JPH04366798A - Turbine controller - Google Patents

Turbine controller

Info

Publication number
JPH04366798A
JPH04366798A JP3141550A JP14155091A JPH04366798A JP H04366798 A JPH04366798 A JP H04366798A JP 3141550 A JP3141550 A JP 3141550A JP 14155091 A JP14155091 A JP 14155091A JP H04366798 A JPH04366798 A JP H04366798A
Authority
JP
Japan
Prior art keywords
signal
pressure
turbine
steam
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3141550A
Other languages
Japanese (ja)
Inventor
Masao Totsuka
正男 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3141550A priority Critical patent/JPH04366798A/en
Publication of JPH04366798A publication Critical patent/JPH04366798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To provide a turbine controller by which reactor pressure can be stably held constant without closing up a steam regulating valve even if in the tripled main steam pressure signal lines of the turbine controller either two lines of them fail in the direction in which pressure is lowered. CONSTITUTION:Tripled main steam pressure signals v12, v13, v14 are input respectively to input signal detectors 23a, 23b, 23c. Signals of this line are output to an intermediate value selector 25 via contacts 24a, 24b, 24c. Main steam pressure backup signals V16, V17, V18 each of which is higher than a set pressure signal v5 are generated by a backup signal generator 27 and signals of this line are given to the intermediate value selector 25 via contacts 28a, 28b, 28c. Signal switches 29a, 29b, 29c are connected to the contacts 24a, 24b, 24c of the main steam pressure signal line and to the contacts 28a, 28b, 28c of the main steam pressure backup signal line.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は原子力発電プラントのタ
ービン制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control system for a nuclear power plant.

【0002】0002

【従来の技術】原子力発電プラントにおけるタービン主
蒸気系統の一例を図2に示す。
2. Description of the Related Art An example of a turbine main steam system in a nuclear power plant is shown in FIG.

【0003】図2において、原子炉1で発生した蒸気は
主蒸気止め弁(以下MSVと呼ぶ)2および蒸気加減弁
(以下CVと呼ぶ)3を通ってタービン4に流入してタ
ービンを駆動し、その後復水器5で復水される。また、
一部の蒸気はMSV2の手前からタービンバイパス弁(
以下TBVと呼ぶ)6を通ってタービン4をバイパスし
て復水器5に流される。常時はMSV2を全開とし、C
V3とTBV6の弁開度を調節してタービン速度および
タービン入口蒸気圧力の制御が行なわれる。
In FIG. 2, steam generated in a nuclear reactor 1 flows into a turbine 4 through a main steam stop valve (hereinafter referred to as MSV) 2 and a steam control valve (hereinafter referred to as CV) 3 to drive the turbine. , and then condensed in the condenser 5. Also,
Some steam is transferred from the turbine bypass valve (
(hereinafter referred to as TBV) 6, bypasses the turbine 4, and flows into the condenser 5. Always keep MSV2 fully open and C
The turbine speed and turbine inlet steam pressure are controlled by adjusting the valve openings of V3 and TBV6.

【0004】この場合、タービン入口蒸気圧力およびタ
ービン速度はそれぞれ主蒸気止め弁2の手前に設けた圧
力検出器7およびタービン軸に取付けた速度検出器8に
よって検出される。
In this case, the turbine inlet steam pressure and the turbine speed are detected by a pressure detector 7 provided before the main steam stop valve 2 and a speed detector 8 attached to the turbine shaft, respectively.

【0005】なお、新型炉ではタービン入口蒸気圧力の
代りに原子炉ドーム圧力を検出してCV3とTBV6の
弁開度を調節してタービン速度および原子炉ドーム圧力
の制御が行なわれる。タービン制御装置の回路構成を図
3に示す。
In the new type of reactor, the turbine speed and the reactor dome pressure are controlled by detecting the reactor dome pressure instead of the turbine inlet steam pressure and adjusting the valve openings of CV3 and TBV6. Figure 3 shows the circuit configuration of the turbine control device.

【0006】図3において、速度設定器9で設定された
設定速度信号v1 と、速度検出器8で検出された実速
度信号v2 との偏差が加算器10で演算され、さらに
負荷設定器11で与えられる設定信号v3 が加算器1
2で加算され、速度負荷指令信号v4 として低値選択
器13に入力される。一方、圧力設定器14で設定した
設定圧力信号v5 と圧力検出器7で検出された実圧力
信号v6 の偏差が加算器15で演算され、圧力偏差信
号v7 (=v6 −v5 )として低値選択器13に
入力される。
In FIG. 3, the deviation between the set speed signal v1 set by the speed setter 9 and the actual speed signal v2 detected by the speed detector 8 is calculated by the adder 10, and further calculated by the load setter 11. The given setting signal v3 is added to adder 1.
2 and input to the low value selector 13 as the speed load command signal v4. On the other hand, the deviation between the set pressure signal v5 set by the pressure setting device 14 and the actual pressure signal v6 detected by the pressure detector 7 is calculated by the adder 15, and a low value is selected as the pressure deviation signal v7 (=v6 - v5). The signal is input to the device 13.

