イオン交換膜と酸素ガス拡散陰極との間には何も存在しないことが好ましいので、本発明の液透過層を両者間に挿入しないほうが良いことになり、挿入すれば電解電圧は上昇する。しかし純水電解のようなイオン交換膜を固体電解質として利用する場合以外はイオン交換膜と陰極とが密着しなければならない必然性はなく、前記液透過層の挿入による電解電圧の上昇分以上の効果が現れれば、全体としての省エネルギー化が達成できる。
この面からは液透過層は薄いほど液抵抗が小さくなり好ましいが、薄過ぎると該液透過層の本来の機能である水酸化アルカリ溶液をガス拡散陰極を透過させずに周縁部に取り出す機能が損なわれるため、液抵抗と機能を勘案してその厚さを決定することが望ましく、好ましい厚さは0.1 〜1mm程度である。
【0020】
食塩電解に本発明の電解槽を使用する場合、イオン交換膜としてはフッ素樹脂系の膜が耐食性の面から好適である。陽極は通常のDSAと呼ばれるチタン製の不溶性電極を使用することが望ましいが、他の電極の使用も可能である。
電解条件は、例えば温度60〜90℃、電流密度10〜100 A/dmとすることが好ましく、必要に応じて供給酸素含有ガスを加湿する。加湿方法としては、電解槽入口に70〜95℃に加湿された加湿装置を設け、前記酸素含有ガスを通すことにより制御する。現在市販されている膜の性能では、陽極液の濃度を200 g/リットル以下、特に170 g/リットル付近に維持すると、酸素含有ガスの加湿は不要になる。得られる水酸化ナトリウム濃度は25〜40%程度が適当であるが、基本的にはイオン交換膜の性能により決定される。
【0021】
本発明の電解槽を使用して食塩電解を行なうと、酸素ガス拡散陰極のイオン交換膜側表面近傍で主として生成する水酸化ナトリウムを前記液透過層を通してつまり酸素ガス拡散陰極を通さずに抜き出すことができる。その際に該液透過層がシード状であると、前記水酸化ナトリウムがその周縁に達しなければ抜き出されず、抜き出しまでに比較的長時間を要することがある。この問題点を解決するために、本発明では、例えばシートを複数に分割して各分割シートの一端を、例えば1〜5mm幅のスリットやガイドを形成した酸素ガス拡散陰極のこれらの隙間から電極背面に達するように配置すると、生成水酸化ナトリウムが周縁に達する前に、短時間でイオン交換膜と酸素ガス拡散陰極間から抜き出される。
【0022】
図3は、本発明方法で使用可能な酸素ガス拡散陰極を使用する食塩電解槽の一例を示す縦断面図である。
電解槽本体11は、イオン交換膜12により陽極室13と陰極室14に区画され、前記イオン交換膜12の陽極室13側にはメッシュ状の不溶性陽極15が密着し、該イオン交換膜12の陰極室14側には液透過層16が密着し更に該液透過層16の陰極室側には液透過型酸素ガス拡散陰極17が密着し、該酸素ガス拡散陰極17にはメッシュ状の陰極集電体18が接続され該集電体18により給電されるようになっている。
なお19は陽極室底部近傍の側壁に形成された陽極液(飽和食塩水)導入口、20は陽極室上部近傍の側壁に形成された陽極液(未反応食塩水)及び塩素ガス取出口、21は陰極室上部近傍の側壁に形成された(加湿)酸素含有ガス導入口、22は陰極室底部近傍の側壁に形成された水酸化ナトリウム及び過剰酸素の取出口である。
【0023】
この電解槽11の陽極室13に陽極液である飽和食塩水を供給しかつ陰極室14に加湿した酸素含有ガス例えば純酸素や空気を供給しながら両電極15、16間に通電すると、イオン交換膜12の陰極室14側表面で水酸化ナトリウムが生成する。通常の電解槽ではこの水酸化ナトリウムは水溶液として酸素ガス拡散陰極を透過してその陰極室側表面に達する。しかし図示の電解槽11ではイオン交換膜12と酸素ガス拡散陰極17の間に液透過層16が存在するため、前記水酸化ナトリウム水溶液は前記陰極17内を透過するよりも抵抗が小さくなる、前記液透過層16内を分散し、特に重力により下降して該液透過層16の下端に達して液滴として陰極室14底部に落下して貯留される。
この電解槽を図2等の従来の電解槽と比較すると、図2の従来型電解槽では、生成する水酸化ナトリウム水溶液は密度の高い酸素ガス拡散陰極内を透過しなければならず、従って電極内での滞留時間が長くなり、供給される酸素含有ガスの円滑な透過を阻害し、反応を律速するガス供給が不十分になるため生成する水酸化ナトリウムも不足し、反応効率が大きく低下する。それに比べ、図3の電解槽では、生成する水酸化ナトリウム水溶液の反応サイトからの取り出しが比較的抵抗の小さい液透過層内の分散により行なわれ、陰極内に殆ど滞留しないため、反応ガスの供給が円滑に行なわれ、従って反応効率も高く維持される。
【0024】
図4は、生成する水酸化ナトリウム水溶液を更に円滑に取り出すことのできる図3の電解槽の一部を改良した要部斜視図で、図4aは陰極を複数に分割した例、図4bは陰極にスリットを形成した例を示す。
図4aでは、酸素ガス拡散陰極17aを複数に分割して陰極片17bとし、かつ親水性の液透過層16aも対応する数の液透過層片16bに分割している。各液透過層片bの下端は前記陰極17b方向に折り曲げられ上下に隣接する陰極17b間を通って該陰極17bの背面に達し、折曲片16cを形成している。
【0025】
この電解槽を使用して電解を行なうと、図3の電解槽の場合と同様に、イオン交換膜の陰極室側表面で生成する水酸化ナトリウム水溶液が親水性の液透過層片16b内を透過する。該液透過層16bが分割されているので、前記水酸化ナトリウム水溶液は周縁部まで移動せずに各液透過層片16b内をその下端部までの比較的短い距離を移動すれば陰極17b方向に折り曲げられた折曲片16cから液滴として落下する。それ故図3の電解槽よりも円滑に液抜きを行なうことができる。
図4bは陰極を複数に分割せず、陰極17cに横長の四角形の形状のスリット23を形成した例である。図4aのように陰極を複数に分割すると各分割片ごとに給電する必要があって煩雑であるが、図4bのように陰極17cにスリット23を形成し、このスリット23を通して陰極16bの折曲片16cを陰極背面に位置させるようにすると、陰極への給電を単一の集電体で行なえるため、更に好都合である。
【0026】
【実施例】
次に本発明に係わる電解方法の実施例を記載するが、該実施例は本発明を限定するものではない。
【0027】
【実施例1】
厚さ4mmのニッケル発泡体をブレスにより厚さ1mmに潰して基材とし、この基材表面に平均粒径5μmのニッケル粒子をその40重量%のテフロンの水分散液(デュポン社の製の30J)を加えて混練したものを充填し、圧力10kg/cmで300 ℃、15分間ホットプレスし、更にその片面に電極触媒として平均粒径0.5 μmのサブミクロン銀粒子を、同じテフロン分散液とともに塗布し、250 ℃で焼き付けてガス拡散陰極とした。
このガス拡散陰極の銀粒子側に、平均粒径20μmの酸化ジルコニウム粉末に20重量%の同じテフロン分散液を加えたものを厚さ200 μmとなるように塗布し、温度200 ℃で焼き付けて液透過層を形成した。
【0028】
