JPH0217014Y2 - - Google Patents

Info

Publication number
JPH0217014Y2
JPH0217014Y2 JP1985199727U JP19972785U JPH0217014Y2 JP H0217014 Y2 JPH0217014 Y2 JP H0217014Y2 JP 1985199727 U JP1985199727 U JP 1985199727U JP 19972785 U JP19972785 U JP 19972785U JP H0217014 Y2 JPH0217014 Y2 JP H0217014Y2
Authority
JP
Japan
Prior art keywords
porous
electrolytic cell
anode
exchange membrane
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985199727U
Other languages
Japanese (ja)
Other versions
JPS62110270U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985199727U priority Critical patent/JPH0217014Y2/ja
Publication of JPS62110270U publication Critical patent/JPS62110270U/ja
Application granted granted Critical
Publication of JPH0217014Y2 publication Critical patent/JPH0217014Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (考案の技術分野) 本考案は新規なフイルタープレス型イオン交換
膜法電解槽(以下、単にフイルタープレス型電解
槽と称する)に関する。詳しくは、陽イオン交換
膜に多孔性陽極および多孔性陰極が密着した構造
の電解槽において、陽極と電気伝導リブ(以下、
電導リブと略記する)とを特定な構造で接合する
ことを特徴とするフイルタープレス型電解槽であ
る。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention relates to a novel filter press type ion exchange membrane method electrolytic cell (hereinafter simply referred to as a filter press type electrolytic cell). Specifically, in an electrolytic cell with a structure in which a porous anode and a porous cathode are in close contact with a cation exchange membrane, the anode and electrically conductive ribs (hereinafter referred to as
This is a filter press type electrolytic cell characterized by joining conductive ribs (abbreviated as conductive ribs) in a specific structure.

(従来技術およびその問題点) フイルタープレス型電解槽は、内部に陽極を収
納した陽極室枠と内部に陰極を収納した陰極室枠
(これら両者を総称して電極室枠とも称する)と
を、陽イオン交換膜を介して相対させた基本構造
(ユニツトセル)よりなる。この場合、1つの陽
極室と1つの陰極室とが隔壁を介して接合し、各
室内にある陽極および陰極の間が電導リブを介し
て電気的に接続された複極式構造、および陽極室
と陰極室とがそれぞれ独立に形成される単極式構
造がある。いずれの構造にあつても、これらの電
極は多数重合して締付けられ、一個の電解槽とし
て構成される。また、このような電解槽に用いら
れる電極は、通電部の電極面上で発生したガスを
該電極背後に導き易い構造の多孔性電極が一般的
である。
(Prior art and its problems) A filter press type electrolytic cell consists of an anode chamber frame that houses an anode therein and a cathode chamber frame that houses a cathode therein (both of which are also collectively referred to as electrode chamber frames). It consists of a basic structure (unit cell) that faces each other via a cation exchange membrane. In this case, one anode chamber and one cathode chamber are joined via a partition, and the anode and cathode in each chamber are electrically connected via conductive ribs, and the anode chamber There is a monopolar structure in which a cathode chamber and a cathode chamber are formed independently. In either structure, a large number of these electrodes are superimposed and fastened together to form a single electrolytic cell. Further, the electrodes used in such electrolytic cells are generally porous electrodes having a structure that allows gas generated on the electrode surface of the current-carrying part to be easily guided behind the electrode.

近年、上記した構造のフイルタープレス型電解
槽において電解効率を高めるために、イオン交換
膜と電極間の距離を可及的に縮め、溶液抵抗によ
る電解(槽)電圧を低下させる試みが成されてい
る。例えば、表面が平滑な多孔性電極を用い、陽
イオン交換膜を挟む多孔性陽極及び/又は多孔性
陰極を支持する電導リブをバネ構造とし、その機
械的な押圧力により陽イオン交換膜に多孔性陽極
および多孔性陰極を密着するようにした構造のフ
イルタープレス型電解槽が提案されている。
In recent years, attempts have been made to reduce the distance between the ion exchange membrane and the electrodes as much as possible to reduce the electrolytic (cell) voltage due to solution resistance, in order to increase the electrolytic efficiency in the filter press type electrolytic cell with the above structure. There is. For example, a porous electrode with a smooth surface is used, and the conductive ribs that support the porous anode and/or porous cathode sandwiching the cation exchange membrane are made into a spring structure, and the mechanical pressure of the conductive ribs creates porous holes in the cation exchange membrane. A filter press type electrolytic cell has been proposed in which a porous anode and a porous cathode are brought into close contact with each other.

しかしながら、かかる構造のフイルタープレス
型電解槽を用いてアルカリ金属塩水溶液(以下、
単に塩水と記す)の電解を実施した場合、多孔性
陽極と電導リブとの接合部に密着して位置する陽
イオン交換膜の陰極側の面に多量の水ぶくれが生
じ、次いで破損するばかりか、その破損した部分
から陽極室へ陰極液が混入して電流効率の低下を
起こす現象が生じ、ついには該陽イオン交換膜の
交換を余儀なくされ、長期間の連続運転が困難と
なる。
However, using a filter press type electrolytic cell with such a structure, an aqueous alkali metal salt solution (hereinafter referred to as
When electrolysis is carried out using salt water (simply referred to as salt water), a large amount of water blister occurs on the cathode side surface of the cation exchange membrane, which is located in close contact with the joint between the porous anode and the conductive ribs, and then it is damaged. A phenomenon occurs in which catholyte is mixed into the anode chamber from the damaged part, causing a decrease in current efficiency, and the cation exchange membrane is eventually forced to be replaced, making long-term continuous operation difficult.

(問題を解決するための手段) 本考案者等は上記問題を解決するために、先
ず、上記した現象の原因について鋭意検討した。
その結果、上記した如き機械的押圧力により陽イ
オン交換膜に多孔性陽極および多孔性陰極を密着
させた構造のフイルタープレス型電解槽では、多
孔性陽極の孔部が電導リブにより完全に閉塞され
る状態で接合された構造となつた場合に上記現象
が生ずることを見出した。即ち、このような場
合、多孔性陽極と電導リブの接合部に位置する陽
イオン交換膜と陽極面との密着(接触)部には、
電解の初期においては塩水が存在するが、その後
は塩水の供給がないままの状態で電解が継続され
るために、通電時間の経過にしたがい塩濃度の低
下を伴ない、陽イオン交換膜の陰極側に水泡が生
じるものと推測される。したがつて、本考案者ら
は上記知見に基づき、下記に示すように多孔性陽
極と電導リブの接合部の構造を特定することによ
り、所期の問題が解決し得ることを見い出し、本
考案を提案するに至つた。即ち、本考案は陽イオ
ン交換膜の一方の面に多孔性陽極および他方の面
に多孔性陰極をそれぞれ密着せしめた構造のフイ
ルタープレス型電解槽において、該多孔性陽極の
孔部が電導リブにより閉塞されない状態に電導リ
ブを接合した構造であることを特徴とする特にア
ルカリ金属塩水溶液の電解槽である。
(Means for Solving the Problem) In order to solve the above problem, the inventors of the present invention first conducted an intensive study on the causes of the above phenomenon.
As a result, in a filter press type electrolytic cell that has a structure in which a porous anode and a porous cathode are brought into close contact with a cation exchange membrane by mechanical pressing force as described above, the pores of the porous anode are completely blocked by the conductive ribs. It has been found that the above phenomenon occurs when the structure is bonded in a state where That is, in such a case, the contact area between the cation exchange membrane and the anode surface located at the joint between the porous anode and the conductive ribs,
At the beginning of electrolysis, salt water is present, but after that, electrolysis continues without a supply of salt water, so as the energization time elapses, the salt concentration decreases, and the cathode of the cation exchange membrane It is assumed that blisters will form on the sides. Therefore, based on the above knowledge, the present inventors found that the desired problem could be solved by specifying the structure of the joint between the porous anode and the conductive rib as shown below, and developed the present invention. I have come to propose this. That is, the present invention provides a filter press type electrolytic cell having a structure in which a porous anode is closely attached to one side of a cation exchange membrane and a porous cathode is attached to the other side, in which the pores of the porous anode are formed by conductive ribs. This is an electrolytic cell for an aqueous alkali metal salt solution, characterized in that it has a structure in which conductive ribs are joined in an unobstructed state.

以下、本考案を図面に基づき詳細に説明する
が、本考案は以下の図面に特に限定されるもので
はない。
Hereinafter, the present invention will be explained in detail based on the drawings, but the present invention is not particularly limited to the following drawings.

第1図は、本考案に適用されるフイルタープレ
ス型電解槽の代表的な態様を示す概略図である。
即ち、第1図は、多孔性陰極2を支持する電導リ
ブ3をバネ構造とし、陽イオン交換膜4が多孔性
陽極5および多孔性陰極2のそれぞれに密着せし
めた構造のフイルタープレス型電解槽である。な
お、第1図において6は電導リブ、7はガスケツ
トで、一般に電導リブ6は多孔性陽極5の裏面
(陽イオン交換膜4と反対の面)にスポツト溶接
等の手段で接合される。
FIG. 1 is a schematic diagram showing a typical embodiment of a filter press type electrolytic cell applied to the present invention.
That is, FIG. 1 shows a filter press type electrolytic cell having a structure in which the conductive ribs 3 supporting the porous cathode 2 have a spring structure, and the cation exchange membrane 4 is in close contact with the porous anode 5 and the porous cathode 2. It is. In FIG. 1, 6 is a conductive rib, and 7 is a gasket. Generally, the conductive rib 6 is joined to the back surface of the porous anode 5 (the surface opposite to the cation exchange membrane 4) by means such as spot welding.

かかる電解槽において、本考案は多孔性陽極5
と電導リブ6の接合部8を特定な構造とすること
が最大の特徴である。即ち、第2図は、電解によ
り陽イオン交換膜4の陰極側の面に水ぶくれが生
じ破損に至つたものの多孔性陽極5と電導リブ6
の接合部8を示す概略図(部分平面図および側面
図を示す)である。このような構造の電解槽によ
れば、多孔性陽極5の孔部9が電導リブ6により
完全に閉塞されているため、該陽極5と陽イオン
交換膜4の接触部10では、第2図の斜線部に水
泡や破損が生じる。これに対して、本考案の電解
槽は、多孔性陽極5の孔部9が電導リブ6により
閉塞されない構造であるため、その部分で局所的
に塩濃度が低下することがなく、上記した如き問
題を生じない。多孔性陽極の孔部9が電導リブ6
により閉塞されない構造とする態様は、例えば第
3図に示す如く多孔性陽極の孔部9の大きさが電
導リブ6の幅より大きくなるように孔部9の形状
を楕円形とする態様、あるいは第4図に示す如く
孔部9と孔部9′との間に溝11を切つた態様等、
第2図に示す接触部10に常時塩水が供給される
構造であれば特に制限されるものではない。
In such an electrolytic cell, the present invention has a porous anode 5.
The biggest feature is that the joint 8 between the conductive rib 6 and the conductive rib 6 has a specific structure. That is, FIG. 2 shows the porous anode 5 and conductive ribs 6 of the cation exchange membrane 4 which has blistered on the cathode side surface due to electrolysis and has been damaged.
FIG. 2 is a schematic diagram (showing a partial plan view and a side view) of a joint section 8 of FIG. According to the electrolytic cell having such a structure, since the holes 9 of the porous anode 5 are completely closed by the conductive ribs 6, the contact portion 10 between the anode 5 and the cation exchange membrane 4 as shown in FIG. Blisters and damage occur in the shaded area. On the other hand, the electrolytic cell of the present invention has a structure in which the holes 9 of the porous anode 5 are not blocked by the conductive ribs 6, so that the salt concentration does not locally decrease in that part, and as described above. Does not cause any problems. The holes 9 of the porous anode are the conductive ribs 6
For example, as shown in FIG. 3, the shape of the hole 9 of the porous anode is made elliptical so that the size of the hole 9 is larger than the width of the conductive rib 6, or As shown in FIG. 4, a groove 11 is cut between the hole 9 and the hole 9', etc.
There are no particular limitations as long as the structure is such that salt water is constantly supplied to the contact portion 10 shown in FIG.

本考案に適用されるフイルタープレス型電解槽
は、陽イオン交換膜の一方の面に多孔性陽極を、
他方の面に多孔性陰極をそれぞれ機械的手段によ
り密着せしめた構造であれば特に制限されない。
このような電槽は特に陽極と膜との押圧力が大き
く密着性が強いため、本考案の構造が極めて有効
である。なお、電槽としては例えば第1図はバイ
ポーラ式のフイルタープレス型電解槽について示
したが、モノポーラ式のフイルタープレス型電解
槽であつてもよい。また、第1図の如く、多孔性
陰極2に接続する電導リブ3をバネ構造としたフ
イルタープレス型電解槽に限らず、陽イオン交換
膜が多孔性電極に密着する公知のフイルタープレ
ス型電解槽にも好適に適用される。また、多孔性
陽極および多孔性陰極と陽イオン交換膜を密着さ
せる場合の押し付け圧力は、陽極室と陰極室との
ガス圧力差(PK−PA)が30mmAq以上とくに200
mmAq以上また機械的押し付け圧2g/cm2以上、
特に20g/cm2以上が好ましい。
The filter press type electrolytic cell applied to this invention has a porous anode on one side of the cation exchange membrane.
There is no particular restriction on the structure as long as the porous cathode is brought into close contact with the other surface by mechanical means.
In such a battery case, the pressing force between the anode and the membrane is particularly large and the adhesion is strong, so the structure of the present invention is extremely effective. Although FIG. 1 shows a bipolar filter press type electrolytic cell, for example, a monopolar filter press type electrolytic cell may be used. Furthermore, as shown in Fig. 1, the present invention is not limited to the filter press type electrolytic cell in which the conductive rib 3 connected to the porous cathode 2 has a spring structure, but also the known filter press type electrolytic cell in which the cation exchange membrane is in close contact with the porous electrode. It is also suitably applied. In addition, the pressing pressure when bringing the porous anode and porous cathode into close contact with the cation exchange membrane should be 200 mmAq or more when the gas pressure difference (PK-PA) between the anode chamber and the cathode chamber is 30 mmAq or more.
mmAq or more, mechanical pressing pressure 2g/cm 2 or more,
Particularly preferred is 20 g/cm 2 or more.

上記したフイルタープレス型電解槽を構成する
材質として、陽極室の場合には、塩水および塩素
に耐食性がある材質、例えばチタンが使用され、
陰極室の場合には高濃度のアルカリ金属水酸化物
および水素に耐食性がある鉄、ステンレス鋼又は
ニツケルおよびそれらの基体上に耐食性被覆層を
形成させたものなどが使用される。
In the case of the anode chamber, a material that is resistant to corrosion by salt water and chlorine, such as titanium, is used as the material constituting the above-mentioned filter press type electrolytic cell.
In the case of the cathode chamber, iron, stainless steel, or nickel, which is resistant to corrosion by high concentrations of alkali metal hydroxide and hydrogen, and materials having corrosion-resistant coating layers formed on their substrates are used.

上記した電解槽用の陽・陰極としては、陽イオ
ン交換膜と密着させた際に該陽イオン交換膜を破
損させないような電極面が平滑なガスおよび液透
過性の多孔性電極が用いられ、特に平均孔径1〜
5mm、多孔率10〜60%を有するのが好適で、一般
にはパンチドメタルが用いられる。なお、極間が
例えば1〜4mm程度有する電解槽に用いられるラ
ス材は平滑な表面を有しないため、本考案の電解
槽には用いられない。かかる電極を構成する材質
としては、例えば陽極としてチタンにルテニウ
ム、パラジウム等の白金族金属やその合金及びそ
れらの酸化物を被覆せしめたものが好ましく用い
られる。また、陰極として軟鋼、ステンレス鋼、
ニツケルあるいはこれらに白金、パラジウム等の
白金金属及びニツケル等またそれらの合金を被覆
したものが用いられる。
As the anode and cathode for the electrolytic cell described above, gas and liquid permeable porous electrodes with smooth electrode surfaces that do not damage the cation exchange membrane when brought into close contact with the cation exchange membrane are used. In particular, the average pore diameter is 1~
5 mm and a porosity of 10 to 60%, and punched metal is generally used. Note that the lath material used in electrolytic cells having a distance between poles of, for example, about 1 to 4 mm does not have a smooth surface and therefore cannot be used in the electrolytic cell of the present invention. As the material constituting such an electrode, for example, titanium coated with a platinum group metal such as ruthenium or palladium, an alloy thereof, or an oxide thereof is preferably used as an anode. Also, mild steel, stainless steel,
Nickel or those coated with platinum metals such as platinum and palladium, nickel, and alloys thereof are used.

本考案に用いられる電導リブは、公知のものが
特に制限なく用いられ、該電導リブの幅は、電気
抵抗、表面仕上げのために2〜6mm程度で一般に
前記電極の孔径より大きいものが好ましく用いら
れる。また、多孔性陽極と電導リブは溶接等の手
段により接合すればよい。
The conductive ribs used in the present invention may be of any known type without particular limitation, and the width of the conductive ribs is preferably about 2 to 6 mm for electrical resistance and surface finish, and is generally larger than the hole diameter of the electrode. It will be done. Further, the porous anode and the conductive rib may be joined by means such as welding.

本考案は上記した電解槽の多孔性陽極と電導リ
ブとの接合部に特徴を持たせたもので、その他の
ものについては公知のものを特に制限なく使用す
ることができる。例えば、陽イオン交換膜は耐久
性に優れたものであれば特に制限されないが、一
般にはパーフロロカーボン系の陽イオン交換膜が
好適に用いられる。また、イオン交換膜法アルカ
リ金属塩水溶液の電解を行うプロセス条件は、公
知の条件を特に制限なく採用することができる。
例えば、陽極室には3〜5規定(N)の塩水を供
給し、一方陰極室には、水または希釈アルカリ金
属水酸化物を供給し、常温〜95℃の温度、電流密
度10〜50A/dm2で電解を行う。
The present invention is characterized by the above-mentioned joint between the porous anode and the conductive rib of the electrolytic cell, and for other parts, known ones can be used without particular restriction. For example, the cation exchange membrane is not particularly limited as long as it has excellent durability, but in general, perfluorocarbon-based cation exchange membranes are preferably used. Further, as the process conditions for electrolyzing an aqueous alkali metal salt solution using an ion exchange membrane method, known conditions can be employed without particular limitation.
For example, 3 to 5 normal (N) salt water is supplied to the anode chamber, while water or diluted alkali metal hydroxide is supplied to the cathode chamber at a temperature of room temperature to 95°C and a current density of 10 to 50 A. Electrolysis is carried out at dm 2 .

(効果) 以上説明の如く、本考案によれば多孔性陽極と
電導リブが、該多孔性陽極の孔部が電導リブによ
り閉塞されない状態で接合された構造であるた
め、該接合部に位置する陽イオン交換膜の膨潤、
破損を防止することが出来る。
(Effects) As explained above, according to the present invention, the porous anode and the conductive rib are connected to each other in a state in which the pores of the porous anode are not blocked by the conductive rib, so that the porous anode and the conductive rib are located at the joint. Swelling of cation exchange membrane,
Damage can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に適用されるフイルタープレス
型電解槽の代表的な態様を示す概略図で、第2
図、第3図および第4図は、多孔性陽極と電導リ
ブの接合部の部分構造を示す平面図また側面図で
ある。 各図において、はフイルタープレス型電解
槽、2は多孔性陰極、3は電導リブ(バネ構造)、
4は陽イオン交換膜、5は多孔性陽極、6は電導
リブ、7はガスケツト、8は接合部、9,9′は
孔部、10は接触部、11は溝である。
FIG. 1 is a schematic diagram showing a typical embodiment of a filter press type electrolytic cell applied to the present invention.
3 and 4 are a plan view and a side view showing a partial structure of a joint between a porous anode and a conductive rib. In each figure, 1 is a filter press type electrolytic cell, 2 is a porous cathode, 3 is a conductive rib (spring structure),
4 is a cation exchange membrane, 5 is a porous anode, 6 is a conductive rib, 7 is a gasket, 8 is a joint portion, 9 and 9' are holes, 10 is a contact portion, and 11 is a groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 陽イオン交換膜の一方の面に多孔性陽極およ
び、他方の面に多孔性陰極をそれぞれ密着せしめ
た構造のフイルタープレス型電解槽において、多
孔性陽極の孔部が閉塞されない状態に電気伝導リ
ブを接合したアルカリ金属塩水溶液の電解槽。
In a filter press type electrolytic cell with a structure in which a porous anode is closely attached to one side of a cation exchange membrane and a porous cathode is attached to the other side, electrically conductive ribs are installed so that the pores of the porous anode are not blocked. Electrolytic cell for aqueous alkali metal salt solution.
JP1985199727U 1985-12-27 1985-12-27 Expired JPH0217014Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985199727U JPH0217014Y2 (en) 1985-12-27 1985-12-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985199727U JPH0217014Y2 (en) 1985-12-27 1985-12-27

Publications (2)

Publication Number Publication Date
JPS62110270U JPS62110270U (en) 1987-07-14
JPH0217014Y2 true JPH0217014Y2 (en) 1990-05-11

Family

ID=31161620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985199727U Expired JPH0217014Y2 (en) 1985-12-27 1985-12-27

Country Status (1)

Country Link
JP (1) JPH0217014Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928980B2 (en) * 1995-04-14 2007-06-13 ペルメレック電極株式会社 Method of soil sterilization and fertilization
JP5659337B2 (en) * 2012-12-31 2015-01-28 株式会社健康支援センター Desktop hydrogen gas generator

Also Published As

Publication number Publication date
JPS62110270U (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US6217728B1 (en) Electrolysis cell
CA1109417A (en) Metal laminate strip construction of bipolar electrode backplates
JPH03173789A (en) Filter type electrolytic bath for preparing peroxy or perhalogenated compound
US4472255A (en) Electrochemical cell
JPS5815547B2 (en) electrolytic cell
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
JPH07278864A (en) Gas diffusion electrode
US4519888A (en) Electrolytic cell
EP0443430B1 (en) Monopolar ion exchange membrane electrolytic cell assembly
JPH1081986A (en) Horizontal double-polarity electrolytic cell
JPH0217014Y2 (en)
US4177118A (en) Process for electrolyzing water
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP2858747B2 (en) Method of assembling components of a filter press type structure on a support structure
CN217052434U (en) Electrode structure for chlor-alkali ionic membrane
JPS5871382A (en) Electrolytic cell
JPS5932547B2 (en) water electrolysis method
JPH07220727A (en) Gas diffusion electrode
JPH0633474B2 (en) Water electrolysis method
JP3008953B2 (en) Ion-exchange membrane electrolytic cell
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
JPH1053887A (en) Reactivation method of active cathode
JP3086854B1 (en) Gas diffusion electrode integrated with gas chamber
JPS6118855A (en) Moisture sensor