【0007】低値選択器13では速度負荷指令信号v4
 、圧力偏差信号v7 の他に負荷制限器16からの負
荷制限信号v8 および原子炉最大蒸気流量を制限する
最大流量制限器17からの最大流量制限信号v9 が入
力され、これらのうちで最も低い値が蒸気加減弁流量指
令信号v10として蒸気加減弁位置制御回路18に対し
て出力される。
The low value selector 13 selects the speed load command signal v4.
In addition to the pressure deviation signal v7, the load limit signal v8 from the load limiter 16 and the maximum flow rate limit signal v9 from the maximum flow rate limiter 17 that limits the reactor maximum steam flow rate are input, and the lowest value among these is input. is output to the steam regulating valve position control circuit 18 as the steam regulating valve flow rate command signal v10.

【0008】また、圧力偏差信号v7 と蒸気加減弁流
量指令信号v10との偏差が加算器19で演算され、圧
力流量偏差信号として低値選択器20に入力される。さ
らに最大流量制限信号v9 と蒸気加減弁流量指令信号
v10との偏差が加算器21で演算され、流量偏差信号
として低値選択器20に入力される。低値選択器20で
はこれらの入力のうちから低値が選択され、タービンバ
イパス弁流量指令信号v11としてタービンバイパス弁
位置制御回路22に対して出力される。
Further, the difference between the pressure deviation signal v7 and the steam control valve flow rate command signal v10 is calculated by an adder 19, and is inputted to a low value selector 20 as a pressure flow rate deviation signal. Further, the deviation between the maximum flow rate limit signal v9 and the steam control valve flow rate command signal v10 is calculated by an adder 21, and is inputted to the low value selector 20 as a flow rate deviation signal. The low value selector 20 selects the low value from among these inputs and outputs it to the turbine bypass valve position control circuit 22 as the turbine bypass valve flow rate command signal v11.

【0009】上述したタービン制御装置を用いて常時は
下記のような圧力制御運転が行なわれる。圧力制御運転
では負荷設定器11の設定により速度負荷指令信号v4
 は圧力偏差信号v7 より少し高くなるようになって
いる。また負荷制限信号v8 および最大流量制限信号
v9 も圧力偏差信号v7 より高く設定されているた
め低値選択器13では圧力偏差信号v7 が蒸気加減弁
流量指令信号v10として選択される。したがって、v
7 =V10のため加算器19の演算結果は零となり、
低値選択器20でもこの信号が選択されるためタービン
バイパス弁流量指令信号v11は零となる。このように
してタービン入口蒸気圧力はCV3により制御され、T
BV6は全閉している。
[0009] Using the above-mentioned turbine control device, the following pressure control operation is normally performed. In pressure control operation, the speed load command signal v4 is set by the load setting device 11.
is set to be slightly higher than the pressure deviation signal v7. Further, since the load limit signal v8 and the maximum flow rate limit signal v9 are also set higher than the pressure deviation signal v7, the low value selector 13 selects the pressure deviation signal v7 as the steam control valve flow rate command signal v10. Therefore, v
7 = V10, so the calculation result of the adder 19 is zero,
Since this signal is also selected by the low value selector 20, the turbine bypass valve flow rate command signal v11 becomes zero. In this way, the turbine inlet steam pressure is controlled by CV3 and T
BV6 is fully closed.

【0010】圧力制御運転中に実速度信号v2 の上昇
,負荷設定信号v3 の減少,圧力設定信号v5 の増
加,負荷制限信号v8 の減少,最大流量制限信号v9
 の減少が発生し、圧力偏差信号v7 より小さくなっ
た場合、その信号が低値選択器13により選択され、蒸
気加減弁流量指令信号v9 となり、CV3は閉方向に
動作する。例えば負荷制限信号v8 が減少しv9 =
v8 <v7 となった場合加算器19ではv7 −v
8 が出力され、低値選択器20を経由してタービンバ
イパス弁流量指令信号v11として出力される。この結
果、余剰蒸気はTBV6を通って復水器5に流れる。
During pressure control operation, the actual speed signal v2 increases, the load setting signal v3 decreases, the pressure setting signal v5 increases, the load limit signal v8 decreases, and the maximum flow rate limit signal v9
When a decrease occurs and becomes smaller than the pressure deviation signal v7, that signal is selected by the low value selector 13 and becomes the steam control valve flow rate command signal v9, and the CV3 operates in the closing direction. For example, load limit signal v8 decreases and v9 =
When v8 < v7, the adder 19 calculates v7 - v
8 is outputted, and is outputted via the low value selector 20 as the turbine bypass valve flow rate command signal v11. As a result, excess steam flows through the TBV 6 to the condenser 5.

【0011】[0011]

【発明が解決しようとする課題】通常の圧力制御運転時
に圧力設定信号v5の増加、負荷設定信号v3 の減少
、負荷制御信号v8 の減少が発生した場合、この信号
が蒸気加減弁流量指令信号v10として選択され、CV
3が閉方向に動作することは前述したが、CV3が多少
閉じてもTBV6が開し原子炉圧力は一定に制御される
。しかし、原子力発電プラントのTBV6は、一般にタ
ービン定格蒸気流量の一部を流すような設計になってい
るため、3重化された圧力検出系において、その中のい
ずれか2系統が同時期に“低”方向に故障を起こした場
合、CV3弁が急速に閉鎖し原子炉1が厳しい状態に落
ち入り最悪、原子炉スクラムに至る可能性がある。
[Problem to be Solved by the Invention] When an increase in the pressure setting signal v5, a decrease in the load setting signal v3, and a decrease in the load control signal v8 occur during normal pressure control operation, this signal becomes the steam regulator flow rate command signal v10. selected as, CV
As mentioned above, CV3 operates in the closing direction, but even if CV3 closes a little, TBV6 opens and the reactor pressure is controlled to be constant. However, the TBV6 of a nuclear power plant is generally designed to flow a part of the turbine rated steam flow rate, so in the triple pressure detection system, any two of the systems are activated at the same time. If a failure occurs in the "low" direction, the CV3 valve will close rapidly and the reactor 1 will fall into a severe condition, which in the worst case may lead to a reactor scram.

【0012】本発明の目的は3重化された主蒸気圧力信
号系において、そのうちのいずれか2系列が圧力“低”
方向に故障した場合でもCVが全閉することなく、原子
炉圧力を一定かつ安定に保持できるタービン制御装置を
提供することにある。 [発明の構成]
The object of the present invention is to provide a triple main steam pressure signal system in which any two of the systems are at low pressure.
It is an object of the present invention to provide a turbine control device that can maintain a constant and stable reactor pressure without completely closing a CV even when a failure occurs in one direction. [Structure of the invention]

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明はタービンに導かれる蒸気量を調節する蒸気加
減弁と、タービンをバイパスして復水器に排出される蒸
気量を調節するタービンバイパス弁とを備え、実圧力信
号および実速度信号の双方に基づいて蒸気加減弁および
タービンバイパス弁の開度を調節してタービン速度およ
びタービン入口蒸気圧力または原子炉ドーム圧力を制御
するタービン制御装置において、検出された主蒸気圧力
信号に異常値が発生したとき、信号を出力する入力信号
検知器と、この入力信号検知器からの信号を受けたとき
、主蒸気圧力信号を切る一方、バックアップ信号を導く
ように接点を切換える信号切換器と、設定圧力信号より
も高値のバックアップ信号を出力するバックアップ信号
発信器とを設けたことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a steam control valve that regulates the amount of steam introduced into the turbine, and a steam control valve that controls the amount of steam that bypasses the turbine and is discharged to the condenser. and a turbine bypass valve, and controls the turbine speed and turbine inlet steam pressure or reactor dome pressure by adjusting the opening degree of the steam control valve and the turbine bypass valve based on both the actual pressure signal and the actual speed signal. In the equipment, there is an input signal detector that outputs a signal when an abnormal value occurs in the detected main steam pressure signal, and when a signal is received from this input signal detector, the main steam pressure signal is cut off and a backup This device is characterized by being provided with a signal switcher that switches contacts to guide a signal, and a backup signal transmitter that outputs a backup signal with a higher value than the set pressure signal.

【0014】[0014]

【作用】これによって圧力検出回路3系統のうち、いず
れか2系統が“低”方向に故障した場合、CVが全閉に
至るようなこともなく、安定した圧力制御が行われる。
[Operation] As a result, even if any two of the three pressure detection circuits fail in the "low" direction, stable pressure control is performed without the CV being fully closed.