この液透過層が形成されたガス拡散陰極を、デュポン社製のイオン交換膜ナフィオン961 に0.1 kg/cmの圧力で密着させた。他の電解条件を、電流密度は30A/dm,温度90℃、陽極液である食塩供給速度は170 g/リットルとし、陽極として通常の寸法安定性電極(寸法安定性電極)を使用して通電し、更にガス室のみとなった陰極室に、PSA法により空気中の酸素を富化した純度88%のPSA酸素を理論量の1.5 倍供給しながら電解を行った。電解初期の電解電圧は2.05Vであり、96〜97%の安定した電流効率で32〜33%の水酸化ナトリウム水溶液(陰極液)が得られた。又この条件で電解を10時間継続したところ、電解電圧の上昇は僅か10mVであった。10時間後に電圧をシャットダウンして電解を終了させたが、イオン交換膜には変化は見られなかった。更に数回このシャットダウンを繰り返したが、電流効率の低下は見られなかった。
この陰極液に含まれる水酸化ナトリウムのうち約70%が前記酸化ジルコニウム製液透過層を流れて該液透過層の下側から取り出され、前記ガス拡散陰極を透過して該陰極背面に達したものは僅かであった。
【0029】
【実施例2】
ガス拡散陰極のイオン交換膜への密着圧力を0.1 、0.2 、0.3 及び0.4 kg/cmとして実施例1と同一の実験を行ったが、電解電圧、電流効率及び得られた水酸化ナトリウム水溶液の濃度は実施例1と同じであった。
【0030】
【比較例1】
酸化ジルコニウム製液透過層を形成しなかったこと以外は、実施例1と同一条件で電解を行ったところ、初期電解電圧及び電流効率はそれぞれ実施例1と同じ2.05V及び96〜97%であったが、10時間経過後には電解電圧が2.1 Vまで上昇し、この後も僅かずつ電圧の上昇が観察された。
電解を完全に停止し、その後再度電解を開始するとその電解電圧は当初の2.05Vであった。これはガス拡散陰極を透過してきた水酸化ナトリウム水溶液がガス拡散陰極を閉塞し、該陰極を通して供給される前述の富化酸素の一部を遮蔽したからであり、電圧停止により水酸化ナトリウム水溶液が除去されたからであると考えられる。
前述の電解停止時にイオン交換膜が黒変した。ガス拡散陰極中のニッケルが僅少量ではあるが、イオン交換膜中に析出したことが見出された。
前述の電解停止(シャットダウン)を繰り返したところ、電流効率は徐々に低下し初期値の96〜93%まで低下した。
【0031】
【比較例2】
酸化ジルコニウム製液透過層を形成しなかったこと以外は、実施例2と同一条件で電解を行ったところ、0.3 及び0.4 kg/cmでは比較例1とほぼ同じ電圧の経時変化が観察されたが、効率及び得られた水酸化ナトリウム水溶液の濃度は実施例1と同じであった。0.1 及び0.2 kg/cmでは電圧の経時変化の振れが大きく、全体的な電圧低下も比較例1より大きかった。
【0032】
【実施例3】
液透過層を見掛け厚0.2 mmの銀製の網状体とし、この網状体をイオン交換膜とガス拡散陰極の間に0.2 kg/cmの圧力で挟んだこと以外は実施例1と同一条件で電解を行ったところ、初期電解電圧は実施例1と同じ2.05Vであり、電解を継続しても安定していた。
【0033】
【発明の効果】
本発明方法は、イオン交換膜により陽極室と陰極室に区画された電解槽の該陰極室にガス拡散陰極を配置し、陽極室に塩化アルカリ溶液を陰極室に酸素含有ガスをそれぞれ供給しながら電解して水酸化アルカリを得るための電解方法において、前記イオン交換膜と前記ガス拡散陰極間に親水性の液透過層を設け、生成する水酸化アルカリの全部又は一部を前記液透過層を通して前記イオン交換膜及びガス拡散陰極の周縁部へ抜き出すことを特徴とする電解方法である。
従来のガス拡散陰極を使用する電解槽特にガス拡散電極をイオン交換膜に密着させるゼロギャップタイプの電解槽では、イオン交換膜の陰極室側表面で生ずる目的生成物が比較的密度の高い前記ガス拡散陰極を透過してつまり供給される反応ガスの供給方向と反対方向に、換言すると反応ガスの供給を阻害しながら前記ガス拡散陰極を透過しなければならず、生成物が増加するほど反応ガスの反応サイトへの供給が阻害されて反応効率が低下するという問題点があった。
【0034】
これに対し本発明方法では、酸素ガス拡散陰極とイオン交換膜の間に親水性の液透過層を配置したため、従来はその殆ど全てが前記酸素ガス拡散陰極を透過して取り出されなければならなかった水酸化ナトリウム溶液の少なくとも一部が酸素ガス拡散陰極を透過せずに前記液透過層を通って反応ガスの供給方向と対向することなくイオン交換膜表面から取り出すことができる。従って生成物量が増加しても、反応ガス供給には殆ど影響がなく、反応効率を高く維持したまま、所定の電解反応を継続できる。
換言すると本発明は、生成物を溶解した溶液の円滑な抜き出しと酸素ガスの円滑な供給という方向の異なる相反する操作を最大効率で行ない、電解電圧を従来以上に低減して酸素ガス拡散陰極を工業電解へ適用する道を大きく開くことを可能にしている。
【0035】
更に本発明方法では、陰極液中に混入しやすい陰極物質や塩素及び次亜塩素酸等の不純物をイオン交換膜とガス拡散陰極間の液透過層から抜き出せるため、該不純物がイオン交換膜及びガス拡散陰極に達することが殆どなくなり、該イオン交換膜及びガス拡散陰極の保護も同時に行うことができる。
本発明方法の液透過層は、その構成材料をガス拡散陰極のイオン交換膜側表面に塗布し焼成してガス拡散陰極と一体化することが望ましく、これにより液透過層が比較的強くガス拡散陰極と結合し、安定した運転が可能になる。
【図面の簡単な説明】
【図1】従来の食塩電解槽の一例を示す概略図。
【図2】従来の食塩電解槽の他の例を示す概略図。
【図3】本発明方法で使用可能な酸素ガス拡散陰極を使用する食塩電解槽の一例を示す縦断面図。
【図4】本発明方法で使用可能な酸素ガス拡散陰極を使用する食塩電解槽の他の例を示す縦断面図で、図4aは陰極を複数の分解した例を、図4bは陰極にスリットを形成し例を示す。
【符号の説明】
11・・・電解槽本体 12・・・イオン交換膜 13・・・陽極室 14・・・陰極室 15・・・不溶性陽極 16・・・液透過層 17・・・酸素ガス拡散陰極 18・・・集電体
[0001]
[Industrial applications]
The present invention relates to an electrolytic method for obtaining an alkali hydroxide at a low electrolysis voltage by electrolyzing an alkali chloride while smoothly supplying a gas to a gas diffusion cathode, and more particularly, to a gas supply to the gas diffusion cathode. The present invention relates to an alkali chloride electrolysis method using an oxygen gas diffusion cathode which can achieve a large energy saving effect in the production of alkali hydroxide by smoothing the process and prevent the ion exchange membrane from being contaminated due to elution of the electrode material.
