JPH03149303A - Steam turbine control device - Google Patents
Steam turbine control deviceInfo
- Publication number
- JPH03149303A JPH03149303A JP28798889A JP28798889A JPH03149303A JP H03149303 A JPH03149303 A JP H03149303A JP 28798889 A JP28798889 A JP 28798889A JP 28798889 A JP28798889 A JP 28798889A JP H03149303 A JPH03149303 A JP H03149303A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- steam
- speed
- opening
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007717 exclusion Effects 0.000 claims description 3
- 230000011664 signaling Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 abstract 6
- 230000001276 controlling effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は発電プラントにおける蒸気タービン制御装置に
関するものである。 (従来の技術)
原子力発電所におけるタービン蒸気系統の一例を第4図
に示す。第4図において、原子炉1で発生した蒸気は主
蒸気止メ弁2および蒸気加減弁(以下C■と呼ぶ)3を
通ってタービン4に流入してタービンを駆動し、復水器
5で復水される。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a steam turbine control device in a power plant. (Prior Art) FIG. 4 shows an example of a turbine steam system in a nuclear power plant. In FIG. 4, steam generated in the reactor 1 passes through the main steam stop valve 2 and the steam control valve (hereinafter referred to as C) 3, flows into the turbine 4, drives the turbine, and is transferred to the condenser 5. The water is condensed.
また一部の蒸気は主蒸気止メ弁2の手前からタービンバ
イパス弁(以下TBVと呼ぶ)6を通ってタービン4を
バイパスして復水器5に落とされる。Further, a part of the steam passes through a turbine bypass valve (hereinafter referred to as TBV) 6 from before the main steam stop valve 2, bypasses the turbine 4, and is dropped into the condenser 5.
常時は主蒸気止メ弁2を全開とし、CV3とTB■6の
弁開度を調節してタービン入口蒸気圧力およびタービン
速度の制御が行われる。この場合実圧力および実速度は
それぞれ主蒸気止メ弁の手前に設けた圧力検出器7およ
びタービン軸に取付けた速度検出器8によって検出され
る。Normally, the main steam stop valve 2 is kept fully open, and the valve openings of CV3 and TB6 are adjusted to control the turbine inlet steam pressure and turbine speed. In this case, the actual pressure and actual speed are detected by a pressure detector 7 provided in front of the main steam stop valve and a speed detector 8 attached to the turbine shaft, respectively.
従来の蒸気タービン制御装置の制御系統を第5図に示す
。第5図において、速度設定器9で設定された設定速度
V□と速度検出器8で検出された実速度v2とは加算器
10で減算され、速度偏差v3(=Vx V2)が速
度制御指令値として出力される。一方、圧力設定器11
で設定して設定圧力v4と圧力検出器7で検出された実
圧力v5は加算器12で減算され、圧力偏差v6(=v
s V4)が位相補正器13を介して圧力制御指令値
\17として取出される。上記速度制御指令値v3と圧
力制御指令値v2は低値選択器14に入力され、低い方
の指令値が選択されてCV開度指令値v8として出力さ
れ、弁位置変換器15によって検出されたCV3の実開
度信号v9と加算器16によって比較され、その偏差信
号V工l、(=Vll−V9)が弁駆動器17を介して
CV3の弁開度を開度指令値VBに対応して制御する。FIG. 5 shows a control system of a conventional steam turbine control device. In FIG. 5, the set speed V□ set by the speed setter 9 and the actual speed v2 detected by the speed detector 8 are subtracted by an adder 10, and the speed deviation v3 (=Vx V2) is the speed control command. Output as a value. On the other hand, the pressure setting device 11
The set pressure v4 and the actual pressure v5 detected by the pressure detector 7 are subtracted by the adder 12, and the pressure deviation v6 (=v
s V4) is taken out via the phase corrector 13 as a pressure control command value \17. The speed control command value v3 and the pressure control command value v2 are input to the low value selector 14, and the lower command value is selected and output as the CV opening command value v8, which is detected by the valve position converter 15. It is compared with the actual opening degree signal v9 of CV3 by the adder 16, and the deviation signal V(=Vll-V9) is sent via the valve driver 17 to the valve opening degree of CV3 corresponding to the opening command value VB. control.
