JPS589144B2 - Manganese-Aluminum-Tansokeigokinjiyakuno Seizouhou - Google Patents
Manganese-Aluminum-Tansokeigokinjiyakuno SeizouhouInfo
- Publication number
- JPS589144B2 JPS589144B2 JP49120815A JP12081574A JPS589144B2 JP S589144 B2 JPS589144 B2 JP S589144B2 JP 49120815 A JP49120815 A JP 49120815A JP 12081574 A JP12081574 A JP 12081574A JP S589144 B2 JPS589144 B2 JP S589144B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- aluminum
- alloy
- manganese
- cracks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Extrusion Of Metal (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
【発明の詳細な説明】
本発明はマンガン(Mn)−アルミニウム(Al)−炭
素C系合金磁石の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a manganese (Mn)-aluminum (Al)-carbon C alloy magnet.
従来のMn−Al−C系合金磁石は等方性磁石としては
優れていたが、その磁気特性の向上は限界に達していた
。Although conventional Mn-Al-C alloy magnets were excellent as isotropic magnets, their improvement in magnetic properties had reached a limit.
そうした中で発明者らは磁気特性、機械的特性および被
切削性が飛躍的に改善された異方性Mn−Al−C系合
金磁石を発明した。Under these circumstances, the inventors invented an anisotropic Mn-Al-C alloy magnet that has dramatically improved magnetic properties, mechanical properties, and machinability.
その詳細は、たとえば特願昭48−87391号、特願
昭48−106311号等に記載されている。The details are described in, for example, Japanese Patent Application No. 48-87391 and Japanese Patent Application No. 106311-1982.
すなわち68.0〜73.0重量%(以下単に%と−2
2.2)%C(ただし数式内のMnはマンガン成分%を
示す)と残部Alを基本組成とするMn−Al−C系合
金を、530°〜830°の温度領域で温間塑性加工す
ることによって、優れた磁気特性、機械的特性および被
切削性を有した異方性磁石として得られる。That is, 68.0 to 73.0% by weight (hereinafter simply referred to as % and -2
2.2) A Mn-Al-C alloy whose basic composition is %C (Mn in the formula indicates manganese component %) and the remainder Al is subjected to warm plastic working in a temperature range of 530° to 830°. As a result, an anisotropic magnet having excellent magnetic properties, mechanical properties, and machinability can be obtained.
この異方性Mn−Al−C系合金磁石の製造において、
溶解鋳造によって得られた素材は、高温で均一な高温相
にされた後、混間塑性加工されるまでに、適当な熱処理
が施こされる.この熱処理が、遅い冷却速度の場合には
、安定相であるβ−Mn相やMnAl(r)と呼ばれる
非磁性相への変態が起こり、温間塑性加工を施しても特
性の悪い磁石しか得られない。In manufacturing this anisotropic Mn-Al-C alloy magnet,
The material obtained by melting and casting is made into a uniform high-temperature phase at high temperature, and then subjected to appropriate heat treatment before being subjected to mixed plastic working. If this heat treatment is performed at a slow cooling rate, transformation to a stable β-Mn phase or a non-magnetic phase called MnAl(r) will occur, and even if warm plastic working is performed, only a magnet with poor characteristics will be obtained. I can't do it.
すなわち優れた磁気特性を有する磁石を得るためには、
このような変態を防止するように冷却することが必要で
ある.一方冷却速度が速くなるとクラツクが発生し易く
なる.このクラツクは、小さなクラツク、たとえば素材
の表面層にできるものは混間塑性加工時に密着してしま
い、加工上及び特性上に影響を及ぼさないが大きなクラ
ツクは加工中にクラツクが進行して素材がバラバラとな
ったり、円滑な加工ができないために磁類特性が悪かっ
たり、あるいはダイスを破損させたりして、加工上及び
特性上に大きなマイナスの影響を与える。In other words, in order to obtain a magnet with excellent magnetic properties,
Cooling is necessary to prevent such transformation. On the other hand, as the cooling rate increases, cracks are more likely to occur. These cracks are small cracks, such as those formed on the surface layer of the material, that stick together during mixed plastic working and do not affect the processing or properties, but large cracks progress during processing and the material deteriorates. It may fall apart, the magnetic properties may be poor because it cannot be processed smoothly, or the die may be damaged, which has a large negative impact on processing and properties.