[0002]
[Prior art and its problems]
The electrolysis industry represented by chloralkali electrolysis plays an important role as a material industry. Although it has such an important role, energy consumption required for chloralkali electrolysis is large, and energy saving is a major problem in countries with high energy costs such as Japan. For example, in chlor-alkali electrolysis, in order to solve the environmental problem and achieve energy saving, the mercury method was switched to the ion exchange membrane method via the diaphragm method, and about 25 years have achieved about 40% energy saving. However, this energy saving is not enough, and the power cost, which is energy, accounts for 50% of the total manufacturing cost. No further power savings are possible using current methods. In order to achieve further energy saving, drastic changes must be made, such as using an electrode reaction different from the conventional one. As an example, the use of a gas diffusion electrode employed in a fuel cell or the like is the most probable means at present, and is a means for greatly saving power.
[0003]
Gas diffusion electrodes are characterized by having a property of easily supplying a gas as a reactant to the electrode surface, and have been developed in consideration of applications such as fuel cells. Recently, the use of gas diffusion electrodes for industrial electrolysis has begun to be studied.For example, in the production of alkalis and various recovery processes, as an alternative to the generation of oxygen at the anode as the counter electrode reaction or the generation of hydrogen at the cathode, hydrogen oxidation at the anode or The oxygen reduction reaction at the cathode is performed using a gas diffusion electrode to reduce power consumption. It has also been reported that depolarization with a hydrogen anode is possible as a counter electrode for recovering metals such as collecting zinc or for galvanizing.
However, these industrial electrolysis systems have a problem that the electrode life and performance cannot be sufficiently obtained because the composition of the solution or gas or the operating conditions are not as simple as those of the fuel cell.
[0004]
An example of the sodium hydroxide production process by salt electrolysis will be described. Sodium hydroxide and chlorine, which are important as industrial raw materials, are mainly produced by salt electrolysis. This electrolysis process has undergone a transition as described above, and has shifted to an ion exchange membrane method using an ion exchange membrane as a diaphragm and using an activated cathode with a small overvoltage. During this time, the power consumption for the production of 1 ton of sodium hydroxide has been reduced to 2000 kWh. Furthermore, if an oxygen reduction reaction without hydrogen generation is performed instead of performing hydrogen generation at the cathode as in the conventional method, the theoretical decomposition voltage becomes 0.96 V from the conventional 2.19 V, which can be reduced by 1.23 V. And significant energy savings can be expected.
In order to industrially realize this new process, it is essential to develop an oxygen gas diffusion cathode (a gas diffusion cathode using oxygen as a supply gas) having high performance and sufficient stability in the electrolytic system.
FIG. 1 is a schematic diagram of a salt electrolysis cell using an oxygen gas diffusion cathode which is currently most commonly used.
[0005]
In the electrolytic cell 1, the electrolytic cell 1 is partitioned by a cation exchange membrane 2 into an anode chamber 3 and a cathode chamber 4, and the cathode chamber 4 is partitioned into a solution chamber 6 and a gas chamber 7 by an oxygen gas diffusion cathode 5. ing. Oxygen gas as a raw material is supplied from the gas chamber 7 side to the gas phase surface of the oxygen gas diffusion cathode 5, diffuses inside the oxygen gas diffusion cathode 5, and reacts with water in a catalyst layer in the cathode 5 to convert sodium hydroxide. Generate. Therefore, the cathode used in this electrolysis method must be a so-called gas-liquid separation type gas diffusion electrode that sufficiently permeates only oxygen and prevents permeation of sodium hydroxide from the solution chamber to the gas chamber. Oxygen gas diffusion cathodes currently proposed for salt electrolysis as electrodes meeting such demands are gas diffusion catalysts such as silver and platinum supported on an electrode substrate formed by mixing carbon powder and PTFE into a sheet shape. The electrodes are centered.
The anodic reaction and the cathodic reaction in the conventional salt electrolysis are as follows, and the theoretical decomposition voltage is 2.19V.
Anode reaction: 2Cl → Cl 2 + 2e (1.36 V)
Cathodic reaction: 2H 2 O + 2e → 4OH - + H 2 (-0.83V)
[0006]
Here, when electrolysis is performed while supplying oxygen to the cathode, hydrogen is consumed by the supplied oxygen, and the cathode reaction is as follows.
Cathode reaction: 2H 2 O + O 2 + 4e → 4OH (0.40 V)
Therefore, the power consumption can be reduced theoretically by 1.23 V, and about 0.8 V even in a practical current density range, and a saving of 700 kWh per ton of sodium hydroxide can be achieved. From the viewpoint of energy saving, practical application of salt electrolysis using a gas diffusion electrode has been studied since the 1980s.