【0015】[0015]

【実施例】本発明の実施例を図1を参照して説明する。Embodiment An embodiment of the present invention will be described with reference to FIG.

【0016】三重化している主蒸気圧力信号v12,v
13,v14はそれぞれ入力信号検知器23a,23b
,23cに入力される。この系の各信号v12,v13
,v14は接点24a,24b,24cを介して中間値
選択器25に出力される。中間値選択器25ではこのう
ちの中間値が選択され、実圧力信号v15として加算器
26に出力される。
Triple main steam pressure signal v12,v
13 and v14 are input signal detectors 23a and 23b, respectively.
, 23c. Each signal v12, v13 of this system
, v14 are output to the intermediate value selector 25 via contacts 24a, 24b, and 24c. The intermediate value selector 25 selects the intermediate value among these, and outputs it to the adder 26 as the actual pressure signal v15.

【0017】一方、設定圧力信号v5 よりも高値の主
蒸気圧力バックアップ信号v16,v17,v18がバ
ックアップ信号発信器27によりつくられ、それぞれ接
点28a,28b,28cを介して中間値選択器25に
与えられる。また、信号切換器29a,29b,29c
は主蒸気圧力信号系の接点24a,24b,24cと主
蒸気圧力バックアップ信号系の接点28a,28b,2
8cと各々結ばれている。双方の信号系を切換えるトリ
ガー信号が入力信号検知器23a,23b,23cから
信号切換器29a,26b,26cに与えられる。次に
、作用を説明する。
On the other hand, main steam pressure backup signals v16, v17, and v18, which are higher in value than the set pressure signal v5, are generated by the backup signal generator 27 and applied to the intermediate value selector 25 via contacts 28a, 28b, and 28c, respectively. It will be done. In addition, signal switchers 29a, 29b, 29c
are contacts 24a, 24b, 24c of the main steam pressure signal system and contacts 28a, 28b, 2 of the main steam pressure backup signal system.
8c, respectively. Trigger signals for switching both signal systems are applied from input signal detectors 23a, 23b, 23c to signal switchers 29a, 26b, 26c. Next, the effect will be explained.

【0018】3重化の1系統について説明するものとす
る。主蒸気圧力信号v12は比較器を備えた入力信号検
知器23aで設定信号と比較され、許容値をはずれた時
、トリガー信号を信号切換器28aに出力する。この結
果接点24aが接点28aへ切換わってバックアップ発
信器27から決められた圧力より若干高い主蒸気圧力バ
ックアップ信号v16が中間値選択器25に入力される
。3重化している残りのZ系統についても同様である。
One system of triplexing will be explained. The main steam pressure signal v12 is compared with a set signal by an input signal detector 23a equipped with a comparator, and when it is out of a permissible value, a trigger signal is output to the signal switch 28a. As a result, the contact 24a switches to the contact 28a, and the main steam pressure backup signal v16, which is slightly higher than the determined pressure, is input from the backup transmitter 27 to the intermediate value selector 25. The same goes for the remaining Z lines that are triplexed.

【0019】このように、3重化された信号のうち、い
ずれか2系統つまりv12−v13,v12−v14、
v13−v14の組合わせで信号“低”の方向に故障し
た場合も、故障した系統からバックアップ信号が中間値
選択器25に入力される。
In this way, any two of the triplexed signals, ie, v12-v13, v12-v14,
Even when a failure occurs in the direction of the signal "low" in the combination of v13-v14, a backup signal is input to the intermediate value selector 25 from the failed system.

【0020】したがって、主蒸気圧力“低”の方向に故
障が発生した場合も中間値選択器25の出力が減少する
ことなく、主蒸気圧力信号として出力されるので、CV
3が全閉に至ることがない。かくして、原子炉圧力は引
き継き安定に保つことができ、原子炉スクラムは起こり
得ない。
Therefore, even if a failure occurs in the direction of "low" main steam pressure, the output of the intermediate value selector 25 does not decrease and is output as a main steam pressure signal, so that the CV
3 never fully closes. Thus, the reactor pressure can take over and remain stable, and a reactor scram cannot occur.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、ダ
ービン制御装置における主蒸気圧力信号系統、3系統の
うち、いずれか2系統が同時期に圧力“低”の方向に故
障しても、CVの全閉が生じず、無閉な原子炉スクラム
を未然に回避することができるという優れた効果を奏す
る。
As explained above, according to the present invention, even if any two of the three main steam pressure signal systems in the Durbin control device fail at the same time in the direction of "low" pressure, This has an excellent effect in that the complete closure of the CV does not occur and an unclosed reactor scram can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明によるタービン制御装置の一実施例を示
すブロック図。
FIG. 1 is a block diagram showing an embodiment of a turbine control device according to the present invention.