それ故に優れた磁気特性を得るだめの熱処理を施こすに
は、クラツクを避けようとすると素材の大きさに限界が
ある。Therefore, there is a limit to the size of the material in order to avoid cracks in the heat treatment required to obtain excellent magnetic properties.
すなわち、臨界直径が存在する。That is, there is a critical diameter.
ここに一つの実験例を示す。Here is an example of an experiment.
Mn,Al,Cの原材料を適当に配合して約1450℃
で30分間溶解し、直径が60mmφ(以下mmは省略
する)、80φ,100φ,120φの鋳造体を作成し
た。Approximately 1450℃ by appropriately blending the raw materials of Mn, Al, and C.
The mixture was melted for 30 minutes to produce cast bodies with diameters of 60 mm (hereinafter mm is omitted), 80, 100, and 120.
このロットの組成は化学分析値で69.05%Mn,3
0.43%Al,0.52%Cであった。The composition of this lot is 69.05%Mn,3 as determined by chemical analysis.
It was 0.43% Al and 0.52% C.
得られた鋳造体から長さと直径の比が1となるように6
0mm、80mm、100mm,120mmの長さの円
柱体を切り出し、各々について1150℃に加熱して2
時間保持し、その後1150℃から500℃まで冷却速
度100℃/分で冷却し、500℃から室温まで放冷し
た。6 from the obtained cast body so that the ratio of length to diameter is 1.
Cylindrical bodies with lengths of 0 mm, 80 mm, 100 mm, and 120 mm were cut out, and each was heated to 1150 °C for 2
The mixture was held for a period of time, and then cooled from 1150°C to 500°C at a cooling rate of 100°C/min, and allowed to cool from 500°C to room temperature.
得られた試料について、クラツクの発生状況を調べた結
果、60φと80φの試料は全くクラツクがなく、10
0φについては細いクラツクが1本だけ認められたが、
120φについては大きなクラツクが発生していた。As a result of investigating the occurrence of cracks in the obtained samples, the 60φ and 80φ samples had no cracks at all, and the 10
For 0φ, only one thin crack was observed,
A large crack occurred with respect to 120φ.
これらの試料について600℃で30分間焼戻し処理を
行なった後、大気中にて加工温度700℃、圧力40k
g/mm2、減面率75%の押出加工を行なった結果、
60φ、80φ、100φの試料は良好に加工されたが
、120φの試料は途中で割れて加工できなかった。After tempering these samples at 600°C for 30 minutes, the processing temperature was 700°C and the pressure was 40k in the atmosphere.
As a result of extrusion processing with g/mm2 and area reduction rate of 75%,
The samples of 60φ, 80φ, and 100φ were processed well, but the sample of 120φ broke in the middle and could not be processed.
60φ、80φ、100φについて磁気測定を行った結
果、軸方向に磁化優位方向をもちその軸方向の磁気特性
は、Br≧6200G,BHC≧25000e、(BH
)max≧6.3×106G・Oeであった。As a result of magnetic measurements for 60φ, 80φ, and 100φ, the dominant direction of magnetization is in the axial direction, and the magnetic properties in the axial direction are Br≧6200G, BHC≧25000e, (BH
) max≧6.3×106G·Oe.
また金属顕微鏡観察を行なったところ、60φと80φ
はほぼ均一な緻密な組織であったが、100φについて
はクラツクの痕跡と考えられる黒い筋状模様が見られた
。In addition, metallurgical microscope observation revealed that 60φ and 80φ
had a nearly uniform and dense structure, but for 100φ, black striped patterns, which were thought to be traces of cracks, were observed.
