JPS5928583A - Electrolytic tank - Google Patents

Electrolytic tank

Info

Publication number
JPS5928583A
JPS5928583A JP13795582A JP13795582A JPS5928583A JP S5928583 A JPS5928583 A JP S5928583A JP 13795582 A JP13795582 A JP 13795582A JP 13795582 A JP13795582 A JP 13795582A JP S5928583 A JPS5928583 A JP S5928583A
Authority
JP
Japan
Prior art keywords
anode
cathode
electrode
exchange membrane
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13795582A
Other languages
Japanese (ja)
Inventor
Michihiro Akazawa
赤沢 道博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP13795582A priority Critical patent/JPS5928583A/en
Publication of JPS5928583A publication Critical patent/JPS5928583A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce electrolytic power consumption and to enhance current efficiency, by a method wherein a cathode and an anode having an elastic structure is integrated with a cation exchange membrane and both electrodes are connected to the frames of each electrode chambers to specify the ratio of the gas contact part and the liquid contact part in each electrode chamber. CONSTITUTION:In an ion exchange membrane method applied filter press type electrolytic tank for the electrolysis of an aqueous alkali chloride solution, an anode 1 and a cathode 2 are formed into corrugated loopers with highly elastic structures to be respectively connected to conductive members 3, 4 and supported by support members 7, 8 to be integrated with a cation exchange membrane 6 in a substantially contact state by surface pressure. An anode frame 13 accommodating the anode 1 has a hole 9 for an anode liquid supply header, a hole 11 for supplying and dispersing the anode liquid, a hole 10 for an anode liquid gas exhaust header and a hole 12 for gathering and exhausting the anode liquid gas and the ratio of the gas contact part and the liquid contact part of the anode is brought to 0.05 or less. In addition, a similar structure is formed with respect to the cathode frame of the cathode 2.

Description

【発明の詳細な説明】 不発明は、陽イオン交換脱法塩化アルカリ塩水溶液の電
解槽に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to an electrolytic cell for an aqueous cation exchange alkali chloride salt solution.

更に詳しくは、陽イオン交換脱法塩化アルカリ塩水溶液
の電解槽で、陽イオン交換膜に陽極及び陰極が実質的に
密着一体化して設置し、電解に際して電解電力を低減し
、電流効率を向上させ、しかも長期間の安定運転が可能
な電解槽を提供することにある。
More specifically, in an electrolytic cell for an aqueous alkali chloride salt solution using a cation exchange method, an anode and a cathode are installed in a cation exchange membrane so that they are substantially closely integrated, reducing electrolytic power during electrolysis and improving current efficiency. Moreover, it is an object of the present invention to provide an electrolytic cell that can operate stably for a long period of time.

従来、塩化アルカリ水溶液の電解方法には、陰極に水銀
を爪いる水銀法電解法と、水銀を用いない隔膜法(アス
ベスト隔膜法)とがある。
Conventional methods for electrolyzing an aqueous alkali chloride solution include a mercury electrolysis method that uses mercury at the cathode, and a diaphragm method that does not use mercury (asbestos diaphragm method).

水銀法においては、陰極に水銀を使用するために製品苛
性ソーダ及び水銀に接触した排水中に水銀が含有される
ため、環境汚染の問題で世界的に非水銀法のプロセスが
採用される傾向にある。又、水銀法は電解電力原単位が
平均s、 200 Kw■Vt・苛性ソーダと電力効率
が悪い。
In the mercury method, since mercury is used in the cathode, mercury is contained in the product caustic soda and in the wastewater that has come into contact with the mercury.Therefore, due to environmental pollution issues, non-mercury processes are being adopted worldwide. . In addition, the mercury method has poor power efficiency, with an average electrolytic power consumption of 200 KwVt/caustic soda.

アスベスト隔膜法においては、水銀を使用しないので水
銀による環境汚染の問題は起こらないが、アスベストに
よる環境汚染の問題は残っている。
In the asbestos diaphragm method, since mercury is not used, there is no problem of environmental pollution due to mercury, but the problem of environmental pollution due to asbestos remains.

又、電解電力原単位は平均2.500 xwH/l・苛
性ソニダで電力効率は高いが、生成される苛性ソーダの
濃度が10〜12%と低濃度であるために、50%まで
濃縮するのに約Z5 t / を苛性ンーダの蒸気が必
要とされ、総合エネルギー効率で見た場合、水鍋法より
悪い。
In addition, the average electrolytic power unit is 2.500 xwH/l. Although the power efficiency is high with caustic soda, the concentration of the generated caustic soda is low at 10 to 12%, so it is difficult to concentrate it to 50%. Approximately Z5 t/ of caustic powder steam is required, which is worse than the water pot method in terms of overall energy efficiency.

