JPS589097A - Feedwater control device of bwr type reactor - Google Patents

Feedwater control device of bwr type reactor

Info

Publication number
JPS589097A
JPS589097A JP56107281A JP10728181A JPS589097A JP S589097 A JPS589097 A JP S589097A JP 56107281 A JP56107281 A JP 56107281A JP 10728181 A JP10728181 A JP 10728181A JP S589097 A JPS589097 A JP S589097A
Authority
JP
Japan
Prior art keywords
signal
flow rate
reactor
water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56107281A
Other languages
Japanese (ja)
Inventor
川上 誠志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56107281A priority Critical patent/JPS589097A/en
Publication of JPS589097A publication Critical patent/JPS589097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Barrages (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、沸騰水型原子炉の給水制御装置忙関する◎ 第1図に沸騰水m原子力発電所の全体の構成ならびに給
水制御系の概要構成を示す。蒸気循環系について説@す
ると、原子炉格納容器1内に原子炉の圧力容器2が収納
されていて、炉心18は原子炉の圧力容器内に収納され
ておシ、炉心18で発生した蒸気は圧力容器2内におい
て炉心上部に位置する気水分離器4、蒸気乾燥器3を通
り、次いで圧力容器2v出て主蒸気管2]、加減弁11
を介して主タービン13に到る0次に、主タービン13
に導びがれた蒸気は復水@ 15 、復水ポンプn1復
水脱塩器16、’給水加熱@17を経たのち給水ポンプ
1941Cより原子炉に戻る0給水ポンプ19はその駆
動用タービン9により駆動される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water supply control system for a boiling water nuclear reactor. Figure 1 shows the overall configuration of a boiling water nuclear power plant and the schematic configuration of a water supply control system. Regarding the steam circulation system, the reactor pressure vessel 2 is housed within the reactor containment vessel 1, the reactor core 18 is housed within the reactor pressure vessel, and the steam generated in the reactor core 18 is Inside the pressure vessel 2, it passes through a steam separator 4 and a steam dryer 3 located above the core, and then exits the pressure vessel 2v to a main steam pipe 2], a control valve 11
The 0th order reaches the main turbine 13 via the main turbine 13
The steam led to the reactor is returned to the reactor from the feed water pump 1941C after passing through condensate @15, condensate pump n1, condensate demineralizer 16, and feed water heating @17. Driven by.

主タービン13から戻ってきた給水と気水分離器4から
落下してくる水は、再循環ポンプ10により炉心下部へ
送られて再び炉心の冷却に供される。
The feed water returned from the main turbine 13 and the water falling from the steam separator 4 are sent to the lower part of the core by the recirculation pump 10 and are again used to cool the core.

なお、バイパス弁12は事故、起動時等に開となって主
タービン13ヲバイパスし、直接復水器15へ蒸気を送
る。
Note that the bypass valve 12 is opened in the event of an accident, startup, etc., bypassing the main turbine 13 and sending steam directly to the condenser 15.

給水制御系は、原子炉の炉水位を検出する炉水位検出器
5、炉入口給水流量を検出てる給水流量計6、炉出口蒸
気流量を検出する主蒸気流量計7およびこれらの検出器
または流量計による検出値に基づいて原子炉に対する給
水を制御する給水制御装置8とから構成される。本発明
はこの給水制御装置8に関するものである。
The feed water control system includes a reactor water level detector 5 that detects the reactor water level, a feed water flow meter 6 that detects the reactor inlet feed water flow rate, a main steam flow meter 7 that detects the reactor outlet steam flow rate, and these detectors or flow rates. and a water supply control device 8 that controls the water supply to the reactor based on the detected value by the meter. The present invention relates to this water supply control device 8.

次に、第2図に従来の給水制御装置8の構成をブシツク
図で示す。給水制御装置8は、第2図に示すよう忙、給
水流量と主蒸気流量との間の平衡を制御するミスマツチ
制御部Aと、炉水位を一定に維持する水位制御部Bと、
給水ポンプ流量を制御する流量制御部Cとに大別される
Next, FIG. 2 shows a schematic diagram of the configuration of a conventional water supply control device 8. As shown in FIG. As shown in FIG. 2, the feed water control device 8 includes a mismatch control section A that controls the balance between the feed water flow rate and the main steam flow rate, and a water level control section B that maintains the reactor water level constant.
It is roughly divided into a flow rate control section C that controls the water supply pump flow rate.