The structure of the gas diffusion electrode used for chlor-alkali electrolysis is called a semi-hydrophobic type due to the specificity of the electrolysis conditions, and has a structure in which a hydrophilic reaction layer and a hydrophobic gas diffusion layer are laminated. . Both the reaction layer and the gas diffusion layer are made of carbon and PTFE resin is used as a binder. The PTFE resin is hydrophobic, and the properties of the two layers are determined by the amount of the PTFE resin used. That is, in the gas diffusion layer, the amount of the PTFE resin used is increased to improve the hydrophobicity of the gas diffusion layer. In JP-A No. 7-1980, the amount used is reduced to improve the hydrophilicity of the reaction layer.
[0007]
When a gas diffusion electrode containing carbon as a main component is used for salt electrolysis, the generated sodium hydroxide reacts with the carbon of the gas diffusion electrode and precipitates as sodium carbonate in the pores of the gas diffusion electrode, and the gas of the gas diffusion electrode The diffusivity may be reduced, and the skeleton of the gas diffusion electrode may be weakened. In order to solve this problem, a metal such as silver may be used instead of carbon, and although there are inconveniences such as difficulty in controlling the hydrophilic part and the hydrophobic part, its use is being studied. .
However, even if the problem of deterioration of carbon, which is the electrode material, is solved, the gas diffusion electrode cannot be applied to industrial electrolysis with another problem, that is, the supply gas cannot be uniformly supplied to the entire electrolytic surface due to the liquid pressure difference. The problem remains. In a normal electrolytic cell, there is a pressure difference due to the liquid in the height direction, and it is extremely difficult to uniformly supply the supply gas to the entire electrolysis surface against the pressure difference. Although a plurality of relatively short unit electrodes are arranged vertically to achieve a uniform gas supply, this method is too complicated in a practical tank and there is no practical example.
[0008]
In order to solve this drawback, the present inventors have proposed an electrolytic cell using a so-called zero-gap type gas diffusion electrode shown in FIG. In the electrolytic cell 8, the solution chamber of FIG. 1 is eliminated by bringing the oxygen gas diffusion cathode 9 into close contact with the ion-exchange membrane 10, and oxygen gas and water as raw materials are supplied. It is characterized by being collected from the side.
In this electrolytic cell, there is no solution chamber, and therefore there is no change in the liquid pressure in the height direction, so that there is no difference in liquid pressure due to the height.
As described above, attempts to adapt the gas diffusion electrode to an industrial electrolysis system have been continuously made, and various improvements have been made and results have been obtained. However, when an existing electrolytic cell having a height of even 1 m is used, the original electrolytic performance cannot be sufficiently obtained even with the gas diffusion electrode having the above structure. The reason is that, in addition to the alkali solution moving to the oxygen supply side, the liquid moved in the height direction due to gravity stays inside the electrode, so that the gas supply is hindered.
[0009]
[Object of the invention]
The present invention relates to the above-mentioned problems of the prior art, namely, gas diffusion electrode type electrolysis, in particular, zero-gap type alkali chloride electrolysis and hydrogen peroxide generation electrolysis in which electrolysis is performed by adhering an oxygen gas diffusion electrode to an ion exchange membrane. Solves the problem that the gas supply to the cathode surface is not smooth, can produce alkali hydroxide etc. under low electrolysis voltage, and is stable while maintaining low voltage even under high current density when enlarging the electrolytic cell It is an object of the present invention to provide an electrolysis method using a gas diffusion electrode capable of continuing the electrolysis.
[0010]
[Means for solving the problem]
In the electrolysis method according to the present invention, a gas diffusion cathode is disposed in an anode chamber and a cathode chamber of an electrolytic cell partitioned by an ion exchange membrane, and an alkali chloride solution is supplied to the anode chamber, and an oxygen-containing gas is supplied to the cathode chamber. In an electrolysis method for obtaining an alkali hydroxide by performing electrolysis while supplying, a hydrophilic liquid permeable layer is provided between the ion exchange membrane and the gas diffusion cathode, and all or a part of the generated alkali hydroxide is the solution. An electrolysis method characterized by extracting the ion-exchange membrane and the gas diffusion cathode to the periphery through a permeable layer.
[0011]
Hereinafter, the present invention will be described in detail.
Conventionally, application of an oxygen gas diffusion cathode to industrial electrolysis such as salt electrolysis has been studied and reported. In an electrolytic cell in which the cathode chamber is partitioned into a solution chamber and a gas chamber by an oxygen gas diffusion cathode, the liquid resistance between the ion exchange membrane and the cathode due to the liquid is not negligible.
The zero-gap type in which the ion exchange membrane and the cathode are in close contact with each other is a technique developed to reduce the liquid resistance, and the accompanying problems caused by the liquid pressure difference can be solved. For example, in the case of salt electrolysis, the above-mentioned cathodic reaction: 2H 2 O + 2e → 4OH + H 2 occurs at the interface between the ion exchange membrane and the cathode, and the generated sodium hydroxide permeates through the oxygen gas diffusion cathode as a solution to form the cathode. It is taken out from the gas phase side. In this case, the flow direction of the sodium hydroxide and the flow direction of the oxygen-containing gas are opposite, so that the solution stays in the oxygen electrode or the gas supply speed decreases.
[0012]
For example, when the oxygen gas diffusion cathode is used for the salt electrolysis and when the gas generating electrode is used for the salt electrolysis, the increase in the electrolysis voltage with respect to the increase in the current density is about 1.5 to 2 times that of the latter. It is known. This is regarded as the characteristic of the oxygen gas diffusion cathode, and it is known that the main factor is not the type of reaction but the overvoltage other than the electrode reaction. One of the causes of the overvoltage rise is a shortage of supply gas to the oxygen gas diffusion cathode. For example, in the case of salt electrolysis, when the gas source is air or pure oxygen, the former is about 200 mV higher in overvoltage. It is known. In addition, the overvoltage becomes lower when the supply amount is increased, but it hinders the removal of the product, and as a result, the gas cannot be supplied smoothly.
[0013]
Another object of the present invention is to provide an electrolysis method capable of smoothly supplying both a solution containing this product and an oxygen-containing gas, thereby realizing the possibility of realizing an industrial electrolytic cell using an oxygen gas diffusion cathode. Get higher.
In the present invention, a liquid permeable layer is provided between the ion exchange membrane and the oxygen gas diffusion cathode of the zero gap type electrolytic cell in which the ion exchange membrane and the oxygen gas diffusion cathode are installed in close contact with each other, and the ion exchange membrane and the gas diffusion electrode are provided. Substantially and physically integrated, thereby suppressing the gas supply hindrance due to the clogging of the pores by the generated alkali hydroxide, which was a main factor of the voltage increase, and the disadvantage due to the liquid pressure difference applied to the gas diffusion cathode Can also be eliminated.