一方、上記圧力制御指令値v7と、CV開度指令値v8
とは加算器18で減算されその差VフーV8がTBV6
の開度指令値V□、として出力され、弁位置変換器19
で検出されたTBV6の実速度信−15,y□2と加算
器20で比較され、その偏差Vよ5(=V工)、 v
l、2)が弁駆動器21を介してTBV6の弁開度を開
度指令値V□1に対応して制御する。On the other hand, the pressure control command value v7 and the CV opening command value v8
is subtracted by the adder 18, and the difference VfuV8 is TBV6
is output as the opening command value V□, and the valve position converter 19
The adder 20 compares the actual speed signal of TBV6 detected at -15,y□2 with the deviation V 5 (=V engineering), v
1, 2) controls the valve opening of the TBV 6 via the valve driver 21 in accordance with the opening command value V□1.
上記の制御系統を用いて、常時は下記の様な圧力制御運
転が行われる。圧力制御運転では上記V。Using the above control system, the following pressure control operation is normally performed. In pressure control operation, the above V.
がv7より少し高くなる様に設定速度V1を高く設定し
、圧力制御指令値V、が低値選択されてCV開度指令値
vl]となる様にしている。従って、■、、 = vI
、となってV、□は零となり、TBV6は全開となって
、CV3のみで圧力制御が行われろ。The set speed V1 is set high so that V is a little higher than v7, and the pressure control command value V is selected as a low value to become the CV opening command value vl]. Therefore, ■,, = vI
, so V and □ become zero, TBV6 becomes fully open, and pressure control is performed only with CV3.
圧力制御運転中に実速度V2が−1二層するとV、が減
少し、v3がV7より低くなるのでc■開度指令値v6
は〜I3となり、CV開度は閉方向に制御される。この
時はV7>V、どなるノテ、V1.>Oトなり、TBV
6は開方向に制御される。すなわちCV3の閉によって
タービン4に流入する蒸気量は減少し、余剰蒸気はTB
V6に流れ、原子炉1がら見た蒸気流量は一定となり、
タービン4の入[1蒸気圧力も一定となる。During pressure control operation, if the actual speed V2 becomes -1 twice, V decreases and v3 becomes lower than V7, so c■Opening command value v6
becomes ~I3, and the CV opening degree is controlled in the closing direction. At this time, V7>V, Donarunote, V1. >Otonari, TBV
6 is controlled in the opening direction. In other words, the amount of steam flowing into the turbine 4 decreases by closing CV3, and the excess steam flows into TB.
Steam flows to V6, and the steam flow rate seen from the reactor 1 becomes constant,
The input steam pressure of the turbine 4 also becomes constant.
(発明がん′決しようとする課題)
=3−
上記の様に通常の圧力制御運転時には実速度や実圧力が
変動してもCV3およびTBV6の開度がそれぞれの指
定値に対して遅れなく追従するので問題は生じないが、
系統事故などで急激な外乱が発生したとき下記のような
問題が生しる。(Problem to be solved by the inventor) = 3- As mentioned above, during normal pressure control operation, even if the actual speed and actual pressure fluctuate, the opening degrees of CV3 and TBV6 do not lag behind their respective specified values. There is no problem because it follows, but
When a sudden disturbance occurs due to a system accident, the following problems occur.
すなわち、第6図のタイムチャートに示す様に、圧力制
御運転中に時点を1で実速度v2が基準速度から急上昇
したとすると、V3が低下しV、〈v7となる時点を2
からV5が減少してCV 3の開度V9も減少させ、同
時にTBV6の開度指令値Vll が上昇し、T B
V 6の実開度V12もV□、と共に増大する。この
場合CV3の閉動作量〜18とT 13 V 6の開動
作量V+2 とは大きさが等しいのでタービンの実蒸気
圧\・′4には変動を生じない−しかし、実速度v2が
時点V4て急激に基準速度に復帰するときは、■8は開
方向にv4□は閉方向に変化する。この場合開度指令値
v6とV□1の変化速度および開/閉量は同じであるが
、実際のCV3の開速度(V、)とTBV6の閉速度(
V□2)は異なり、T B V 6が速く閉るので。That is, as shown in the time chart of Fig. 6, if the actual speed v2 suddenly increases from the reference speed at time 1 during pressure control operation, then the time when V3 decreases to V, <v7 is set to 2.
, V5 decreases and the opening degree V9 of CV3 also decreases, and at the same time, the opening command value Vll of TBV6 increases, and T B
The actual opening degree V12 of V6 also increases with V□. In this case, the closing operation amount ~18 of CV3 and the opening operation amount V+2 of T 13 V 6 are equal in magnitude, so no fluctuation occurs in the actual steam pressure of the turbine. When the speed suddenly returns to the reference speed, ■8 changes to the opening direction and v4□ changes to the closing direction. In this case, the speed of change and opening/closing amount of opening command value v6 and V□1 are the same, but the actual opening speed of CV3 (V, ) and closing speed of TBV6 (
V□2) is different because T B V 6 closes faster.