ミスマツチ制御部Aは、主蒸気流量計7により検出され
た主蒸気流量信号S、および給水流量計6に工す検出さ
れた給水流量信号8をを入力信号とし、加算演算器Σ1
により両信号s、 e S*の差を求め、その差V第1
給水流量要求償号aとして出力する0この第1給水流量
要求信号S−ま加算演算回路Σ、に送られる。
The mismatch control unit A uses the main steam flow rate signal S detected by the main steam flow meter 7 and the detected feed water flow rate signal 8 applied to the feed water flow meter 6 as input signals, and operates the addition calculator Σ1.
Find the difference between both signals s and e S*, and the difference V1
The first water supply flow rate request signal S, which is output as the water supply flow rate request compensation code a, is sent to the addition calculation circuit Σ.

水位制御部Bは、主蒸気流量信号81と水位設定器B、
かもの予め設定された値の水位設定信号8111を入力
信号とする。この水位設定信号S4は気水分離効率が最
適となるように補正信号54VCよって修正される。す
なわち、最適気水分離効率は主蒸気流量(したがって、
信号St)の関数であり、その関数は関数発生器B、に
設定されている0この関数発生器BIKは主蒸気流量信
号S、が入力され、その入力値に応じて所定の補正信号
S、が出される0そして補正信号84と水位設定信号8
tsとが加算演算回路J、にて加え合わされ、その結果
、補正水位設定信号8.が得られる0次いで一補正水位
設定信号S、は加算演算回路Σ4に入力され、炉水位検
出器5からの炉水位信号S、が差し引かれる。その結果
得られた水位偏差信号8.は流量制限器B1、比例積分
制御器(以下PI制御器というo)B4V介して第2給
水流貴要求償号S、となって出力される。この第2給水
流量要求償号S、は加算演算回路J、に入力される。
The water level control unit B includes a main steam flow rate signal 81 and a water level setting device B,
A water level setting signal 8111 having a preset value is used as an input signal. This water level setting signal S4 is corrected by a correction signal 54VC so that the steam/water separation efficiency is optimized. In other words, the optimal steam-water separation efficiency depends on the main steam flow rate (therefore,
This function generator BIK receives the main steam flow rate signal S, and generates a predetermined correction signal S, depending on the input value. 0 is output, and the correction signal 84 and the water level setting signal 8
ts are added together in the addition calculation circuit J, and as a result, the corrected water level setting signal 8. The zero-then-one corrected water level setting signal S, which is obtained, is input to the addition calculation circuit Σ4, and the reactor water level signal S, from the reactor water level detector 5 is subtracted. The resulting water level deviation signal8. is outputted as a second water supply flow demand compensation signal S via a flow rate limiter B1 and a proportional-integral controller (hereinafter referred to as a PI controller) B4V. This second water supply flow rate demand compensation code S is input to an addition calculation circuit J.

加算演算回路為は第2給水流量要求信号S、とミスマツ
チ制御部Aからの第1給水流量要求償号S。
The addition calculation circuit receives a second water supply flow rate request signal S and a first water supply flow rate request compensation signal S from the mismatch control section A.

との和を求め、全給水流量要求信号S、を出力する。, and outputs the total water supply flow rate request signal S.

この全給水流量要求信号S、は流量制御部CK大入力れ
る。
This total water supply flow rate request signal S is input to the flow rate control unit CK.

流量制御部Cでは、全給水流量要求信号ちから給水流量
計6 (第1図)にて検出された給水ボンンプ流量81
0が加算演算回路Σ、において差し引かれる。その差信
号は流量偏差信号S、として流量制限器B、に入力され
、次いでPI制御器B、を介して関数発生器B?に入力
されるO関数発生器B、は給水ポンプ駆動用タービン9
の加減弁加が有する非線形特性を補償するためのもので
あるO関数発生器B。
In the flow rate control unit C, the water supply pump flow rate 81 detected by the water supply flow meter 6 (Fig. 1) is calculated from the total water supply flow rate request signal.
0 is subtracted in the addition operation circuit Σ. The difference signal is input as a flow deviation signal S to the flow restrictor B, and then via the PI controller B to the function generator B? The O function generator B input to the water supply pump driving turbine 9
O-function generator B is for compensating for the nonlinear characteristics of the adjustment valve addition.

は加減弁旬への開度要求信号80を出力する。outputs an opening request signal 80 for the adjustment valve.

次に、上記制御系の制御動作について説明する。Next, the control operation of the above control system will be explained.

炉心圧力低下による水位上昇が発生した場合の一例とし
て、タービンバイパス弁12(第1図)の誤聞による発
生状態について述べる(第3図参照)。
As an example of a case where a water level rise occurs due to a drop in core pressure, a situation will be described in which this occurs due to a misreading of the turbine bypass valve 12 (FIG. 1) (see FIG. 3).

まず、タービンバイパス弁12が誤聞すると、主蒸気流
量が増加する。主タービン13に供給される分の他にバ
イパス路を通じて直接復水915に送られる分だけ増加
するからである。主蒸気流量が増加すると、ミスマツチ
制御部人は主蒸気流量の増加分に見合うだけの給水流量
増加の内容をもつ給水流量要求信号S、を出力する。こ
の主蒸気流量の増加は炉心圧力の低下を引き起すことと
なり、その結果、炉内ボイドが減圧効果によって急増す
るので炉水位が上昇することとなる。一方、水位制御部
Bは炉水位の上昇を制御すべく給水流量を絞り込む旨の
内容なもつ給水流量要求信号S、を出力する。
First, when the turbine bypass valve 12 makes a false alarm, the main steam flow rate increases. This is because, in addition to the amount supplied to the main turbine 13, the amount is increased by the amount sent directly to the condensate 915 through the bypass path. When the main steam flow rate increases, the mismatch control unit outputs a water supply flow rate request signal S, which has the content of an increase in the water supply flow rate commensurate with the increase in the main steam flow rate. This increase in the main steam flow rate causes a decrease in core pressure, and as a result, the number of voids in the reactor rapidly increases due to the depressurization effect, resulting in a rise in the reactor water level. On the other hand, the water level control unit B outputs a water supply flow rate request signal S having the content of narrowing down the water supply flow rate in order to control the rise in the reactor water level.

このような過渡現象発生時においては、原子炉にとって
は炉水位の上昇を抑えることを優先すべきである。それ
にもかかわらず、流量制御部Cに与えられる全給水流要
求信号S、はミスマツチ制御部AI−らの信号8.によ
る給水増加要求と水位制御部Bからの信号8.による給
水絞り込み要求の和であるため、炉水位上昇抑制のため
の給水流量絞り込みが十分に達成されず、その結果炉水
位が高水位トリップ点に到り、プラントの運転の停止な
余儀なくされることとなる。ここに、高水位トリップ点
とは炉水位が高くなりすぎることにより気水分離器4の
効率が低下し、主タービン13に供給される蒸気内に含
まれ不湿分が増加してタービン機器に悪影響が生じるの
で、その保護のために設定された水位点のことである。
When such a transient phenomenon occurs, the priority for the reactor should be to suppress the rise in the reactor water level. Nevertheless, the total water supply flow request signal S, given to the flow rate controller C, is the signal 8. of the mismatch controller AI- et al. water supply increase request and signal from water level control unit B8. As a result, the water supply flow rate reduction to suppress the rise in the reactor water level cannot be achieved sufficiently, and as a result, the reactor water level reaches the high water level trip point, forcing the plant to shut down. becomes. Here, the high water level trip point is defined as the reactor water level becoming too high, which reduces the efficiency of the steam separator 4, increases the amount of non-humidity contained in the steam supplied to the main turbine 13, and damages the turbine equipment. This is the water level set to protect against adverse effects.

このように、従来の給水制御装置では炉心圧力低下によ
る急激な炉水位の上昇を円滑に制御することが困難であ
った。
As described above, with conventional water supply control devices, it is difficult to smoothly control the sudden rise in reactor water level due to a drop in core pressure.

そこで本発明は、かかる従来装置の欠点を解消し、炉心
圧力低下による急激な炉水位上昇を最小に抑制すること
ができる給水制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a water supply control device that can eliminate the drawbacks of the conventional devices and minimize the sudden rise in reactor water level due to a drop in core pressure.

本発明の1?1徴は、原子炉内圧力および原子炉水位変
動を引起す初期事象を監視し、異常発生時においてミス
マツチ制御部を制御系から切離すことにより必要な給水
流量の絞り込みを行いうろ工うにした点にある。
The first feature of the present invention is to monitor initial events that cause fluctuations in reactor internal pressure and reactor water level, and to narrow down the necessary water supply flow rate by separating the mismatch control unit from the control system when an abnormality occurs. It's in the middle of nowhere.

以下、本発明を図示する実施例に基づいて詳述する。第
4図に本発明による給水制御装置の制御動作概念図、第
5図に本発明による給水制御装置の一実施例を示す。な
お、これらの図の中で第2図、第3I!!lと同一の部
分には同一の符号を付してその説明は省略する。
Hereinafter, the present invention will be described in detail based on illustrated embodiments. FIG. 4 shows a conceptual diagram of the control operation of the water supply control device according to the present invention, and FIG. 5 shows an embodiment of the water supply control device according to the present invention. Furthermore, among these figures, Figures 2 and 3 I! ! The same parts as 1 are denoted by the same reference numerals, and the explanation thereof will be omitted.

まず、第4図を参照して、本発明の給水制御装置の制御
動作概念について説明する0この給水制御装置では、原
子炉内圧力(以下、炉心圧力という。)が低下したとき
、または、原子炉水位に影響を与える圧力過渡事象を引
起す事象(以下、初期事象という0第4図においてはバ
イパス弁の誤聞が該尚する。)が発生したとき、ミスマ
ツチ制御部人を切離し回路により制御系から切離し、こ
の状態にて給水流量の絞り込みを行う点に嘱徴がある。
First, with reference to FIG. 4, we will explain the control operation concept of the feed water control device of the present invention. When an event that causes a pressure transient event that affects the reactor water level (hereinafter referred to as an "initial event" (in Figure 4, the bypass valve misidentification applies) occurs, the mismatch control section is disconnected and controlled by the circuit. The advantage is that the system is disconnected from the system and the water supply flow rate is restricted in this state.

第5図において、従来の制御装置(第2図)と異なる部
分は、ミスマツチ制御部Aと加算演算回路Σ、との間に
切離し回路B、が設けられているところである。この切
離し回路B、は炉心圧力の変動、したがって原子炉水位
の変動を引起すと考えられる初期事象の発生信号S、。
In FIG. 5, the difference from the conventional control device (FIG. 2) is that a disconnection circuit B is provided between the mismatch control section A and the addition calculation circuit Σ. This disconnection circuit B is an occurrence signal S of an initial event that is thought to cause a fluctuation in the reactor core pressure and therefore a fluctuation in the reactor water level.

、その信号内容が原子炉水位変動を生じさせるものか否
かを判定するだめの判定条件信号S21、切離しを行う
べき圧力値に対応する切離し圧力設定値信号814およ
び炉心圧力信号S、、V入力信号とし、圧力変動に先行
する初期事象および炉心圧力の低下に応じてミスマツチ
制御部Aを切離すものである。以下にその詳細を述べる
, a determination condition signal S21 for determining whether the signal content causes a reactor water level fluctuation, a disconnection pressure set value signal 814 corresponding to the pressure value at which disconnection should be performed, and a core pressure signal S, , V input. The signal is used to disconnect the mismatch controller A in response to an initial event preceding the pressure fluctuation and a drop in core pressure. The details are described below.

第6図に切離回路B、の→構成例を示す。炉心圧力信号
srsおよび切離し圧力設定値信号S、4は比較器A、
に入力される。比較善人、は両信号S1.とS、4を比
較し、その結果炉心圧力信号18の値が切離し圧力設定
値S□の値を下回っている場合(srs<SI4>、ス
イッチ回路A、に切離し指令信号S、。を出力する。こ
の切離し指令信号4゜によりスイッチ回路A、はスイッ
チ人、柵離し側C1に切換え名。
FIG. 6 shows an example of the configuration of the disconnection circuit B. Core pressure signal srs and separation pressure set value signal S, 4 is comparator A;
is input. Comparative good person has both signals S1. and S, 4, and as a result, if the value of the core pressure signal 18 is lower than the value of the disconnection pressure set value S□ (srs<SI4>, the disconnection command signal S, is output to the switch circuit A. .With this disconnection command signal 4 degrees, the switch circuit A is switched to the fence release side C1.

その結果、ミスマツチ制御部Aは切離され、したがって
第1給水流量信号S、はし中断されるので加算演算回路
Σ、に送られるい。
As a result, the mismatch control unit A is disconnected, and therefore the first water supply flow rate signal S is interrupted and sent to the addition calculation circuit Σ.

また、炉心圧力信号s1.の値が切離し圧力設定値信号
S、4の値な下回っていない場合(S+ S≧514)
は切離し指令信号8.。を出力せず、したがってスイッ
チ人、はそのままC律の接続を維持する0この状態は正
常の状態であり、第1給水流量信号B、はスイッチ回路
人4をそのtま通過して加算演算回路Σ、に入力される
0 一方、初期事象発生信号81.および判定信号S、。
Moreover, the core pressure signal s1. If the value of is not less than the value of the disconnection pressure set value signal S, 4 (S+ S≧514)
is the disconnection command signal 8. . Therefore, the switch circuit 4 maintains the C connection as it is. This state is a normal state, and the first water supply flow rate signal B passes through the switch circuit circuit 4 up to the point t and is output to the addition calculation circuit. On the other hand, the initial event occurrence signal 81. and the judgment signal S,.

は初期事象判定回路A、に入力される。ここに、初期事
象発生信号81.とけ、例えば第4図に示す例によれば
、バイパス弁12(第1図)の誤聞による信号である0
壜た、判定信号Sil+とは、例えば炉心圧力、原子炉
出力等のバイパス弁12の開がプラントにとって正゛し
いかどうかを判定するに必要な情報である。以上の初−
事象発生信号S8.および判定信号8.yK基づき、初
期事象判定回路人、では現在水位上昇な引起すような事
象が発生しているか否かt判定する0判定の結果、初期
事象が発生していると判断した場合には切離し指令信号
S1.がスイッチ回路ム4に送られ、スイッチ、A、は
切離し側C1に切換えられる。この切換えによってミス
マツチ制御部人は切離され、第1給水流量要求信号S。
is input to the initial event determination circuit A. Here, the initial event occurrence signal 81. For example, according to the example shown in FIG.
The determination signal Sil+ is information necessary to determine whether opening the bypass valve 12 is correct for the plant, such as core pressure and reactor power. First of all -
Event occurrence signal S8. and judgment signal 8. Based on yK, the initial event judgment circuit determines whether an event that causes a rise in the water level is currently occurring or not.As a result of the 0 judgment, if it is determined that an initial event has occurred, it issues a disconnection command signal. S1. is sent to the switch circuit 4, and the switch A is switched to the disconnecting side C1. By this switching, the mismatch control section is disconnected and the first water supply flow rate request signal S is output.

はしゃ断される。初期事象が発生していないと判断され
た場合は切離し指令信号811は出されず、したがって
スイッチA、はC,@にその接続状態を維持する。
It is cut off. If it is determined that no initial event has occurred, the disconnection command signal 811 is not issued, and therefore switches A, maintain their connection to C,@.

このようにして、スイッチA、が切離し側C,に切換え
られた場合、スイッチA、はアースA、に接続されたこ
とに−fiす、その結果加算演算回路Σ、に入力される
信号S4の内容は給水流i要求ゼ四を指示することとな
る。その結果、流量制御部CK与えられる給水流量要求
信号S、の内容は第2給水流量信号S、のみとなり給水
ポンプ19の回転速度がS、にエリ制御され、給水量が
急減することとなる。
In this way, when the switch A is switched to the disconnecting side C, the switch A is connected to the ground A, and as a result, the signal S4 input to the addition circuit Σ. The content is to instruct the water supply flow i and the request ze. As a result, the content of the water supply flow rate request signal S, which is supplied to the flow rate control unit CK, becomes only the second water supply flow rate signal S, and the rotational speed of the water supply pump 19 is selectively controlled to S, resulting in a sudden decrease in the water supply amount.

次に、給水流量の応答、原子炉水位の制御応答に関して
本発明の給水制御装置と従来の装置との比較を第7図(
a) 、 (b)に示す。図において、実線で示すNが
本発明の場合、破線で示す0が従来の場合である。これ
からもわかるように、従来では前述した理由によつ上船
水流の絞り込みが遅れるのに対し、本発明によれば急速
に絞り込むことができるので給水流量の減少速度がきわ
めて速い((a)図)。それに伴って原子炉水位((b
)図)は大きく増加することなく、従来のようにプラン
トトリップ[[T−を越えるようなことなく、最小限に
抑制することが可能となる。
Next, FIG. 7 shows a comparison between the feed water control device of the present invention and the conventional device in terms of the response of the feed water flow rate and the control response of the reactor water level.
Shown in a) and (b). In the figure, N shown by a solid line is for the present invention, and 0 shown by a broken line is for the conventional case. As can be seen, in the conventional method, the narrowing down of the onboard water flow is delayed due to the above-mentioned reasons, but according to the present invention, it can be narrowed down rapidly, so the rate of decrease in the water supply flow rate is extremely fast (Fig. ). Along with this, the reactor water level ((b
) Figure) does not increase significantly, and can be suppressed to the minimum without exceeding the plant trip [[T-] as in the conventional case.

以上の通り、本発明によれば、何らかの原因にぶり原子
炉圧力が低下した場合、原子炉水位の増加を最小限に抑
制することができるので、不要なプラントトリップを回
避することができる0
As described above, according to the present invention, when the reactor pressure decreases due to some reason, the increase in the reactor water level can be suppressed to a minimum, thereby making it possible to avoid unnecessary plant trips.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子力発電所の全体の構成ならびに給
水制御系の構成を示す概要図、第2図は従来の給水制御
装置の構成を示すブロック図、第3図は、従来の給水制
御装置の動作説明図、第4図は本発明による給水制御装
置の動作説明図、第5図は本発明による給水制御装置の
一実施例を示すブロック図、第6図は本発明における切
離し回路を示すブロック図、第7図(a)(b)は給水
流量および原子炉水位の制御応答について従来と本発明
とで比較して示した説明図であるO A・・・ミスマツチ制御部、B・・・水位制御部、C・
・・給水流量制御部、B、・・・切離し回路、A、・・
・比較演算器、A、・・・初期事象判定回路、A4・・
・スイッチ回路、Sl・・・蒸気流量信号、S、・・・
給水流量信号、S、・・・第1給水流量要求信号、S、
・・・@22給水流量信、S、・・・全給水流量信号、
Sl。・・・給水ポンプ流量信号、811・・・流量偏
差信号、S11・・・開度要求信号、S□・・・水位設
定信号、S、4・・・切離し圧力設定値信−5rs”’
出力信号、Sl、・・・初期事象発生信号、S、?・・
・判定信号、Sl、・・・炉心圧力信号s 5lsl 
s、。・・・、切離し指令信号。
Figure 1 is a schematic diagram showing the overall configuration of a boiling water nuclear power plant and the configuration of the water supply control system, Figure 2 is a block diagram showing the configuration of a conventional water supply control device, and Figure 3 is a diagram showing the configuration of a conventional water supply control system. 4 is an explanatory diagram of the operation of the water supply control device according to the present invention, FIG. 5 is a block diagram showing an embodiment of the water supply control device according to the present invention, and FIG. 6 is a diagram illustrating the disconnection circuit in the present invention. The block diagrams shown in FIGS. 7(a) and 7(b) are explanatory diagrams comparing the control response of the feed water flow rate and the reactor water level between the conventional system and the present invention.・Water level control section, C・
・・Water supply flow rate control unit, B, ・・Disconnection circuit, A,・・
・Comparison calculator, A,... Initial event judgment circuit, A4...
・Switch circuit, Sl...Steam flow rate signal, S,...
Water supply flow rate signal, S,...First water supply flow rate request signal, S,
...@22 water supply flow rate signal, S, ...total water supply flow rate signal,
Sl. ... Water supply pump flow rate signal, 811 ... Flow rate deviation signal, S11 ... Opening request signal, S□ ... Water level setting signal, S, 4 ... Disconnection pressure setting value signal -5rs"'
Output signal, Sl,...Initial event occurrence signal, S,?・・・
・Judgment signal, Sl, ... core pressure signal s 5lsl
s. ..., disconnection command signal.

Claims (1)

【特許請求の範囲】 1、給水流量信号と原子炉出口蒸気流量信号を入力信号
として給水流量と原子炉出口蒸気流量な平衡状態に制御
する第1給水流量要求信号を出力するミスマツチ制御部
と、 原子炉出口蒸気流量信号と予め設定された原子炉水位設
定値信号を入力信号として原子炉水位を一定に保持する
ための第2給水流量要求信号を出力する水位制御部と、 前記第1、第2給水流量要求信号の和信号と給水ポンプ
流量信号との偏差を求め、その偏差信号に基づいて給水
ポンプの流電制御信号を出力する給水流量制御部とを備
えた沸騰水産原子炉の給水制御装置であ、って、 原子炉内圧力信号および原子炉水位の変動に先イする初
期事象の検出信号を予知信号とじて入力し、この予知信
号に応じて前記ミスマツチ制御部を切離すことにより第
1給水流量要求信号を出力する切離し回路を有すること
を特徴とする沸騰水屋原子炉の給水制御装置。 2、切離し回路は、 原子炉内圧力信号と予め設定された切離し圧力設定値信
号とを比較し、原子炉内圧力信号が切離し圧力設定値を
下回っているとき前記ミスマツチ制御部の切離し指冷信
号を出力する比較演算器と、 初期事象検出信号を入力とし、その検出信号内容により
原子炉水位の上昇な引き起−f?71期事象が発生して
いるか否かを判定し、発生しているとき前記ミスマツチ
制御部の切離し指令信号を出力する初期事象判定回路と 前記切離し指令信号を受けたとき第1給水流量要求信号
をしゃ断するスイッチ回路とを備えたことをq!I徴と
する特許請求の範囲第1項記載の沸騰水屋原子炉の給水
制御装置。
[Scope of Claims] 1. A mismatch control unit that outputs a first feed water flow rate request signal that controls the feed water flow rate and the reactor outlet steam flow rate to be in an equilibrium state using the feed water flow rate signal and the reactor outlet steam flow rate signal as input signals; a water level control unit that outputs a second water supply flow rate request signal for keeping the reactor water level constant using a reactor outlet steam flow rate signal and a preset reactor water level set value signal as input signals; Water supply control for a boiling water reactor, comprising: a feed water flow rate control unit that calculates a deviation between a sum signal of two feed water flow rate request signals and a feed water pump flow rate signal, and outputs a current control signal for a feed water pump based on the deviation signal. By inputting a reactor internal pressure signal and a detection signal of an initial event prior to a fluctuation in reactor water level as a prediction signal, and disconnecting the mismatch control section in response to this prediction signal, A water supply control device for a boiling water reactor, comprising a disconnection circuit that outputs a first water supply flow rate request signal. 2. The disconnection circuit compares the reactor pressure signal with a preset disconnection pressure set value signal, and when the reactor pressure signal is lower than the disconnection pressure set value, the disconnection command cooling signal of the mismatch control section is sent. A comparator that outputs an initial event detection signal is input, and depending on the content of the detection signal, a rise in the reactor water level is detected -f? An initial event determination circuit that determines whether or not a 71st period event has occurred and outputs a disconnection command signal for the mismatch control section when it has occurred; and an initial event determination circuit that outputs a first water supply flow rate request signal when receiving the disconnection command signal. It is equipped with a switch circuit that shuts off! A water supply control device for a boiling water reactor as claimed in claim 1, wherein the boiling water reactor has the following characteristics:
JP56107281A 1981-07-09 1981-07-09 Feedwater control device of bwr type reactor Pending JPS589097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56107281A JPS589097A (en) 1981-07-09 1981-07-09 Feedwater control device of bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56107281A JPS589097A (en) 1981-07-09 1981-07-09 Feedwater control device of bwr type reactor

Publications (1)

Publication Number Publication Date
JPS589097A true JPS589097A (en) 1983-01-19

Family

ID=14455090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56107281A Pending JPS589097A (en) 1981-07-09 1981-07-09 Feedwater control device of bwr type reactor

Country Status (1)

Country Link
JP (1) JPS589097A (en)

Similar Documents

Publication Publication Date Title
US4440715A (en) Method of controlling nuclear power plant
JPH06201891A (en) Device and method of controlling nuclear reactor
JPS589097A (en) Feedwater control device of bwr type reactor
JPS6046735A (en) Method of disassembling parallel power system
JPH0464099A (en) Feed water controller of steam generation plant
JPS63195595A (en) Nuclear power plant
JPS6217121B2 (en)
JPS6252274B2 (en)
JPS5833002A (en) Controller for feedwater of steam generator
JP2815591B2 (en) Recirculation pump protector
JPS61295401A (en) Controller for feed pump
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS61262695A (en) Nuclear power plant
JPH0410040B2 (en)
JPH0539901A (en) Method and device for automatically controlling boiler
JPH0559903A (en) Automatic run back device
JPS6180095A (en) Controller for water level of nuclear reactor
JPH04113298A (en) Controlling of nuclear reactor pressure
JPH0566292A (en) Suppressing device for nuclear reactor scram
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPH06230176A (en) Turbine controller
JPS62157598A (en) Controller for water level of nuclear reactor
JPS59105599A (en) Reactor water level control device
JPH04366798A (en) Turbine controller
JPS59107298A (en) Recirculation flow rate control device