Further, in conventional salt electrolysis, particularly in zero gap type salt electrolysis, there is no problem in the case of normal operation, but when shutdown occurs, the electrode material of the gas diffusion cathode elutes, and the electrode material diffuses into the adhered ion exchange membrane. The ion exchange membrane may be poisoned, and this poisoning may cause a decrease in current efficiency or an increase in cell voltage. On the other hand, in the method of the present invention, the liquid permeable layer existing in the ion exchange membrane and the gas diffusion cathode is hardly extracted together with the alkali hydroxide solution generating the electrode substance eluted from the gas diffusion cathode and reaches the ion exchange membrane. Does not adversely affect the exchange membrane. Further, chlorine or hypochlorous acid which may permeate from the anode chamber is hardly diffused into the liquid permeable layer to corrode the gas diffusion cathode.
Furthermore, since the liquid is present on the entire surface between the ion exchange membrane and the gas diffusion cathode, the entire electrolytic surface is reliably used, and a reduction in the electrolytic voltage can be expected.
[0014]
In the liquid permeable layer used in the present invention, all or a part of the solution in which the alkali hydroxide generated by the ion exchange membrane is dissolved is drawn through the liquid permeable layer to the periphery of the cathode chamber, particularly to the lower portion, and the solution is subjected to ion exchange. The residence time between the membrane and the oxygen gas diffusion cathode is shortened, whereby the supply of the oxygen-containing gas from the back surface of the oxygen gas diffusion cathode is performed smoothly. The liquid permeable layer needs to be made of a material that is inert and does not contribute to the electrolytic reaction in addition to being hydrophilic, but may be conductive or insulating. In addition, it is necessary to have resistance to high-concentration alkali and, to a lesser extent, chlorine and hypochlorous acid permeating the ion exchange membrane. Furthermore, since it is installed between the ion exchange membrane and the gas diffusion cathode, it is flexible and can absorb the pressure by deforming when pressure unevenness occurs, and is physically connected to the ion exchange membrane and the gas diffusion cathode and substantially. It is desirable that the ion exchange membrane, the liquid permeable layer, and the gas diffusion cathode be integrated, and that the material and the structure be capable of always holding the catholyte.
[0015]
As a substance satisfying the requirement of hydrophilicity of the liquid permeable layer in the present invention , titanium oxide, oxides such as zirconium oxide and tin oxide, metals and alloys such as nickel and mesh plated with gold and silver, and fluororesins and the like There are resins having acid resistance and chemical resistance, carbonaceous materials such as graphite and carbon black, and ceramics such as silicon carbide. When the resin is used, since the resin is usually hydrophobic, it is necessary to hydrophilize the surface or use it in combination with a hydrophilic oxide. When silver is used as the material of the liquid permeable layer, since silver itself has an electrode activity, it is necessary to suppress the activity by setting the particle size to 10 μm or more. The same applies to the case where carbon is used, and it is necessary to suppress the activity by setting the particle size to 5 μm or more.
[0016]
The liquid permeable layer used in the method of the present invention is desirably formed by applying and baking a material powder kneaded with a resin or the like on the surface of a gas diffusion cathode or an ion exchange membrane, but separately forming a sheet-shaped liquid permeable layer. Then it may be sandwiched between them. The liquid permeable layer produced by firing becomes porous having a large number of pores. However, when a sheet-shaped liquid permeable layer is separately prepared, it may be nonporous or porous. However, in the method of the present invention, it is desirable that the liquid permeable layer is porous for smooth gas supply. The structure and pore size of the liquid-permeable layer are inevitably determined by the conditions in the case of the firing method, but the structure of the separately formed sheet-shaped liquid-permeable layer includes a mesh, a woven fabric, a nonwoven fabric, and a foam. In particular, a sintered plate obtained by forming a sheet from a powder as a raw material with a pore-forming agent and various binders and removing pore-forming particles with a solvent, or a laminate of the sintered plates is preferable.
[0017]
When a liquid permeable layer is formed on the surface of an ion exchange membrane using the former calcination method, an ion exchange membrane manufactured by Asahi Glass Co., Ltd., which is commercially available as an ion exchange membrane having a hydrophilic surface, is used. A surface such as Flemion F866) is coated with a material such as zirconium oxide, and a gas diffusion cathode can be used as it is on the zirconium oxide side of the ion exchange membrane. This material coating is performed by, for example, kneading a powder of zirconium oxide or the like with an aqueous dispersion of a fluororesin, for example, a Teflon (registered trademark) dispersion 30J solution manufactured by DuPont, and then coating the pretreated ion exchange membrane surface with hot water. What is necessary is just to bake at 150-250 degreeC with a press for about 10 to 30 minutes. The pressure may be about 1 to 30 kg / cm 2 at which the liquid permeable layer is smoothly formed on the surface of the ion exchange membrane.
[0018]
When this liquid permeable layer is formed on the surface of the gas diffusion cathode, firing may be performed under the same conditions. In this case, in order to proceed the operation more efficiently, the electrode layer at the time of manufacturing the gas diffusion cathode is formed by hot pressing. Before carrying out the process, it is also possible to apply a dispersion of the material for the liquid permeable layer, and simultaneously perform the production of the gas diffusion cathode and the production of the liquid permeable layer by one hot press. In this case, the optimum conditions of the former and the latter may be different, but by controlling the amount of the fluororesin and the particle size of the material particles to adjust the porosity and the like, a suitable gas diffusion cathode and a liquid permeable layer are simultaneously produced. it can. When a fluororesin is used, a suitable particle size of the material of the liquid permeable layer is about 5 to 30 μm, and when the fluorinated resin is baked using 20 to 40%, a liquid permeable layer having a porosity of 50 to 89% is obtained. It is formed. If the amount of the fluororesin exceeds 40%, the hydrophobicity becomes strong and the alkali hydroxide solution hardly flows in the liquid permeable layer.
When using a liquid permeable layer such as a network, the network may be baked using a fluororesin on the gas diffusion cathode surface, or the network may be simply sandwiched between the gas diffusion cathode and the ion exchange membrane. .