原子炉1からの蒸気が制限さ才1、人[1蒸気圧V、が
上昇する。このため、圧力制御指令値V1が開方向とな
って、TBV6は時点をlから開き始め、時点をllで
全開となるが、この時点で人口蒸気圧v5は制限値を越
え、原子炉保護インタロツタが作動して原子炉スクラム
に至る可能性がある。When the steam from the reactor 1 is limited to 1, the steam pressure V increases. Therefore, the pressure control command value V1 is in the opening direction, and the TBV6 begins to open from time 1 and fully opens at time 11, but at this point, the artificial vapor pressure v5 exceeds the limit value, and the reactor protection interlock is activated. could activate and lead to a reactor scram.
この対策としてCV3の開速度をCV開度指令値■8に
早く追従させろ方法があるが時点を4〜t5開の時間差
が数秒以下と短いので、CV3の開速度を速めることが
、タービン側の機械的な熱応力の点で問題となり、また
CV3を操作する油圧系統からの制限もあり、開速度を
速くすることは固壁である。As a countermeasure for this, there is a method to make the opening speed of CV3 quickly follow the CV opening command value ■8, but since the time difference between opening time 4 and t5 is short, less than a few seconds, increasing the opening speed of CV3 is a way to It is difficult to increase the opening speed because of mechanical thermal stress and limitations from the hydraulic system that operates the CV3.
本発明は、CVの急開指令が入力されたときにCVの実
開度に追従してTBVの閉速度を制御し、これによって
タービン入口蒸気圧の変動を防止する蒸気タービン制御
装置を提供することを目的としている。The present invention provides a steam turbine control device that controls the closing speed of a TBV by following the actual opening degree of the CV when a sudden opening command of the CV is input, thereby preventing fluctuations in the turbine inlet steam pressure. The purpose is to
(課題を解決するための手段)
本発明はタービンに流入する蒸気の流量を調節する蒸気
加減弁およびタービンをバイパスする蒸気の流量を調整
するタービンバイパス弁の開度を制御してタービン速度
およびタービン入口蒸気圧力を制御する蒸気タービン制
御装置において。(Means for Solving the Problems) The present invention controls the opening degree of a steam control valve that adjusts the flow rate of steam flowing into the turbine and a turbine bypass valve that adjusts the flow rate of steam bypassing the turbine, thereby controlling the turbine speed and the turbine speed. In a steam turbine control device that controls inlet steam pressure.
タービンバイパス弁の開度指令値にタービンバイパス弁
の実開度が蒸気加減弁の実開度と同じ速度で逆方向に変
化する様にタービンバイパス弁が閉動作する時働く変化
率制限器を設けたものである。A change rate limiter is installed in the opening command value of the turbine bypass valve, which operates when the turbine bypass valve closes so that the actual opening of the turbine bypass valve changes in the opposite direction at the same speed as the actual opening of the steam control valve. It is something that
(作用)
タービン速度が低下し蒸気加減弁の開度を増大するとき
にも、バイパス弁開度の減少を蒸気加減弁の開度の増大
に見合せて行い、タービン入口蒸気圧が急上昇するのを
防止することができる。(Function) Even when the turbine speed decreases and the opening degree of the steam control valve is increased, the bypass valve opening degree is decreased in proportion to the increase in the opening degree of the steam control valve, thereby preventing the turbine inlet steam pressure from rising rapidly. It can be prevented.
(実施例)
本発明の一実施例を第1図に示す。第1図は従来の第5
図に対して、変化率制限器23が追加されており他は第
5図と同様である。(Example) An example of the present invention is shown in FIG. Figure 1 shows the conventional 5th
The change rate limiter 23 has been added to the figure, and the rest is the same as in FIG. 5.
以下第1図の動作を第3図に示す。圧力制御運転中に時
点七〇で実速度v2が上昇し始めると、時点を2でV7
>V、となり、C■開度指令値v8が閉方向に変化し、
CV実開度vgもV、に追従して閉方向に変化する。こ
のときV?>vsとなるのでV工、が開方向に動作する
。又、V□、が開方向ですので変化率制限器の出力Vi
sはそのままv0□が出力されTBV6は開方向に動作
する。The operation shown in FIG. 1 is shown in FIG. 3 below. During pressure control operation, when the actual speed v2 starts to increase at time 70, V7 starts at time 2.
>V, and the C■ opening command value v8 changes in the closing direction,
The CV actual opening degree vg also changes in the closing direction following V. At this time V? > vs, so the V mechanism moves in the opening direction. Also, since V□ is in the open direction, the output Vi of the rate of change limiter
s outputs v0□ as it is, and TBV6 operates in the opening direction.
次にt、で実速度v2が基準値に戻り始めると、CV開
度指令値V、が開方向となり、実速度v2が基準値に戻
った時点を6にCv開度指令値v8も元の開度に戻るが
、CV実開度V、はvllに遅れてゆっくり上昇を続け
る。又、TBV開度指令値V工□もCv開度指令値v8
と同じ速度で下降し、時点を6で全閉となるが、変化率
制限器の出力VXSはCvの開速度と同程度にゆっくり
と下降する為、TBV実開度Vtaもゆっくり下降する
。これによって、CV3の開方向の変化速度とTBV6
の開方向の変化速度が同じになるので、原子炉1からの
総流量は変化せず、従ってタービン入口蒸気圧力の変動
は生じない。Next, when the actual speed v2 starts to return to the reference value at t, the CV opening command value V becomes in the opening direction, and at 6, when the actual speed v2 returns to the reference value, the CV opening command value V8 also returns to the original value. However, the actual CV opening degree V continues to rise slowly, lagging behind vll. In addition, the TBV opening command value V □ is also the Cv opening command value v8
, and becomes fully closed at time 6. However, since the output VXS of the rate of change limiter decreases slowly to the same extent as the opening speed of Cv, the TBV actual opening degree Vta also decreases slowly. As a result, the speed of change in the opening direction of CV3 and the TBV6
Since the rate of change in the opening direction of the reactor 1 remains the same, the total flow rate from the reactor 1 does not change, and therefore the turbine inlet steam pressure does not fluctuate.
本発明の他の実施例を第2図に示す。第2図は第1図に
おける変化率制限器をバイパスする信号フー
回路31を設けたものである。これにより、TBV6の
みで圧力制御中に除外条件が成立し、TBV開度指令値
V□、が変化率制限器を介さず加算器20に入力される
ため、TBV6の制御性をそこなわず制御を実施できる
。Another embodiment of the invention is shown in FIG. In FIG. 2, a signal fu circuit 31 is provided which bypasses the rate of change limiter in FIG. 1. As a result, the exclusion condition is satisfied during pressure control only with TBV6, and the TBV opening command value V□ is input to the adder 20 without going through the rate of change limiter, so the controllability of TBV6 is controlled without impairing the controllability. can be carried out.
以上説明した様に、本発明によれば、CV開度指令
値が開方向に急激に変化しても、TBV開度はCV実開
度の開方向速度と同程度の速度で閉方向に制御され、ま
た変化量も等しくなるので、CVとTBVに流れる蒸気
の総流量は変化せず、従って、タービン入口蒸気圧力に
変動を生じない。As explained above, according to the present invention, even if the CV opening command value suddenly changes in the opening direction, the TBV opening is controlled in the closing direction at a speed comparable to the opening direction speed of the CV actual opening. and the amount of change is also the same, so the total flow rate of steam flowing to the CV and TBV does not change, and therefore, no fluctuation occurs in the turbine inlet steam pressure.
又、本発明は、従来の制御装置に変化率制限器を追加す
るだけで容易に実現できる。Further, the present invention can be easily realized by simply adding a rate of change limiter to a conventional control device.
第1図は本発明の一実施例を示す制御系統図、第2図は
本発明の他の実施例を示す制御系統図、第3図は第1図
の実施例の動作を示すタイムチャート、第4図はタービ
ン蒸気系統の一般的な構成を示す系統図、第5図は従来
の蒸気タービン制御装置の一例を示す制御系統図、第6
図は第5図の装置の動作を示すタイムチャートである。
■・−・原子炉
2・・・主蒸気止メ弁
3・・・蒸気加減弁
4・・・タービン
5・・・復水器
6・・・タービンバイパス弁
7・・・タービン入口圧力検出器
8・・・速度検出器
9・・・速度設定器
10.12,16,18,20・・・加算器17、21
・・−弁位置駆動器
11・・・圧力設定器
13・・・位相補償器
14・・・低値選択器
15、19・−・弁位置変換器
23・・・変化率制限器
31・・・変化率制限器除外回路
う「−−1′。、−。
苓;−―:
副*戸: 苓:
■
世FIG. 1 is a control system diagram showing one embodiment of the present invention, FIG. 2 is a control system diagram showing another embodiment of the invention, and FIG. 3 is a time chart showing the operation of the embodiment of FIG. 1. Fig. 4 is a system diagram showing a general configuration of a turbine steam system, Fig. 5 is a control system diagram showing an example of a conventional steam turbine control device, and Fig. 6 is a system diagram showing a general configuration of a turbine steam system.
The figure is a time chart showing the operation of the apparatus shown in FIG. ■・−・Reactor 2...Main steam stop valve 3...Steam control valve 4...Turbine 5...Condenser 6...Turbine bypass valve 7...Turbine inlet pressure detector 8...Speed detector 9...Speed setter 10.12, 16, 18, 20...Adder 17, 21
...-Valve position driver 11...Pressure setting device 13...Phase compensator 14...Low value selector 15, 19...Valve position converter 23...Rate of change limiter 31...・Rate of change limiter exclusion circuit ``--1'.,-. 苓;--: Sub*door: 蓓: ■ World
Claims (2)
比較し低値を選択する手段と、選択された信号を蒸気加
減弁開度指令信号として蒸気加減弁開度を制御する手段
と、圧力制御信号から蒸気加減弁開度指令信号を減算し
タービンバイパス弁開度指令信号としてタービンバイパ
ス弁開度を制御する手段とを有する蒸気タービン制御装
置において、上記タービンバイパス弁開度指令信号に、
タービンバイパス弁の閉速度が蒸気加減弁の最大開速度
を越えない様、タービンバイパス弁が閉方向時のみ動作
する変化率制限器を設けたことを特徴とする蒸気タービ
ン制御装置。(1) Means for comparing the pressure control signal and speed control signal of the power plant and selecting the lower value; means for controlling the steam control valve opening by using the selected signal as a steam control valve opening command signal; In a steam turbine control device having means for subtracting a steam control valve opening command signal from a control signal and controlling the turbine bypass valve opening as a turbine bypass valve opening command signal, the turbine bypass valve opening command signal includes:
A steam turbine control device comprising a rate-of-change limiter that operates only when the turbine bypass valve is in the closing direction so that the closing speed of the turbine bypass valve does not exceed the maximum opening speed of the steam control valve.
御している時点では除外する除外回路を具備したことを
特徴とする請求項1に記載の蒸気タービン制御装置。(2) The steam turbine control device according to claim 1, further comprising an exclusion circuit that excludes the rate of change limiter when the pressure is controlled by a turbine bypass valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28798889A JPH03149303A (en) | 1989-11-07 | 1989-11-07 | Steam turbine control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28798889A JPH03149303A (en) | 1989-11-07 | 1989-11-07 | Steam turbine control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03149303A true JPH03149303A (en) | 1991-06-25 |
Family
ID=17724345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28798889A Pending JPH03149303A (en) | 1989-11-07 | 1989-11-07 | Steam turbine control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03149303A (en) |
-
1989
- 1989-11-07 JP JP28798889A patent/JPH03149303A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6039844B2 (en) | Regulator for steam turbine equipment | |
JP5143098B2 (en) | Steam turbine control device and steam turbine control method | |
JPH03149303A (en) | Steam turbine control device | |
JPS6128701A (en) | Control device of steam turbine | |
JPH04241705A (en) | Steam turbine controller | |
JP2823347B2 (en) | Turbine control device | |
JPH0849505A (en) | Steam valve testing device | |
JPH0577841B2 (en) | ||
JPH0343606A (en) | Turbine controlling device | |
JPH0343605A (en) | Turbine controlling device | |
JPH06230176A (en) | Turbine controller | |
JPH06173613A (en) | Turbine control device | |
JPH0343603A (en) | Turbine controlling device | |
JPH04179803A (en) | Turbine controller | |
JPH04366798A (en) | Turbine controller | |
JP2523493B2 (en) | Turbin bypass system | |
JPH04140402A (en) | Steam turbine controller | |
JPS63117298A (en) | Turbine controller | |
JPH0719007A (en) | Turbine control device | |
JPH039003A (en) | Turbine control device | |
JPS61215404A (en) | Control device for steam turbine | |
JPH04214907A (en) | Turbine controlling device | |
JPH10267214A (en) | Waste heat recovery boiler controller | |
JPH04219405A (en) | Turbine controller | |
JPH02298607A (en) | Bypass control device for geothermal steam turbine |