一方、近年開発され企業された陽イオン交換膜を隔膜と
したイオン交換膜法においては、水銀もアスベストも使
用しないので、環境汚染の問題は全くなく、生成される
苛性ンーダの濃度も20〜40%と高(、電解電力原単
位は平均2,500KWV′t・苛性ソーダで、50%
まで濃縮するのに約α41/1苛性ソーダの蒸気が必要
とされるが、総合エネルギー効率は一番良い。
On the other hand, in the ion exchange membrane method that uses a cation exchange membrane as a diaphragm, which has been developed and commercialized in recent years, neither mercury nor asbestos is used, so there is no problem of environmental pollution, and the concentration of caustic powder produced is 20 to 40. % and high (, the average electrolytic power consumption is 2,500 KWV't, caustic soda, 50%
Approximately 41/1 caustic soda vapor is required to concentrate up to 100%, but the overall energy efficiency is the best.

本発明者は、陽イオン交換膜法において、更に電解電力
を低減し、長期安定運転を維持するために拙々検討、実
験した結果、陽イオン交換膜を陽極及び陰極に密着一体
化して設けた電解槽において、陽極室及び陰極室の液圧
変動、ガス圧変動液圧差、ガス圧差により陽イオン交換
膜と陽極及び陰極が分離することな(、実質的に一体化
した状態で運転することのできる電解槽を発明した。
In order to further reduce the electrolytic power and maintain long-term stable operation in the cation exchange membrane method, the inventor of the present invention has conducted extensive studies and experiments, and as a result, has provided a cation exchange membrane that is closely integrated with the anode and cathode. In an electrolytic cell, the cation exchange membrane, anode, and cathode are not separated due to liquid pressure fluctuations, gas pressure fluctuations, liquid pressure differences, and gas pressure differences in the anode and cathode chambers (they are operated in a substantially integrated state). Invented an electrolytic cell that can

この電解槽により塩化アルカリ塩水溶液を電解すること
により、電M¥摺電圧を、電流効率をそこなわずに低減
し得ると同時に、長期安定運転が可能であることを見い
出した。
It has been found that by electrolyzing an aqueous alkali chloride salt solution using this electrolytic cell, it is possible to reduce the electrical M/sliding voltage without impairing the current efficiency, and at the same time, it is possible to operate stably for a long period of time.

従来、陽極の陽イオン交換膜に面する反対側の面に板バ
ネを設けて移動可能とし、又、陰極の陽イオン交換膜に
面する反対側の而に板バネを設けて移動可能とし、これ
らの陽極と陰極との間に陽イオン交換膜を介在させて電
解槽を組み立て、陽イオン交換膜に″「O7極を密着さ
せる方法は特シ[]昭57’ −51273で[5i1
示されている。しかし、かかる方法では、圧変動液変動
による圧力差の下では、板バネによる接触圧力を[LO
O3x10−f/ctn2〜6 Q X i O−” 
 fh”としたとしても、十分に安定した密着性は得ら
れ1ず、初期の電解電圧に比べ長期的には電解電圧は上
昇し、本来の目的である電流効率をそこなわず、電解電
圧を低減させることは期待できない、。
Conventionally, a leaf spring was provided on the opposite side of the anode facing the cation exchange membrane to make it movable, and a leaf spring was provided on the opposite side of the cathode facing the cation exchange membrane to make it movable. A method of assembling an electrolytic cell by interposing a cation exchange membrane between these anodes and cathodes, and bringing the O7 electrode into close contact with the cation exchange membrane is described in a special article [5i1
It is shown. However, in this method, under the pressure difference due to pressure fluctuation liquid fluctuation, the contact pressure by the leaf spring is reduced to [LO
O3x10-f/ctn2~6 Q X i O-”
fh", it is not possible to obtain sufficiently stable adhesion, and the electrolytic voltage increases in the long term compared to the initial electrolytic voltage. It cannot be expected to be reduced.

本発明者は、陽極室及び陰極室の圧変動を極力少な(す
ることに合せて、陽極及び陰極そのものを極めて弾力性
の大きい構°造とすることにより、常に安定した密着性
を得ることを可能にし、本来の目的である電流効率を低
下させることなく電槽電圧を低減させる方法を見い出し
た。
The inventor of the present invention aims to always obtain stable adhesion by minimizing pressure fluctuations in the anode and cathode chambers, and by making the anode and cathode themselves extremely elastic structures. We have discovered a method to reduce cell voltage without reducing current efficiency, which is the original objective.