この組成における冷却速度100℃/分での臨界直径は
80φ〜100φであり、冷却速度を速くするとこの臨
界直径が小さくなり、冷却速度を遅くすると大きくなる
。The critical diameter of this composition at a cooling rate of 100° C./min is 80φ to 100φ; increasing the cooling rate decreases this critical diameter, and decreasing the cooling rate increases the critical diameter.
この臨界直径以上の大きさの素材について、クラツクの
発生を防止し、かつ適正な熱処理を施こす方法の開発が
望まれていた。It has been desired to develop a method for preventing the occurrence of cracks and applying appropriate heat treatment to materials having a size larger than this critical diameter.
発明者らは、上述の問題を解決するMn−Al−C系合
金磁石の製造法を研究した結果、次のような製造法が有
効であり、かつこの方法が新しい特性を有する磁石の製
造法として有効であることを見い出した。As a result of research into a manufacturing method for Mn-Al-C alloy magnets that solves the above-mentioned problems, the inventors have found that the following manufacturing method is effective and that this method is a manufacturing method for magnets with new characteristics. It was found to be effective as
すなわち、素材の肉厚が臨界直径以下になるように、素
材に穴を設けることによって、クラツクを発生させずに
適当な熱処理を施こすことができる。That is, by providing a hole in the material so that the wall thickness of the material is equal to or less than the critical diameter, appropriate heat treatment can be performed without causing cracks.
こうして得られた穴あき素材の穴の中に棒状素材をはめ
こみ、大気中にて温間塑性加工を行うことによって、一
体物としてのMn−Al−C系異方性磁石とすることが
できる。By fitting the rod-shaped material into the hole of the perforated material thus obtained and performing warm plastic working in the atmosphere, an Mn--Al--C based anisotropic magnet can be obtained as an integrated object.
ここで穴については一つに限らず、複数個でもよく、た
とえば大型の素材については、穴を二つ以上あけて素材
の肉厚を臨界直径以下にすることにより、クラツクを発
生させずに、適正な熱処理を施こすことができる。Here, the number of holes is not limited to one, but may be multiple. For example, for large materials, by drilling two or more holes and making the wall thickness of the material less than the critical diameter, it is possible to prevent cracks from occurring. Appropriate heat treatment can be performed.
また、素材形状及び穴形状としては円筒状や円柱状の他
に断面が長方形や楕円形を有するものも可能である。In addition, the shape of the material and the hole may be cylindrical or cylindrical, or may have a rectangular or elliptical cross section.
また穴としては軸方向に貫通しているものが望ましいが
、一端が閉じているものでも可能である。Further, it is desirable that the hole penetrates in the axial direction, but it is also possible to use a hole that is closed at one end.
この製造方において、穴あき素材と穴の中にはめこむ棒
状素材として、その組成やそれぞれに施こされる前処理
の異なったものを用いることによって、得られる合金磁
石の内部の磁気特性分布を変化させることができる。In this manufacturing method, the internal magnetic property distribution of the resulting alloy magnet is controlled by using different compositions and pre-treatments for the perforated material and the rod-shaped material inserted into the hole. It can be changed.
また、穴の中にはめこむ棒状素材として、一度温間塑性
加工を施したものを用いることによって、全体としての
磁気特性を向上させたり、内部の磁気特性に変化をつけ
たりすることができる。Furthermore, by using a rod-shaped material that has been subjected to warm plastic processing once to be inserted into the hole, it is possible to improve the overall magnetic properties or change the internal magnetic properties.
穴の中にはめこむ棒状素材として、Mn−Al−C系合
金以外のものを用いても、そのものがMn−Al−C系
合金と温間塑性加工性が似たものであり、かつ耐酸化性
を有しているものであれば、加工が可能であり特異な磁
石をつくることができる。Even if a material other than the Mn-Al-C alloy is used as the rod-shaped material to be inserted into the hole, it has similar warm plastic workability to the Mn-Al-C alloy and is oxidation resistant. If it has properties, it can be processed and unique magnets can be created.