[0019]
From the viewpoint of the liquid resistance, it is preferable that nothing exists between the ion-exchange membrane and the oxygen gas diffusion cathode. Therefore, it is better not to insert the liquid permeable layer of the present invention between them. If it does, the electrolysis voltage rises. However, there is no necessity that the ion exchange membrane and the cathode have to be in close contact with each other except when the ion exchange membrane such as pure water electrolysis is used as a solid electrolyte, and the effect of increasing the electrolytic voltage by the insertion of the liquid permeable layer is more than that. Appears, energy saving as a whole can be achieved.
From this side, the liquid resistance is preferably reduced as the liquid permeable layer becomes thinner, but if the liquid permeable layer is too thin, the function of taking out the alkali hydroxide solution, which is the original function of the liquid permeable layer, to the peripheral portion without passing through the gas diffusion cathode is preferred. Therefore, it is desirable to determine the thickness in consideration of the liquid resistance and the function, and the preferable thickness is about 0.1 to 1 mm.
[0020]
When the electrolytic cell of the present invention is used for salt electrolysis, a fluororesin-based membrane is preferable as the ion exchange membrane from the viewpoint of corrosion resistance. As the anode, it is desirable to use a titanium insoluble electrode called ordinary DSA, but other electrodes can be used.
The electrolysis conditions are preferably, for example, a temperature of 60 to 90 ° C. and a current density of 10 to 100 A / dm 2, and the supplied oxygen-containing gas is humidified as necessary. As a humidification method, a humidification device humidified at 70 to 95 ° C. is provided at the inlet of the electrolytic cell, and the humidification is controlled by passing the oxygen-containing gas. According to the performance of currently commercially available membranes, if the concentration of the anolyte is maintained at 200 g / liter or less, particularly around 170 g / liter, humidification of the oxygen-containing gas becomes unnecessary. The obtained sodium hydroxide concentration is suitably about 25 to 40%, but is basically determined by the performance of the ion exchange membrane.
[0021]
When performing salt electrolysis using the electrolytic cell of the present invention, sodium hydroxide mainly generated near the ion exchange membrane side surface of the oxygen gas diffusion cathode is extracted through the liquid permeable layer, that is, without passing through the oxygen gas diffusion cathode. Can be. At this time, if the liquid permeable layer is in a seed form, the sodium hydroxide is not extracted unless it reaches the periphery, and it may take a relatively long time to extract. In order to solve this problem, in the present invention, for example, the sheet is divided into a plurality of sheets, and one end of each of the divided sheets is separated from the gaps of the oxygen gas diffusion cathode formed with, for example, a slit or guide having a width of 1 to 5 mm. If it is arranged so as to reach the back surface, the produced sodium hydroxide is extracted from between the ion exchange membrane and the oxygen gas diffusion cathode in a short time before reaching the periphery.
[0022]
FIG. 3 is a longitudinal sectional view showing an example of a saline electrolytic cell using an oxygen gas diffusion cathode usable in the method of the present invention.
The electrolytic cell body 11 is divided into an anode chamber 13 and a cathode chamber 14 by an ion exchange membrane 12, and a mesh-shaped insoluble anode 15 is in close contact with the ion exchange membrane 12 on the anode chamber 13 side. A liquid permeable layer 16 is in close contact with the cathode chamber 14, and a liquid permeable oxygen gas diffusion cathode 17 is in close contact with the liquid permeable layer 16 on the cathode chamber side. An electric body 18 is connected and supplied with power by the current collector 18.
Reference numeral 19 denotes an anolyte (saturated saline) inlet formed on the side wall near the bottom of the anode chamber. Reference numeral 20 denotes an anolyte (unreacted saline) and chlorine gas outlet formed on the side wall near the top of the anode chamber. Is a (humidified) oxygen-containing gas inlet formed on the side wall near the top of the cathode chamber, and 22 is an outlet for sodium hydroxide and excess oxygen formed on the side wall near the bottom of the cathode chamber.
[0023]
When a saturated saline solution as an anolyte solution is supplied to the anode chamber 13 of the electrolytic cell 11 and a humidified oxygen-containing gas such as pure oxygen or air is supplied to the cathode chamber 14, electricity is supplied between the electrodes 15 and 16 to perform ion exchange. Sodium hydroxide is generated on the surface of the membrane 12 on the cathode chamber 14 side. In a usual electrolytic cell, the sodium hydroxide permeates the oxygen gas diffusion cathode as an aqueous solution and reaches the cathode chamber side surface. However, in the illustrated electrolytic cell 11, since the liquid permeable layer 16 exists between the ion exchange membrane 12 and the oxygen gas diffusion cathode 17, the resistance of the aqueous sodium hydroxide solution becomes smaller than that permeating the inside of the cathode 17. The liquid is dispersed in the liquid permeable layer 16, in particular, descends due to gravity, reaches the lower end of the liquid permeable layer 16, drops as droplets, and is stored at the bottom of the cathode chamber 14.
When this electrolytic cell is compared with the conventional electrolytic cell shown in FIG. 2 or the like, in the conventional electrolytic cell shown in FIG. 2, the generated sodium hydroxide aqueous solution has to permeate through the dense oxygen gas diffusion cathode, and The residence time in the reactor becomes longer, the smooth permeation of the supplied oxygen-containing gas is hindered, and the gas supply that controls the reaction becomes insufficient. . In contrast, in the electrolytic cell shown in FIG. 3, the generated sodium hydroxide aqueous solution is taken out from the reaction site by dispersion in the liquid permeable layer having relatively low resistance, and hardly stays in the cathode. Is carried out smoothly, and thus the reaction efficiency is also kept high.
[0024]
FIG. 4 is a perspective view of an essential part of a part of the electrolytic cell of FIG. 3 in which a generated aqueous sodium hydroxide solution can be more smoothly taken out. FIG. 4A is an example in which a cathode is divided into a plurality of parts, and FIG. Shows an example in which a slit is formed.
In FIG. 4a, the oxygen gas diffusion cathode 17a is divided into a plurality of pieces 17b, and the hydrophilic liquid permeable layer 16a is also divided into a corresponding number of liquid permeable layer pieces 16b. The lower end of each liquid permeable layer piece b is bent in the direction of the cathode 17b, passes between vertically adjacent cathodes 17b, reaches the back surface of the cathode 17b, and forms a bent piece 16c.
[0025]
When electrolysis is performed using this electrolytic cell, an aqueous solution of sodium hydroxide generated on the surface of the ion exchange membrane on the side of the cathode chamber permeates through the hydrophilic liquid permeable layer piece 16b as in the electrolytic cell of FIG. I do. Since the liquid permeable layer 16b is divided, the sodium hydroxide aqueous solution moves in each liquid permeable layer piece 16b within a relatively short distance to the lower end thereof without moving to the peripheral portion, toward the cathode 17b. It falls as a droplet from the folded piece 16c. Therefore, the liquid can be drained more smoothly than the electrolytic cell shown in FIG.