即ち、陽イオン交換膜で陽極室と陰伜室とに区分された
’rtt、M槽において、圧変動を栖力少なくする方法
としては、極室内液面の変動を最少にすることである。
That is, in the 'rtt, M tank, which is divided into an anode chamber and a negative chamber by a cation exchange membrane, a method for reducing pressure fluctuations is to minimize fluctuations in the liquid level in the electrode chamber.

極室内液面は発生ガスの排出速度と極室液排出速度との
関係で極室内ガス容積は大きく変化し、その変化が極室
液面の波打ち現象として現われる。極室内ガス層の容積
変化が圧力変動として現われ、電解槽の運転中には、陽
極室内圧力と陰極室内圧力との間に差圧の変動が生じる
The volume of the gas in the electrode chamber changes greatly depending on the relationship between the discharge rate of generated gas and the discharge rate of the electrode chamber liquid, and this change appears as a waving phenomenon in the electrode chamber liquid level. Changes in the volume of the gas layer in the electrode chamber appear as pressure fluctuations, and during operation of the electrolytic cell, a change in differential pressure occurs between the pressure in the anode chamber and the pressure in the cathode chamber.

その差圧によって陽極、陽イオン交換膜及び陰極が実質
的に密着一体化した状態から、陽イオン交換膜は一方の
電極には接しているが、他方の電極からは剥離した状態
となり、陽イオン交換膜と剥離した電極との間に気泡が
滞留して、TfU41!!電圧を上昇する結果となる。
Due to the differential pressure, the anode, cation exchange membrane, and cathode are brought into contact with each other, and the cation exchange membrane is in contact with one electrode but separated from the other electrode, causing cation Air bubbles remain between the exchange membrane and the peeled electrode, causing TfU41! ! This results in an increase in voltage.

上記の不都合な要因をなくす方法として、陽極及び陰極
を強固に固定し、膜面に10 K9 / (1n2〜1
00Ky/crn2のような高血圧により、陽イオン交
換膜の両面に陽極及び陰極をVJテ着一体化する方法が
!侍開昭56−9381で開示されている。ただし、高
い血圧で強固に膜に電極を密着する場合は、確かに極室
内の圧変動による陽イオン交換膜と電極との分離は起こ
らないが、陽イオン交換膜へσバ(1極の(い込みKよ
り陽イオン交換膜は損傷し、電槽電圧は初期の目的を達
したとしても電流効率は大幅に低下し、電解電力として
見ると効果がないこととなる。
As a method to eliminate the above-mentioned inconvenient factors, the anode and cathode are firmly fixed, and the film surface has a density of 10 K9/(1n2~1
For high blood pressure such as 00Ky/crn2, there is a method to integrate the anode and cathode on both sides of the cation exchange membrane with VJ tape! It is disclosed in Samurai Kaisho 56-9381. However, when the electrode is tightly attached to the membrane at high blood pressure, separation of the cation exchange membrane and electrode due to pressure fluctuations within the polar chamber does not occur, but the cation exchange membrane The cation exchange membrane is damaged by the intrusion K, and even if the cell voltage reaches its initial purpose, the current efficiency is significantly reduced and the electrolytic power is ineffective.

本発明によれば、上記のような問題はな(、長期間にわ
たって安定した電流効率と目的とする電槽電圧が達成さ
れる。
According to the present invention, the above-mentioned problems are avoided (and stable current efficiency and target cell voltage can be achieved over a long period of time).

できる形状であると共に、極室内の電極の接ガス部と接
液部の比を005以下にすることにより、理由は不明で
あるが、極めて安定した陽イオン交換膜と陰極と陽極の
三者が完全に密着一体化した状態で運転できる電解槽を
完成したものである。
Although the reason is unknown, by making the ratio of the gas-contacting part to the liquid-contacting part of the electrode in the electrode chamber 005 or less, it is possible to achieve an extremely stable cation exchange membrane, cathode, and anode. This is a completed electrolytic cell that can be operated in a completely integrated state.

更に、理解を深めるために、添付図面により詳A′用に
説明する。
Further, for better understanding, details A' will be explained with reference to the accompanying drawings.