加工法としては、押出加工、圧延加工、鍛造加工などが
可能である。Possible processing methods include extrusion, rolling, and forging.
以下本発明の実施例を説明する。Examples of the present invention will be described below.
実施例 1
Mn,Al,Cの原材料を適当に配合し、約1450℃
で30分間溶解し、外径180φ、内径72φの円筒状
の鋳造体と、80φの棒状鋳造体をそれぞれ数個づつ作
成した。Example 1 Mn, Al, and C raw materials were mixed appropriately and heated to about 1450°C.
The mixture was melted for 30 minutes, and several cylindrical cast bodies with an outer diameter of 180φ and an inner diameter of 72φ, and several rod-shaped cast bodies with an 80φ diameter were produced.
このロットの組成は化学分析値で、69.53%Mn,
29.77%Al、0.70%Cであった。The composition of this lot is 69.53%Mn, as determined by chemical analysis.
It was 29.77% Al and 0.70% C.
これらの鋳造体から長さ250mmのものをそれぞれ切
り出し、1150℃に加熱して2時間保持し、1150
℃から500℃まで、100℃/分以上の冷却速度で冷
却し、600℃で30分間焼戻した。Each of these cast bodies was cut out to a length of 250 mm, heated to 1150°C and held for 2 hours, and heated to 1150°C.
The sample was cooled from 0.degree. C. to 500.degree. C. at a cooling rate of 100.degree. C./min or more, and then tempered at 600.degree. C. for 30 minutes.
得られた鋳造体を調べた結果大きなクラツクは全くなく
、表面層にのみ小さなクラツクがわずか認められただけ
であった。Examination of the obtained cast body revealed that there were no large cracks at all, and only a few small cracks were observed only in the surface layer.
これらの鋳造体を切削加工によって、穴あき鋳造体の方
は外径176φ、内径(76.0+0.05−0)φに
、一方80φの棒状鋳造体は外径
(76.0+0−0.05)φに仕上げ、二つをはめあ
わせた。By cutting these cast bodies, the perforated cast body has an outer diameter of 176φ and an inner diameter of (76.0+0.05-0)φ, while the rod-shaped cast body of 80φ has an outer diameter of (76.0+0-0.05). ) φ and fitted the two together.
この試料を大気中で、酸化防止を行なうことなく、加工
温度720℃、圧力40kg/mm2、減面率70%の
押出し加工を行なった。This sample was extruded in the atmosphere without any oxidation prevention at a processing temperature of 720° C., a pressure of 40 kg/mm 2 , and an area reduction rate of 70%.
加工は良好に行なわれ、得られた試料の中心部から測定
用試料片を切り出して磁気特性測定を行なったところ軸
方向に磁化優位方向をもつ優れた磁石合金であることが
わかった。The processing was carried out well, and when a test piece was cut out from the center of the obtained sample and the magnetic properties were measured, it was found to be an excellent magnetic alloy with a dominant magnetization direction in the axial direction.
磁化優位方向の磁気特性は、Br=6000G,BHC
=2350Oe,(BH)max=5.5×106G・
Oeであった。The magnetic properties in the magnetization dominant direction are Br=6000G, BHC
=2350Oe, (BH)max=5.5×106G・
It was Oe.
また金属顕微鏡観察を行なったところ、組織は緻密でほ
ぼ均一であったが、接合面の痕跡と考えられる黒い筋状
模様がリング状をなして観察された。Further, when observed under a metallurgical microscope, the structure was dense and almost uniform, but a ring-shaped black streak pattern was observed, which was thought to be a trace of the bonding surface.
実施例 2
実施例1で鋳造した穴あき素材を実施例1と同様の熱処
理及び切削加工を施して、同形状に仕上げた。Example 2 The perforated material cast in Example 1 was subjected to the same heat treatment and cutting process as in Example 1, and was finished into the same shape.