FIG. 4B shows an example in which the cathode 17c is not divided into a plurality of parts, and the cathode 17c is formed with a slit 23 having a horizontally long rectangular shape. When the cathode is divided into a plurality of parts as shown in FIG. 4A, it is necessary to supply power for each divided piece, which is complicated. However, as shown in FIG. 4B, a slit 23 is formed in the cathode 17c, and the cathode 16b is bent through the slit 23. If the piece 16c is located on the back surface of the cathode, it is more convenient because power can be supplied to the cathode by a single current collector.
[0026]
【Example】
Next, examples of the electrolysis method according to the present invention will be described, but the examples do not limit the present invention.
[0027]
Embodiment 1
A nickel foam having a thickness of 4 mm was crushed to a thickness of 1 mm with a breath to form a substrate. Nickel particles having an average particle size of 5 μm were dispersed on the surface of the substrate in a 40% by weight aqueous dispersion of Teflon (30J manufactured by DuPont). ) Was added and kneaded, and the mixture was hot-pressed at a pressure of 10 kg / cm 2 at 300 ° C. for 15 minutes. Submicron silver particles having an average particle size of 0.5 μm as an electrode catalyst were dispersed on one surface of the mixture using the same Teflon dispersion. It was applied together with the solution and baked at 250 ° C. to obtain a gas diffusion cathode.
To the silver particle side of this gas diffusion cathode, a mixture of zirconium oxide powder having an average particle diameter of 20 μm and the same Teflon dispersion liquid of 20% by weight was applied to a thickness of 200 μm, and baked at a temperature of 200 ° C. A transmission layer was formed.
[0028]
The gas diffusion cathode having the liquid permeable layer formed thereon was brought into close contact with an ion exchange membrane Nafion 961 manufactured by DuPont at a pressure of 0.1 kg / cm 2 . Other electrolysis conditions were as follows: current density was 30 A / dm 2 , temperature was 90 ° C., supply rate of anolyte salt was 170 g / liter, and a normal dimensionally stable electrode (dimensionally stable electrode) was used as the anode. Electrolysis was performed while supplying 1.5 times the theoretical amount of 88% pure PSA oxygen, which was enriched in air by the PSA method, to the cathode chamber, which was a gas chamber only, and was energized. The electrolysis voltage in the initial stage of electrolysis was 2.05 V, and a 32-33% aqueous sodium hydroxide solution (catholyte) was obtained with a stable current efficiency of 96-97%. When electrolysis was continued under these conditions for 10 hours, the increase in electrolysis voltage was only 10 mV. After 10 hours, the voltage was shut down to terminate the electrolysis, but no change was observed in the ion exchange membrane. This shutdown was repeated several times, but no decrease in current efficiency was observed.
About 70% of the sodium hydroxide contained in the catholyte flows through the zirconium oxide liquid permeable layer, is taken out from the lower side of the liquid permeable layer, passes through the gas diffusion cathode, and reaches the cathode back surface. Things were slight.
[0029]
Embodiment 2
The same experiment as in Example 1 was performed by setting the contact pressure of the gas diffusion cathode to the ion exchange membrane to 0.1, 0.2, 0.3, and 0.4 kg / cm 2. The concentration of the obtained aqueous sodium hydroxide solution was the same as in Example 1.
[0030]
[Comparative Example 1]
Electrolysis was performed under the same conditions as in Example 1 except that the liquid permeable layer made of zirconium oxide was not formed. The initial electrolysis voltage and current efficiency were 2.05 V and 96 to 97%, respectively, which were the same as Example 1. However, after a lapse of 10 hours, the electrolytic voltage increased to 2.1 V, and thereafter a slight increase in the voltage was observed.
When the electrolysis was completely stopped and then started again, the electrolysis voltage was initially 2.05V. This is because the aqueous solution of sodium hydroxide that has passed through the gas diffusion cathode blocks the gas diffusion cathode and shields part of the above-described enriched oxygen supplied through the cathode. It is considered that it was removed.
When the electrolysis was stopped, the ion exchange membrane turned black. It was found that a small amount of nickel in the gas diffusion cathode was deposited in the ion exchange membrane.
When the above-described electrolysis stop (shutdown) was repeated, the current efficiency gradually decreased to 96 to 93% of the initial value.
[0031]
[Comparative Example 2]
The electrolysis was performed under the same conditions as in Example 2 except that the liquid permeable layer made of zirconium oxide was not formed. At 0.3 and 0.4 kg / cm 2 , almost the same time-dependent change in voltage as in Comparative Example 1 was observed. Was observed, but the efficiency and the concentration of the obtained aqueous sodium hydroxide solution were the same as in Example 1. At 0.1 and 0.2 kg / cm 2 , the fluctuation of the voltage with the passage of time was large, and the overall voltage drop was larger than that of Comparative Example 1.
[0032]
Embodiment 3
Example 2 was the same as Example 1 except that the liquid permeable layer was a silver net having an apparent thickness of 0.2 mm, and the net was sandwiched between the ion exchange membrane and the gas diffusion cathode at a pressure of 0.2 kg / cm 2. When electrolysis was performed under the same conditions, the initial electrolysis voltage was 2.05 V, which was the same as in Example 1, and the electrolysis was stable even when the electrolysis was continued.
[0033]
【The invention's effect】
In the method of the present invention, a gas diffusion cathode is disposed in the cathode chamber of an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, while supplying an alkali chloride solution to the anode chamber and an oxygen-containing gas to the cathode chamber. In the electrolysis method for obtaining an alkali hydroxide by electrolysis, a hydrophilic liquid permeable layer is provided between the ion exchange membrane and the gas diffusion cathode, and all or a part of the generated alkali hydroxide passes through the liquid permeable layer. An electrolysis method characterized by extracting the ion-exchange membrane and the gas diffusion cathode to the periphery.
In a conventional electrolytic cell using a gas diffusion cathode, particularly a zero-gap type electrolytic cell in which a gas diffusion electrode is in close contact with an ion exchange membrane, the target product generated on the cathode chamber side surface of the ion exchange membrane is a gas having a relatively high density. The gas must pass through the gas diffusion cathode while passing through the diffusion cathode, that is, in the direction opposite to the supply direction of the supplied reaction gas, in other words, while obstructing the supply of the reaction gas, the more the product increases, the more the reaction gas However, there is a problem that the supply to the reaction site is inhibited and the reaction efficiency is reduced.