第1図は、本発明の陽極室枠及び陰極室枠を組み立てた
一例の断面説明図である。
FIG. 1 is an explanatory cross-sectional view of an example of assembled anode chamber frame and cathode chamber frame of the present invention.

1はチタン製陽極でその表面にルテニウム、白金、イリ
ジウム、パラジウム等の貝金屈又はその酸化物をコーテ
ィングしたものを用いる。2はニッケル製又はステンレ
ス製又は鉄製陰極でその表゛面にニッケルメッキ又はニ
ッケル溶射等の処理をした陰極を用いる。3は陽極に電
気を給電する導電部材であり電気抵抗の小さい銅を用い
る。
Reference numeral 1 uses a titanium anode whose surface is coated with metal such as ruthenium, platinum, iridium, palladium, or an oxide thereof. 2 uses a cathode made of nickel, stainless steel, or iron whose surface has been treated with nickel plating or nickel spraying. 3 is a conductive member that supplies electricity to the anode, and is made of copper having low electrical resistance.

4は陰極より電気を断電する導電部材であり、電気抵抗
の小さい銅、アルミニウム等を用いる。
4 is a conductive member that cuts off electricity from the cathode, and is made of copper, aluminum, or the like having low electrical resistance.

5はガスケットであり耐アルカリ性と耐塩素性を有する
ゴム系材質を用いる。
5 is a gasket made of a rubber material having alkali resistance and chlorine resistance.

断面形状は、シール性を十分確保するため平ガスケット
でもよいが、凸形ガスケット又は凹形ガスケットを使用
することが好ましい。又、ガスケットの厚みは、極室寸
法を決める要素であり5〜20%とするが、8〜12′
Xを採用することが好ましい。
Although the cross-sectional shape may be a flat gasket to ensure sufficient sealing performance, it is preferable to use a convex gasket or a concave gasket. Also, the thickness of the gasket is a factor that determines the electrode chamber size and should be 5 to 20%, but it should be 8 to 12'.
It is preferable to adopt X.

6は陰極側にカルボン酸基を有し、陽極側にスルホン酸
基を有す−る陽イオン交換膜である。
6 is a cation exchange membrane having a carboxylic acid group on the cathode side and a sulfonic acid group on the anode side.

7は極めて高い弾性構造を有する陽極をサポートするた
めのスプリング形状をしたサポート部材である。耐塩素
性のある材質であれば使用可能であるが、好ましくはチ
タンスプリングを用いる。
Reference numeral 7 denotes a spring-shaped support member for supporting the anode having an extremely highly elastic structure. Any chlorine-resistant material can be used, but titanium springs are preferably used.

8は極めて高い弾性を有する陰極をサポートするための
スプリング形状をしたサポート部材である。
Reference numeral 8 denotes a spring-shaped support member for supporting the cathode having extremely high elasticity.

耐苛性性のある材質であれば使用可能であるが、好まし
くはニッケルスプリングを用いる。
Any caustic-resistant material can be used, but nickel springs are preferably used.

ホ11み立てに際して本発明の電解槽は端部締枠(記載
なし)/陰極ガスケット/端部陰極室枠(記載なし)/
陰極ガスケット/陽イオン交換膜/陽極ガスケット/陽
極室枠/陽極ガスケット/陽イオン交換膜/陽極ガスケ
ット/陽イオン交換膜/陰極ガスケット/陰極室枠/陰
極ガスケット/陽イオン交換膜/・旧・・/陽イオン交
換膜/陽極ガスケット/陽極室枠/陽極ガスケット/@
イオン交換膜/陰極ガスケット/端部陰極室枠(記載な
し)/LJ極ガスケット/端部締枠(記載なし)の順に
組み立てられ、タイロッド(記載なし)又は油圧装置(
記載なし)で締め付けられる。
E11 When assembling the electrolytic cell of the present invention, the electrolytic cell of the present invention is used for the following: end clamping frame (not described) / cathode gasket / end cathode chamber frame (not described) /
Cathode gasket / cation exchange membrane / anode gasket / anode chamber frame / anode gasket / cation exchange membrane / anode gasket / cation exchange membrane / cathode gasket / cathode chamber frame / cathode gasket / cation exchange membrane / old... /Cation exchange membrane/Anode gasket/Anode chamber frame/Anode gasket/@
The ion exchange membrane/cathode gasket/end cathode chamber frame (not shown)/LJ pole gasket/end clamping frame (not shown) are assembled in this order, and the tie rods (not shown) or hydraulic system (
(not specified).

油圧装置の油圧を調整するか、又はタイロッドの締付圧
を調整することにより、1のチタン製陽極と2の陰極の
凸部の間の距N11は、0〜3′Xまで変えることがで
きる。凸部の間の距離は陽イオン交換膜の性質に合せて
選択することができる。
By adjusting the oil pressure of the hydraulic system or the tightening pressure of the tie rod, the distance N11 between the protrusion of the titanium anode 1 and the cathode 2 can be changed from 0 to 3'X. . The distance between the protrusions can be selected depending on the properties of the cation exchange membrane.

陽イオン交換膜の陰極側及び陽極側の両表面を金属メッ
キ、プラスト処理、イオン交換能を有するペーストの塗
布等で親水処理した陽イオン交換膜の場合は0〜1%と
することが好ましい。更には0〜0.2X以下とするこ
とが特に好ましい態様である。
In the case of a cation exchange membrane in which both surfaces of the cathode side and the anode side of the cation exchange membrane have been subjected to hydrophilic treatment by metal plating, blast treatment, application of a paste having ion exchange ability, etc., the content is preferably 0 to 1%. Furthermore, it is a particularly preferable embodiment to set it to 0 to 0.2X or less.

第2図は、陽極室枠の正面説明図である。FIG. 2 is an explanatory front view of the anode chamber frame.

1は極めて弾性の大きい構造を有する陽極であり、形状
は波形ルーバーである。波のピッチは5〜15%が可能
であるが、好ましくは7〜9%である。又、波形ルーバ
ーの凹凸部の寸法は、6〜10%が可能であるが、好ま
しくは4〜6扁である。又、ルーバーの幅は陽イオン交
換膜の性質により選択の寸法は異なるが、陽イオン交換
++p、xの陽411す又は1な極側又は両極面側が、
何らかのシ(1,水処理されている場合は、6〜4%と
するのが好ましい。又、波形ルーバーの垂直断面の中心
線が陽イオン交換llI41!11Iに凸にわん曲し、
わん曲部の半径が単一波形ルーバーtJ′J、極の長手
方向の寸法以上であることが好ましい。
Reference numeral 1 denotes an anode having an extremely elastic structure, and the shape is a wave-shaped louver. The pitch of the waves can be 5-15%, preferably 7-9%. Further, the dimension of the uneven portion of the wave-shaped louver can be 6 to 10%, but preferably 4 to 6 mm. In addition, the width of the louver is selected depending on the properties of the cation exchange membrane, but if the positive 411 of cation exchange ++p,
It is preferable to set it to 6 to 4% if water is being treated.Also, the center line of the vertical cross section of the corrugated louver is curved convexly to the cation exchange llI41!11I,
Preferably, the radius of the curved portion is greater than or equal to the single wave louver tJ'J, the longitudinal dimension of the pole.

3は陽極電気給電部材である。7は電極サポートである
。9は陽極液供給ヘッダー用穴で、1oは陽極液ガス排
出ヘッダー用穴である。
3 is an anode electric power supply member. 7 is an electrode support. 9 is a hole for an anolyte supply header, and 1o is a hole for an anolyte gas discharge header.

11は陽極液供給分散用穴で、12は陽極液ガス集合排
出用穴であり、穴の上端が極室上部と一致し、穴の垂直
寸法が極室電解面の高さの20分の1である。13はこ
の陽極室枠であり、チタン與又はその合金板よりプレス
等により打ち抜き製作される。
11 is a hole for anolyte supply and distribution, 12 is a hole for collecting and discharging anolyte gas, the upper end of the hole is aligned with the upper part of the electrode chamber, and the vertical dimension of the hole is 1/20 of the height of the electrolytic surface of the electrode chamber. It is. Reference numeral 13 designates this anode chamber frame, which is manufactured by punching out a titanium or alloy plate by pressing or the like.

チタン又はその合金板の厚さは0.5〜5%のものが使
用されるが、好ましくは1〜2%である。又、電解面の
高さは100〜1soozとすることができるが、(t
1気抵抗を小さくするために200〜400嶌とするの
が好ましい。電解面の幅については任意に選ぶことがで
き、好ましくは600〜1500%である。
The thickness of the titanium or titanium alloy plate used is 0.5 to 5%, preferably 1 to 2%. Further, the height of the electrolytic surface can be set to 100 to 1 sooz, but (t
In order to reduce the per-air resistance, it is preferable to set it to 200 to 400 volumes. The width of the electrolytic surface can be arbitrarily selected, and is preferably 600 to 1500%.