はめあわせる棒状素材として実施例1で加工して得られ
た試料から削り出した。A rod-shaped material to be fitted was cut out from the sample processed in Example 1.
温間塑性加工は実施例1と同様の条件で行い、良好に行
なわれた。Warm plastic working was carried out under the same conditions as in Example 1, and was carried out satisfactorily.
得られた試料の断面を金属顕微鏡観察したところ、接合
面の痕跡とみられるほぼリング状をなした黒い筋状模様
が認められた。When the cross-section of the obtained sample was observed under a metallurgical microscope, a nearly ring-shaped black striped pattern, which appeared to be traces of the bonded surface, was observed.
磁気測定用試料として、筋状模様で囲まれた中心部から
と、その外側の周囲部からそれぞれ10mm×10mm
×10mmの大きさの試料片を切り出し、磁気測定を行
なったところ、共に軸方向に磁化優位方向を有する異方
性磁石であった。As a sample for magnetic measurement, 10 mm x 10 mm from the center surrounded by the striped pattern and from the outer periphery.
A sample piece of 10 mm in size was cut out and magnetically measured, and it was found that both were anisotropic magnets with a dominant magnetization direction in the axial direction.
その磁気特性は中心部では、Br=6500G,BHc
=2600Oe,(BH)max=6.7×106G・
Oe、また周囲部ではBr=6100G,BHC=23
00Oe(BH)max=5.6×106G・Oeであ
り、中心部の特性は周囲部のそれよりも優れていた。Its magnetic properties are Br=6500G, BHc at the center.
=2600Oe, (BH)max=6.7×106G・
Oe, and in the surrounding area Br=6100G, BHC=23
00Oe(BH)max=5.6×106G·Oe, and the characteristics of the center part were better than those of the peripheral part.
この得られた円柱状磁石と実施例1で得られた円柱状磁
石を磁化し、それらの端面上の磁束分布を測定した結果
、実施例1のものはその周辺部分で磁束が高く中心部分
では周辺部分に対してほぼ2割程度低かったが、本実施
例のものではほぼ磁束分布が一様に近かった。As a result of magnetizing the obtained cylindrical magnet and the cylindrical magnet obtained in Example 1 and measuring the magnetic flux distribution on their end faces, it was found that in Example 1, the magnetic flux was high in the peripheral part, and the magnetic flux was high in the central part. Although the magnetic flux distribution was approximately 20% lower than that of the surrounding area, the magnetic flux distribution in this example was almost uniform.
このようにして端面上の磁束分布がほぼ均一な磁石を得
ることができた。In this way, a magnet with substantially uniform magnetic flux distribution on the end face could be obtained.
実施例 3
Mn,Al,Cの原材料を適当に配合して、約1450
℃で30分間溶解し、80φの棒状鋳造体を作成した。Example 3 Approximately 1450
The mixture was melted at ℃ for 30 minutes to create a rod-shaped cast body of 80φ.
このロットの組成は化学分析値で72.40%Mn,2
6.36%Al,1.24%Cであった。The composition of this lot is 72.40%Mn,2 as determined by chemical analysis.
It was 6.36% Al and 1.24% C.
この鋳造体から250mmの長さの円柱体を切り出し、
1150℃で2時間均一化処理をし、1150℃から8
30℃まで10〜15℃/分の速度で冷却し、830℃
で10分間保持して、その後830℃から500℃まで
100℃/分の速度で焼入れし、600℃で1時間焼戻
し処理を行なった。A cylindrical body with a length of 250 mm was cut out from this cast body,
Homogenized at 1150℃ for 2 hours, then heated from 1150℃ to 8℃.
Cool down to 30℃ at a rate of 10-15℃/min, and then cool to 830℃
After that, it was quenched from 830°C to 500°C at a rate of 100°C/min, and then tempered at 600°C for 1 hour.
得られた素材にはクラツクは全くなかった。There were no cracks in the obtained material.
又穴あき素材として実施例1で鋳造したものを用いて、
実施例1と同様の熱処理を施して、クラツクの発生状況
を調べたが、表面層のみの小さなクラツクが認められた
だけであった。Also, using the perforated material cast in Example 1,
The same heat treatment as in Example 1 was performed and the occurrence of cracks was examined, but only small cracks were observed in the surface layer.
これら二つの素材を実施例1と同様に切削加工を施して
、はめあわせ、大気中で加工混度680℃、圧力40k
g/mm2、減面率70%の押出加工を行なった。These two materials were cut in the same manner as in Example 1, and then fitted together in the atmosphere at a processing temperature of 680°C and a pressure of 40k.
Extrusion processing was performed at g/mm2 and area reduction rate of 70%.
加工は良好に行なわれ、磁気測定用試料として、中心部
と周囲部とからそれぞれ試料片を切り出し、磁気測定を
行なったところ、軸方向に磁化優位方向を有する異方性
磁石であった。The processing was carried out well, and when sample pieces were cut out from the center and the periphery as samples for magnetic measurement and magnetic measurements were performed, they were found to be an anisotropic magnet with a dominant magnetization direction in the axial direction.
その軸方向における特性は、中心部では、Br=520
0G,BHC=2250Oe,(BH)max=4.4
×106G・Oe,また周囲部では、Br=6150G
,BHC=2350Oe,(BH)max=6.0×1
06G・Oeであって、周囲部の方が中心部に比べて,
Br,(BH)maxにおいて優れていた。The characteristic in the axial direction is that at the center, Br=520
0G, BHC=2250Oe, (BH)max=4.4
×106G・Oe, and in the surrounding area, Br=6150G
, BHC=2350Oe, (BH)max=6.0×1
06G・Oe, the peripheral part is better than the center part,
It was excellent in Br and (BH)max.
得られた円柱磁石を磁什したのち、端面の磁束分布を測
定した結果、中心部分に比べて周辺部分で約3割以上磁
束が高かった。After the obtained cylindrical magnet was magnetized, the magnetic flux distribution at the end face was measured. As a result, the magnetic flux was about 30% higher in the peripheral part than in the central part.
Mn−Al−C系合金磁石では、その組成と前処理とし
ての熱処理とによって混間塑性加工後の磁気特性が大き
く変化する.そこで実施例2と実施例3から明らかなよ
うに、穴あき素材と穴の中にはめこむ棒状素材をその組
成と前処理としての熱処理を変えることによって、得ら
れる磁石内部の磁気特性を自由に変化させることができ
、たとえば得られた円柱状磁石の端面における磁束分布
形状を種々に変えることができる。In Mn-Al-C alloy magnets, the magnetic properties after mixed plastic working change greatly depending on the composition and pretreatment heat treatment. Therefore, as is clear from Examples 2 and 3, by changing the composition of the perforated material and the rod-shaped material to be fitted into the holes and the pretreatment heat treatment, the magnetic properties inside the resulting magnet can be freely adjusted. For example, the magnetic flux distribution shape on the end face of the obtained cylindrical magnet can be varied in various ways.
またこの製造法において、穴あき素材と棒状素材との接
合面は、大気中で混間塑性加工を行なったにもかかわら
ず、実施例中の金属顕微鏡観察から明らかなように、わ
ずかに黒い筋状模様としてその痕跡が認められるだけで
、接合性は極めて良い。In addition, in this manufacturing method, even though the joint surface of the perforated material and the rod-shaped material was subjected to mixed plastic working in the atmosphere, there were slight black streaks, as is clear from the metallurgical microscope observation in the example. Only traces of this pattern can be observed, and the bonding performance is extremely good.
これはMn−Al−C系合金磁石が耐候性、耐蝕性、耐
酸化性に優れていることに起因すると考えられる。This is thought to be due to the fact that Mn-Al-C alloy magnets have excellent weather resistance, corrosion resistance, and oxidation resistance.