【図2】従来の原子力プラントのタービン主蒸気系統を
示す系統図。
FIG. 2 is a system diagram showing a turbine main steam system of a conventional nuclear power plant.

【図3】従来のタービン制御装置の一例を示すブロック
図。
FIG. 3 is a block diagram showing an example of a conventional turbine control device.

【符号の説明】[Explanation of symbols]

3…蒸気加減弁 4…タービン 23a,23b,23c…入力信号検知器25…中間値
選択器 27…バックアップ信号発信器 29a,29b,29c…信号切換器
3...Steam control valve 4...Turbine 23a, 23b, 23c...Input signal detector 25...Intermediate value selector 27...Backup signal transmitter 29a, 29b, 29c...Signal switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  タービンに導かれる蒸気量を調節する
蒸気加減弁と、タービンをバイパスして復水器に排出さ
れる蒸気量を調節するタービンバイパス弁とを備え、実
圧力信号および実速度信号の双方に基づいて前記蒸気加
減弁およびタービンバイパス弁の開度を調節してタービ
ン速度およびタービン入口蒸気圧力または原子炉ドーム
圧力を制御するタービン制御装置において、検出された
主蒸気圧力信号に異常値が発生したとき、信号を出力す
る入力信号検知器と、この入力信号検知器からの信号を
受けたとき、主蒸気圧力信号を切る一方、バックアップ
信号を導くように接点を切換える信号切換器と、設定圧
力信号よりも高値のバックアップ信号を出力するバック
アップ信号発信器とを設けたことを特徴とするタービン
制御装置。
1. A steam control valve that adjusts the amount of steam introduced to the turbine, and a turbine bypass valve that adjusts the amount of steam that bypasses the turbine and is discharged to the condenser, and includes an actual pressure signal and an actual speed signal. In a turbine control device that controls the turbine speed and turbine inlet steam pressure or reactor dome pressure by adjusting the opening degrees of the steam control valve and the turbine bypass valve based on both of the following, an abnormal value is detected in the detected main steam pressure signal. an input signal detector that outputs a signal when a signal occurs, and a signal switch that switches a contact so as to cut off the main steam pressure signal while guiding a backup signal when receiving a signal from the input signal detector; A turbine control device comprising: a backup signal transmitter that outputs a backup signal having a higher value than a set pressure signal.
JP3141550A 1991-06-13 1991-06-13 Turbine controller Pending JPH04366798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141550A JPH04366798A (en) 1991-06-13 1991-06-13 Turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141550A JPH04366798A (en) 1991-06-13 1991-06-13 Turbine controller

Publications (1)

Publication Number Publication Date
JPH04366798A true JPH04366798A (en) 1992-12-18

Family

ID=15294574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141550A Pending JPH04366798A (en) 1991-06-13 1991-06-13 Turbine controller

Country Status (1)

Country Link
JP (1) JPH04366798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100807A (en) * 2011-10-19 2013-05-23 Toyota Industries Corp Rankine cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100807A (en) * 2011-10-19 2013-05-23 Toyota Industries Corp Rankine cycle

Similar Documents

Publication Publication Date Title
US6606366B2 (en) Nuclear power plant having steam turbine controller
JPH04366798A (en) Turbine controller
JPH04214907A (en) Turbine controlling device
JPH06230176A (en) Turbine controller
JP2963745B2 (en) Turbine control device
JPH0343606A (en) Turbine controlling device
JPH0343605A (en) Turbine controlling device
JPS63120297A (en) Speed controller for steam turbine
JPH0577841B2 (en)
JPH0849505A (en) Steam valve testing device
JPS63195595A (en) Nuclear power plant
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS62107205A (en) Controller for turbine
JPH10267214A (en) Waste heat recovery boiler controller
JPS61215404A (en) Control device for steam turbine
JPS6132102A (en) Turbine controller
JPH03149303A (en) Steam turbine control device
JPH0639886B2 (en) Steam turbine speed controller
JPS60233301A (en) Turbine control device
JPH0850195A (en) Reactor pressure rise preventing device at load interruption
JPH09287407A (en) Steam valve control device
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH04134102A (en) Turbine controller
JPS63297703A (en) Turbine controller
JPS589097A (en) Feedwater control device of bwr type reactor