第5図は陰極室枠の正面説明図である。FIG. 5 is an explanatory front view of the cathode chamber frame.

2は極めて弾性の大きい構造を有する陰極であり、形状
は波形ルーバーである。波のピッチは5〜15%が可能
であるが、好ましくは7〜9%である。又、波形ルーバ
ーの凹凸部の寸法は5〜10%が可能であるが、好まし
くは4〜6′Xである。又、ルーバーの幅は陽イオン交
換膜の性質により選択の寸法は異なるが、陽イオン交換
膜の陽極側又は陰極側又は両極面側が何らかの親水処理
されている場合は、73〜4%とするのが好ましい。又
、波形ルーバーの垂直断面の中心線が陽イオン交換膜側
に凸にわん曲し、わん曲部の半径が単一波形ルーバー電
極の長手方向の寸法以上であることが好ましい。
2 is a cathode having an extremely elastic structure, and the shape is a wave-shaped louver. The pitch of the waves can be 5-15%, preferably 7-9%. Further, the size of the uneven portion of the corrugated louver can be 5 to 10%, but preferably 4 to 6'X. The width of the louver varies depending on the properties of the cation exchange membrane, but if the anode side, cathode side, or both electrode sides of the cation exchange membrane are subjected to some kind of hydrophilic treatment, it should be 73 to 4%. is preferred. Further, it is preferable that the center line of the vertical section of the corrugated louver is curved convexly toward the cation exchange membrane side, and the radius of the curved portion is equal to or larger than the longitudinal dimension of the single corrugated louver electrode.

4は陰極電気断電部材である。8は電極ザボートである
。14は陰極液供給ヘッダー用穴で、15は陰極液ガス
排出へラダー用穴である。
4 is a cathode electrical cutoff member. 8 is an electrode zabot. 14 is a hole for a catholyte supply header, and 15 is a hole for a ladder to catholyte gas discharge.

16は陰極液供給分散用穴で、17は陰極液ガス集合排
出用穴であり、穴の上端が極室上部と一致し、垂直寸法
が極室7(9、溶面の高さの20分の1である。
16 is a hole for supplying and distributing catholyte, and 17 is a hole for collecting and discharging catholyte gas. This is number 1.

18はこの陰極室枠であり、ニッケル、鉄又はステンレ
スMj場の板よりプレス等により杓ち抜き製作される。
Reference numeral 18 designates this cathode chamber frame, which is manufactured by punching out a nickel, iron, or stainless steel Mj field plate by pressing or the like.

ニッケル、鉄又はステンレス製の板の厚さは0.5〜5
%のものが使用されるが、好ましくは1〜2%である。
The thickness of the nickel, iron or stainless steel plate is 0.5-5
% is used, preferably 1 to 2%.

又、電解m1の高さは100〜15”00%とすること
ができるが、電気抵抗を小さくするために200〜40
0%とするのが好ましい。電解面の幅については任意に
選ぶことができ、好ましくは600〜1500%である
In addition, the height of the electrolytic m1 can be set to 100 to 15"00%, but in order to reduce the electrical resistance, it can be set to 200 to 40".
It is preferable to set it to 0%. The width of the electrolytic surface can be arbitrarily selected, and is preferably 600 to 1500%.

次に本発明の実施例について更に具体的に説明するが、
かかる説明によって本発明が限定されるものでないこと
は勿論である。
Next, embodiments of the present invention will be explained in more detail.
It goes without saying that the present invention is not limited to this explanation.

実施例 電解面の高さが300%1幅が1000%の電解面J7
(30dJで、陽極室枠の厚さ1%のチタン製陽極室枠
と陰極室枠の厚さ1木のニッケル製陰極室枠に180O
Aの電気量を通電する本発明の電解槽を組み立てた。
Example electrolytic surface J7 whose height is 300% 1 width is 1000%
(At 30 dJ, 180 O
An electrolytic cell of the present invention was assembled to which an amount of electricity A was applied.

陽極は凸部と凹部の寸法5%の8Xのピッチ。The anode has an 8X pitch with a convex and concave dimension of 5%.

幅寸法s % 、厚さ1′Xの波形ルーバーのA面に酸
化ルテニウムをコーティングしたものを使用した。
A corrugated louver with a width of s% and a thickness of 1'X was coated with ruthenium oxide on the A side.

電極サポートには直径1%のチタン製ワイヤーを外径1
0%のコイル状にしたものを用いた。
The electrode support is made of titanium wire with an outer diameter of 1%.
0% coiled material was used.

陰極は凸部と四部の寸法5%の8%ピッチ、幅寸法3′
/¥n、厚さ1%の波形ルーバーのを使用した。
The cathode has an 8% pitch of 5% between the convex and four parts, and a width of 3'.
/¥n, 1% thick corrugated louver was used.

電極サポートには直径1%のニッケル製ワイヤーを外径
10%のコイル状にしたものを用いた。
A nickel wire with a diameter of 1% and a coiled shape with an outer diameter of 10% was used as the electrode support.

ガスケットは陽極側、陰極側共に12%の天然ゴム製の
ガスケットを使用し、電解槽を組み立てた。又、陽イオ
ン交換膜にはカルボン酸基を陰極側に、スルホン酸基を
陽極側のイオン交換基とするフッ素系の膜(厚さ約20
0μ)を使用した。
Gaskets made of 12% natural rubber were used on both the anode and cathode sides to assemble the electrolytic cell. In addition, the cation exchange membrane is a fluorine-based membrane (about 20 mm thick) that has carboxylic acid groups on the cathode side and sulfonic acid groups on the anode side.
0μ) was used.

陽極室、陰極室共、極室液ガス集合排出用の穴の上端は
極室上部と一致させ、穴の高さ方向の寸法は15%とし
た。電槽組み立て後の陽極と陰極間    □の距離は
実質的に膜厚さであり、陽極と膜、陰極と膜は常に密着
一体化した状態としている。
In both the anode chamber and the cathode chamber, the upper ends of the holes for collecting and discharging liquid gas in the electrode chambers were aligned with the upper part of the electrode chambers, and the dimensions of the holes in the height direction were set to 15%. The distance □ between the anode and cathode after the battery case is assembled is substantially the thickness of the film, and the anode and the film, and the cathode and the film are always tightly integrated.

以上の電解槽の陽極室枠に62.21 / Hで飽第1
」食塩水を供給し、陰極室には111.81/Hで苛性
ソーダを循環しながら、電流密度30 A/dm” 。
The anode chamber frame of the above electrolytic cell was saturated at 62.21/H.
"Saline solution was supplied, and the current density was 30 A/dm while circulating caustic soda at 111.81/H in the cathode chamber."

苛性ソータ:濃度32w%、運転温度90℃で60F1
間運転をイアなった結果、安定して下記のような値が得
られた。
Caustic sorter: Concentration 32w%, operating temperature 60F1 at 90℃
As a result of repeated operation, the following stable values were obtained.

tlL角1’Ft曹電圧         150V電
流効率(Naon基準)95.5% 比較例1 実施例と同様の電極を用いて、陽極室、陰極室共、極室
液ガス集合排出用の穴の上端は極室上部と一致させ、穴
の高さ方向の寸法は30′Xとした。
tlL angle 1'Ft Soak voltage 150V Current efficiency (Naon standard) 95.5% Comparative example 1 Using the same electrode as in the example, the upper end of the hole for collecting and discharging liquid gas in both the anode chamber and the cathode chamber was The height dimension of the hole was 30'X to match the upper part of the electrode chamber.

組み立て後の陽極、陰極の位置は実施例と同様、密着一
体化した状態とした。運転条件も実施例と同−にして運
転を行なった結果、初期下記の値が得られた。
After assembly, the anode and cathode were placed in close contact with each other in the same position as in the example. As a result of operating under the same operating conditions as in the example, the following initial values were obtained.

電解電圧   155V 電流効率(NaO)i基準)95.0%比較例2 比較例1と全く同様な条件下で30日間連続運転を行な
った結果、下記の値となった。
Electrolysis voltage 155V Current efficiency (NaO) i standard) 95.0% Comparative Example 2 Continuous operation for 30 days under the same conditions as Comparative Example 1 resulted in the following values.

電解電圧   五50V ’+ [f、流動率(NaOH基準)94.0%かよう
に本発明の電解槽は電解電力の節減に大きく貢献するも
のであることは、実施例からも明白である。又、本発明
は単極式電解法で説明してきたが、複極式電解法にも適
用できるものである。
It is clear from the examples that the electrolytic cell of the present invention greatly contributes to the reduction of electrolytic power, as shown in the electrolysis voltage: 550V'+ [f, flow rate (NaOH standard): 94.0%. Further, although the present invention has been explained using a monopolar electrolysis method, it can also be applied to a bipolar electrolysis method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明電解槽の組み立て断面説明図である。 第2図、第3図は本発明電解槽の陽極室枠正面説明図及
び陰極室枠の正面説明図である。 1 陽極 2 陰極 5.4 給排電気導電部材 5 ガスケット 6 陽イオンy換j]:′さ 7.8 電極ザボート部材 15.18  極室枠 特許出願人 東洋曹達工業株式会社
FIG. 1 is an explanatory cross-sectional view of the assembled electrolytic cell of the present invention. 2 and 3 are front explanatory views of the anode chamber frame and the cathode chamber frame of the electrolytic cell of the present invention. 1 Anode 2 Cathode 5.4 Supply/discharge electrically conductive member 5 Gasket 6 Cation y exchange j]:'S 7.8 Electrode sabote member 15.18 Pole chamber frame patent applicant Toyo Soda Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極を設置した陽極室と陰極を設置した陰極室と
に陽イオン変換膜で区分された塩化アルカリ塩水溶液の
イオン交換膜法フィルタープレス型電解槽において、陽
イオン交換膜と、陽極及び陰極の両電極が血圧により実
質的に接触し一体化した状態で塩化アルカリ塩水溶液を
電解するに際し、弾性構造を有する陽極及び陰極を設置
し、電極は極室枠と電気的に接続し、電極の極室内での
接ガス部と接液部の比がQ、05以下であることを特徴
とする1L解槽。
(1) In an ion exchange membrane method filter press type electrolytic cell for an aqueous alkali chloride salt solution, the anode chamber in which the anode is installed and the cathode chamber in which the cathode is installed are separated by a cation conversion membrane. When electrolyzing an aqueous alkali chloride solution with both cathode electrodes substantially in contact and integrated due to blood pressure, an anode and a cathode having an elastic structure are installed, the electrode is electrically connected to the electrode chamber frame, and the electrode A 1L disassembly tank characterized in that the ratio of the gas-contacted part to the liquid-contacted part in the electrode chamber is Q,05 or less.
(2)弾性構造を有する電極が、垂直断面上でわん曲し
、その半径が電極の長手方向の寸法以上である特許請求
の範囲第(1)項記載の電解槽。
(2) The electrolytic cell according to claim (1), wherein the electrode having an elastic structure is curved in a vertical section, and the radius thereof is equal to or larger than the longitudinal dimension of the electrode.
JP13795582A 1982-08-10 1982-08-10 Electrolytic tank Pending JPS5928583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13795582A JPS5928583A (en) 1982-08-10 1982-08-10 Electrolytic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13795582A JPS5928583A (en) 1982-08-10 1982-08-10 Electrolytic tank

Publications (1)

Publication Number Publication Date
JPS5928583A true JPS5928583A (en) 1984-02-15

Family

ID=15210619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13795582A Pending JPS5928583A (en) 1982-08-10 1982-08-10 Electrolytic tank

Country Status (1)

Country Link
JP (1) JPS5928583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221452A (en) * 1990-02-15 1993-06-22 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly
US5254233A (en) * 1990-02-15 1993-10-19 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221452A (en) * 1990-02-15 1993-06-22 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly
US5254233A (en) * 1990-02-15 1993-10-19 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly

Similar Documents

Publication Publication Date Title
JPS59190379A (en) Vertical type electrolytic cell and electrolyzing method using said cell
JPS6024186B2 (en) Alkali metal halide electrolysis method
PL113658B1 (en) Unipolar diaphragm cell
CA2036353C (en) Monopolar ion exchange membrane electrolytic cell assembly
US4519888A (en) Electrolytic cell
EP0118973B1 (en) Electrolytic cell
JPS5928583A (en) Electrolytic tank
JPS6356315B2 (en)
US4329218A (en) Vertical cathode pocket assembly for membrane-type electrolytic cell
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JPS5871382A (en) Electrolytic cell
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
JPS622036B2 (en)
JPS6327432B2 (en)
JPS627885A (en) Multipair electrolytic cell for alkali chloride using ion-exchange membrane method
JPH08503739A (en) Electrolyzer and its electrode
JP2003183867A (en) Electrolysis method for alkali chloride solution
JPS5896886A (en) Electrolyzing method for aqueous alkali metal salt solution
JP3008953B2 (en) Ion-exchange membrane electrolytic cell
JPH0217014Y2 (en)
JPS5920757B2 (en) Multipolar electrolyzer
JP3069370B2 (en) Electrolytic cell
CN1127583C (en) Double-electrode ion membrane unit electrolyzer
JPS6229488Y2 (en)