すなわち、高温大気中では一般材料たとえば構造用鋼な
どではその表面に厚いスケールが発生するが。In other words, thick scale forms on the surface of general materials such as structural steel in high-temperature atmosphere.
Mn−Al−C系合金では薄い酸化膜ができるのみであ
る。With Mn-Al-C alloys, only a thin oxide film is formed.
Mn−Al−C系合金でのこの接合性の良さはこの薄い
酸化膜が大きく寄与していると考えられる。It is thought that this thin oxide film greatly contributes to the good bondability of the Mn-Al-C alloy.
すなわち、加工の初期にはこの薄い酸化膜同士が互いに
密着しているが、加工が進むにつれてその加工率の増加
と共に密着面が伸ばされるために、薄い酸化膜は分断さ
れ、新しい面が出て互いに原子間距離の近さに密着し、
このときには新しい面は大気に触れることがないため、
酸化されることがなく、加工による圧力と530°〜8
30℃という高い温度において相互拡散が進み金属的結
合がなされ、強固な接合がなされると考えられる。In other words, at the beginning of processing, these thin oxide films are in close contact with each other, but as processing progresses, the contact surface is stretched as the processing rate increases, so the thin oxide film is separated and new surfaces are exposed. They are in close contact with each other at close interatomic distances,
At this time, the new surface does not come into contact with the atmosphere, so
Will not be oxidized and can withstand pressure from processing and 530°~8
It is believed that at a high temperature of 30° C., mutual diffusion progresses and metallic bonding occurs, resulting in a strong bond.
クラツド材の製造においては、酸化防止のためにほとん
ど不活性ガス中で行なわれるか又は酸化防止処理を施こ
さなければならないのに対して、本発明では全くそのよ
うな必要はなく、Mn−Al−C系合金のこの薄い酸化
膜が、穴あき素材と棒状素材をはめあわせ、530°〜
830℃の混照領域で、かつ大気中で温間塑性加工を行
うことによって、一体物としての異方性磁石とする本発
明を可能にしていると考えられる。In the production of cladding materials, most of the process must be carried out in an inert gas atmosphere or an anti-oxidation treatment must be performed to prevent oxidation, but in the present invention, there is no such need at all, and Mn-Al - This thin oxide film of C-based alloy fits the perforated material and rod-shaped material, and
It is believed that the present invention, which is an anisotropic magnet as a single piece, is made possible by performing warm plastic working in the mixed light region of 830° C. and in the atmosphere.
以上のように、本発明は穴あき素材の穴の中に同種のあ
るいは別種の素材をはめこみ、温間塑性加工を行なうこ
とによって一体物としてこの異方性磁石とすることを特
徴とする。As described above, the present invention is characterized in that the same or different materials are fitted into the holes of a perforated material and subjected to warm plastic working to form the anisotropic magnet as an integral body.
本発明により今まで前処理中にクラツクが生じて製造不
可能であった大型磁石を優れた磁気特性をもたしめて製
造することができる。According to the present invention, it is possible to manufacture large magnets with excellent magnetic properties, which have hitherto been impossible to manufacture due to cracks occurring during pretreatment.
また本発明により、穴あき素材とそれにはめこむ素材の
組成や前処理条件をそれぞれ異なったものにすることに
よって、得られる磁石の内部の磁気特性に従来にない分
布を付与することができる。Further, according to the present invention, by making the composition and pretreatment conditions of the perforated material and the material fitted therein different, it is possible to impart an unprecedented distribution of magnetic properties inside the obtained magnet.
これによって、たとえば従来ポールピース等を用いて均
一磁場を得ていたものが、本発明によって得られるMn
−Al−C系合金磁石を用いることによって、ポールビ
ースなしに均一な磁場を得ることができるなど、単なる
大型磁石材料としてだけでなく、巾広い用途があり、工
業的価値の極めて大きいものである。As a result, for example, what used to obtain a uniform magnetic field using a pole piece, etc., can be replaced with the Mn magnetic field obtained by the present invention.
-By using Al-C alloy magnets, it is possible to obtain a uniform magnetic field without the need for pole beads, so it has a wide range of uses, not just as a large magnet material, and has extremely high industrial value. .
Claims (1)
を設けたマンガン−アルミニウム−炭素系磁石合金素材
に熱処理を施しだ後、この素材の穴の中に別に作成され
たマンガン−アルミニウム−炭素系磁石合金の中実素材
をはめあわせ、これら素材に同時に湿間塑性加工を施し
て一体物としての異方性磁石とすることを特徴とするマ
ンガン−アルミニウム−炭素系合金磁石の製造法。1 After heat treatment is applied to a manganese-aluminum-carbon-based magnet alloy material in which a hole is provided so that the wall thickness is less than the critical diameter during heat treatment and cooling, a manganese-aluminum-aluminum material separately prepared is placed in the hole of this material. A method for producing a manganese-aluminum-carbon alloy magnet, which comprises fitting together solid materials of a carbon-based magnet alloy and simultaneously subjecting these materials to wet plastic working to form an anisotropic magnet as an integrated object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49120815A JPS589144B2 (en) | 1974-10-18 | 1974-10-18 | Manganese-Aluminum-Tansokeigokinjiyakuno Seizouhou |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49120815A JPS589144B2 (en) | 1974-10-18 | 1974-10-18 | Manganese-Aluminum-Tansokeigokinjiyakuno Seizouhou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5146513A JPS5146513A (en) | 1976-04-21 |
JPS589144B2 true JPS589144B2 (en) | 1983-02-19 |
Family
ID=14795647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49120815A Expired JPS589144B2 (en) | 1974-10-18 | 1974-10-18 | Manganese-Aluminum-Tansokeigokinjiyakuno Seizouhou |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS589144B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58204512A (en) * | 1982-05-22 | 1983-11-29 | Tohoku Metal Ind Ltd | Manufacture of iron, chrome and cobalt alloy magnet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4827197A (en) * | 1971-08-12 | 1973-04-10 |
-
1974
- 1974-10-18 JP JP49120815A patent/JPS589144B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4827197A (en) * | 1971-08-12 | 1973-04-10 |
Also Published As
Publication number | Publication date |
---|---|
JPS5146513A (en) | 1976-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013150855A1 (en) | Member for die casting and process for manufacturing same, sleeve for die casting, and die casting equipment | |
CN114411067A (en) | Medium-carbon hot-work die steel material and additive manufacturing method based on same | |
JPS589144B2 (en) | Manganese-Aluminum-Tansokeigokinjiyakuno Seizouhou | |
JPH0311522B2 (en) | ||
US3944445A (en) | Method of making permanent magnets of Mn-Al-C alloy | |
US20200063250A1 (en) | Iron-copper alloy having high thermal conductivity and method for manufacturing the same | |
Chen et al. | Corrosion Behaviour of AISI 304 Austenitic Stainless Steel Fabricated by Equal-Channel Angular Pressing | |
CN109576608B (en) | In-situ generated cladding structure iron-based block amorphous alloy composition and preparation method thereof | |
JPH0434804B2 (en) | ||
JPS62247053A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPS62247055A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JP2023048968A (en) | Manufacturing method of non-magnetic spheroidal graphite cast iron | |
JPS6210260A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPS60100624A (en) | Production of fe-cr-co magnet alloy | |
JPH0639672B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS5858212A (en) | Manufacture of cast iron for nitriding | |
JPS58182206A (en) | Preparation of manganese-aluminum-carbon alloy magnet | |
JPH04187351A (en) | Beryllium copper alloy fine wire its and manufacture | |
JPS62243751A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPS62243752A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0340922B2 (en) | ||
JPS6059722A (en) | Preparation of manganese-aluminium-carbon alloy magnet | |
JPS61213355A (en) | Production of manganese-aluminum-carbon alloy magnet | |
JPS62143406A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPS60100623A (en) | Production of fe-cr-co magnet alloy |