[0034]
On the other hand, in the method of the present invention, since the hydrophilic liquid permeable layer is arranged between the oxygen gas diffusion cathode and the ion exchange membrane, almost all of the conventional method must be extracted through the oxygen gas diffusion cathode. At least a part of the sodium hydroxide solution can be extracted from the surface of the ion exchange membrane without passing through the oxygen gas diffusion cathode and passing through the liquid permeable layer and facing the supply direction of the reaction gas. Therefore, even if the amount of the product increases, the supply of the reaction gas is hardly affected, and the predetermined electrolytic reaction can be continued while maintaining the reaction efficiency at a high level.
In other words, the present invention performs the opposing operations in the different directions of the smooth extraction of the solution in which the product is dissolved and the smooth supply of the oxygen gas at the maximum efficiency, thereby reducing the electrolysis voltage more than before and reducing the oxygen gas diffusion cathode. It has made it possible to widen the road for application to industrial electrolysis.
[0035]
Furthermore, in the method of the present invention, impurities such as a cathode material and chlorine and hypochlorous acid which are easily mixed into the catholyte can be extracted from the liquid permeable layer between the ion exchange membrane and the gas diffusion cathode. It hardly reaches the gas diffusion cathode, and the ion exchange membrane and the gas diffusion cathode can be protected at the same time.
In the liquid permeable layer of the method of the present invention, it is desirable that the constituent material is applied to the surface of the gas exchange cathode on the ion exchange membrane side and then baked to be integrated with the gas diffusion cathode. Combined with the cathode, stable operation is possible.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a conventional salt electrolysis tank.
FIG. 2 is a schematic view showing another example of a conventional salt electrolysis tank.
FIG. 3 is a longitudinal sectional view showing an example of a saline electrolytic cell using an oxygen gas diffusion cathode usable in the method of the present invention.
4 is a longitudinal sectional view showing another example of a salt electrolysis cell using an oxygen gas diffusion cathode usable in the method of the present invention, FIG. 4a shows an example in which a plurality of cathodes are disassembled, and FIG. Is formed and an example is shown.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Electrolyzer main body 12 ... Ion exchange membrane 13 ... Anode chamber 14 ... Cathode chamber 15 ... Insoluble anode 16 ... Liquid permeable layer 17 ... Oxygen gas diffusion cathode 18 ...・ Current collector

Claims (2)

イオン交換膜により陽極室と陰極室に区画された電解槽の該陰極室にガス拡散陰極を配置し、陽極室に塩化アルカリ溶液を陰極室に酸素含有ガスをそれぞれ供給しながら電解して水酸化アルカリを得るための電解方法において、前記イオン交換膜と前記ガス拡散陰極間に親水性の液透過層を設け、生成する水酸化アルカリの全部又は一部を前記液透過層を通して前記イオン交換膜及びガス拡散陰極の周縁部へ抜き出すことを特徴とする電解方法。A gas diffusion cathode is arranged in the cathode compartment of an electrolytic cell partitioned by an ion exchange membrane into an anode compartment and a cathode compartment, and an alkali chloride solution is supplied to the anode compartment and electrolysis is performed while supplying an oxygen-containing gas to the cathode compartment, and hydroxylation is performed. In the electrolysis method for obtaining an alkali, a hydrophilic liquid permeable layer is provided between the ion exchange membrane and the gas diffusion cathode, and all or a part of the generated alkali hydroxide is passed through the liquid permeable layer through the ion exchange membrane and An electrolysis method, wherein the gas is extracted to a peripheral portion of a gas diffusion cathode. 液透過層が、ガス拡散陰極のイオン交換膜側面に付着形成されている請求項1に記載の電解方法。2. The electrolysis method according to claim 1, wherein the liquid permeable layer is formed on the side surface of the ion exchange membrane of the gas diffusion cathode.
JP35416597A 1997-12-08 1997-12-08 Electrolysis method using gas diffusion cathode Expired - Fee Related JP3553781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35416597A JP3553781B2 (en) 1997-12-08 1997-12-08 Electrolysis method using gas diffusion cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35416597A JP3553781B2 (en) 1997-12-08 1997-12-08 Electrolysis method using gas diffusion cathode

Publications (2)

Publication Number Publication Date
JPH11172480A JPH11172480A (en) 1999-06-29
JP3553781B2 true JP3553781B2 (en) 2004-08-11

Family

ID=18435729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35416597A Expired - Fee Related JP3553781B2 (en) 1997-12-08 1997-12-08 Electrolysis method using gas diffusion cathode

Country Status (1)

Country Link
JP (1) JP3553781B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3645703B2 (en) * 1998-01-09 2005-05-11 ペルメレック電極株式会社 Gas diffusion electrode structure
JP3373178B2 (en) * 1999-08-17 2003-02-04 鐘淵化学工業株式会社 Electrolysis method
JP3536054B2 (en) * 2001-02-22 2004-06-07 三井化学株式会社 How to start operation of electrolytic cell
DE102010031571A1 (en) * 2010-07-20 2012-01-26 Bayer Materialscience Ag Oxygen-consuming electrode
JP6820550B2 (en) * 2017-02-09 2021-01-27 エイブル株式会社 Gas generator

Also Published As

Publication number Publication date
JPH11172480A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP3553775B2 (en) Electrolyzer using gas diffusion electrode
JP5031336B2 (en) Oxygen gas diffusion cathode for salt electrolysis
US7708867B2 (en) Gas diffusion electrode
EP1033419B1 (en) Soda electrolytic cell provided with gas diffusion electrode
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
JP2007242433A (en) Electrode catalyst for electrochemical reaction, manufacturing method of the same, and electrochemical electrode having the same
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
US5693213A (en) Electrolytic process of salt water
JPH07278864A (en) Gas diffusion electrode
JP3655975B2 (en) Gas diffusion cathode and salt water electrolytic cell using the gas diffusion cathode
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP4115686B2 (en) Electrode structure and electrolysis method using the structure
JP3645703B2 (en) Gas diffusion electrode structure
JP4743696B2 (en) Oxygen reducing gas diffusion cathode for salt electrolysis and salt electrolysis method
JP3536054B2 (en) How to start operation of electrolytic cell
JP4029944B2 (en) Liquid-permeable gas diffusion cathode structure
JP3706716B2 (en) Electrolysis method
JPH10204670A (en) Sodium chloride electrolytic cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees