JPH04179803A - Turbine controller - Google Patents

Turbine controller

Info

Publication number
JPH04179803A
JPH04179803A JP30701690A JP30701690A JPH04179803A JP H04179803 A JPH04179803 A JP H04179803A JP 30701690 A JP30701690 A JP 30701690A JP 30701690 A JP30701690 A JP 30701690A JP H04179803 A JPH04179803 A JP H04179803A
Authority
JP
Japan
Prior art keywords
turbine
steam
pressure
opening
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30701690A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hoshi
星 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30701690A priority Critical patent/JPH04179803A/en
Publication of JPH04179803A publication Critical patent/JPH04179803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent any increase in turbine inlet steam pressure or nuclear reactor dome pressure for stable control by providing a signal switching portion for outputting a turbine bypass valve forcibly opening degree set value and an adder for adding the turbine bypass valve forcibly opening degree set value to a turbine bypass valve opening command value. CONSTITUTION:A signal switching portion 25 is constituted of a turbine bypass valve forcibly opening degree setter 26 and a relay contact 27. The relay contact 27 is closed on the basis of a CV closure failure signal upsilon19. Upon closure of the relax contact 27, a turbine bypass valve forcibly opening degree set value is added to a TBV opening deviation upsilon11 which is obtained by subtraction of a CV opening command value upsilon8 from a pressure control command value upsilon7 by an adder 28a, thus obtaining a final TBV opening command value upsilon13. In the case where a CV closure failure occurs during a pressure control operation, the CV closure failure detector 24 detects a CV closure failure, to forcibly open a TBV 6. Therefore, it is possible to prevent any increase in turbine inlet steam pressure or nuclear reactor dome pressure. Furthermore, a CV 6 stably controls the turbine inlet pressure or nuclear reactor dome pressure.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子カプラントのタービン制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a turbine control device for an atomic couplant.

(従来の技術) 原子カプラントにおけるタービン系統の一例を第3図に
示す。
(Prior Art) FIG. 3 shows an example of a turbine system in an atomic coupler.

第3図において、原子炉1で発生した蒸気は。In Figure 3, the steam generated in reactor 1 is:

主蒸気止め弁(以下MSVと呼ぶ)2および蒸気加減弁
(以下Cvと呼ぶ)3を通ってタービン4に流入してタ
ービンを駆動し、復水器5で復水される。
It flows into the turbine 4 through a main steam stop valve (hereinafter referred to as MSV) 2 and a steam control valve (hereinafter referred to as Cv) 3, drives the turbine, and is condensed in a condenser 5.

また、一部の蒸気はMSV2の手前からタービンバイパ
ス弁(以下TBVと呼ぶ)6を通ってタービン4をバイ
パスして復水器5に流される。
Further, some of the steam passes through a turbine bypass valve (hereinafter referred to as TBV) 6 from before the MSV 2, bypasses the turbine 4, and flows into the condenser 5.

常時はMSV2を全開とし、CV3とTBV6の弁開度
を調節してタービン速度およびタービン入口蒸気圧力の
制御が行なわれる。
Normally, MSV2 is kept fully open, and the valve openings of CV3 and TBV6 are adjusted to control the turbine speed and turbine inlet steam pressure.

この場合、タービン入口蒸気圧力およびタービン速度は
それぞれ主蒸気止め弁2の手前に設けた圧力検出器7お
よびタービン軸に取付けた速度検出器8によって検出さ
れる。
In this case, the turbine inlet steam pressure and turbine speed are detected by a pressure detector 7 provided before the main steam stop valve 2 and a speed detector 8 attached to the turbine shaft, respectively.

なお、新型炉では、タービン入口蒸気圧力の代りに原子
炉ドーム圧力を検出してCv3とTBV6の弁開度を調
節してタービン速度および原子炉ドーム圧力の制御が行
なわれる。
In the new type of reactor, the turbine speed and the reactor dome pressure are controlled by detecting the reactor dome pressure instead of the turbine inlet steam pressure and adjusting the valve openings of Cv3 and TBV6.

従来のタービン制御装置の機能ブロックを第4図に示す
FIG. 4 shows a functional block diagram of a conventional turbine control device.

第4図において、速度設定器9で設定された設定速度?
、と速度検出器8で検出された実速度す2とは加算器1
0で減算され、速度偏差y、(=y、−ya)  が速
度制御指令値として出力される。一方、圧力設定器11
で設定した設定圧力V、と圧力検出器7で検出された実
圧力ysは加算器12で減算され、圧力偏差Z’s (
=9s  ?J  が原子炉最大蒸気流量を制限する最
大流量制限器13を介して圧力指令値v7として取出さ
れる。
In FIG. 4, the set speed set by the speed setting device 9?
, and the actual speed S2 detected by the speed detector 8 are the adder 1.
The value is subtracted by 0, and the speed deviation y, (=y, -ya) is output as the speed control command value. On the other hand, the pressure setting device 11
The set pressure V set in and the actual pressure ys detected by the pressure detector 7 are subtracted by an adder 12, and the pressure deviation Z's (
=9s? J is taken out as a pressure command value v7 via a maximum flow rate limiter 13 that limits the reactor maximum steam flow rate.

上記速度?3と圧力制御指令値V7は低値選択器14に
入力され、低い方の指令値が選択されてC■開度指令値
V8として出力され、弁位置変換器15によって検出さ
れたCv3の実開度ys と加算器16で比較され、そ
の開度偏差V1゜(” z’ s  v s )が弁駆
動部17を介してCv3の弁開度を開度指令値す、に対
応して制御する。
Above speed? 3 and the pressure control command value V7 are input to the low value selector 14, and the lower command value is selected and output as the C■ opening command value V8, and the actual opening of Cv3 detected by the valve position converter 15 is The opening degree deviation V1° ("z' s v s ) is compared with the opening degree ys by an adder 16, and the opening degree deviation V1° ("z' s v s ) is used to control the valve opening degree of Cv3 through the valve drive unit 17 in accordance with the opening command value I. .

また、Cv3は通常複数台設置されており、全部のCv
に対して同一のCv開度指令値V、が呂カされ、全部の
Cvは同一開度に制御される。
In addition, multiple Cv3s are usually installed, and all Cv3s are
The same Cv opening command value V is applied to all Cv openings, and all Cvs are controlled to the same opening degree.

一方、上記圧力制御信号V、とCv開度指令値v0とは
加算器18で減算され、その差y、−vsがTBV開度
偏差’Vxxとして出力される。バイパス弁オープニン
グジヤツキ設定器19で設定したTB■設定開度V1□
は高値選択器20に入力され、高い方の値が選択されて
TBV開度指令値u13として出力され、弁位置変換器
21で検出されたTBV6の実開度υ0.と加算器22
で比較され、その開度偏差す1.(=す、3−サ、4)
が弁駆動器23を介してTBV6の弁開度を開度指令値
U□、に対応して制御する。
On the other hand, the pressure control signal V and the Cv opening command value v0 are subtracted by an adder 18, and the difference y, -vs is output as the TBV opening deviation 'Vxx. TB■Setting opening degree V1□ set with the bypass valve opening jack setting device 19
are input to the high value selector 20, the higher value is selected and output as the TBV opening command value u13, and the actual opening υ0. of the TBV6 detected by the valve position converter 21. and adder 22
The opening deviation is compared with 1. (=su, 3-sa, 4)
controls the valve opening of the TBV 6 via the valve driver 23 in accordance with the opening command value U□.

上記の制御装置を用いて、常時は下記のような圧力制御
運転が行なわれる。
Using the above control device, the following pressure control operation is normally performed.

圧力制御運転では、設定速度す、を最大流量制限器13
の制限値よりも低く、更に速度制御指令値v1が圧力制
御指令値1P、より少し高くなるように設定し、圧力制
御指令値v7が低値選択されてCV関度指令値?、どな
るようにしている。
In pressure control operation, the set speed is set to the maximum flow limiter 13.
The speed control command value v1 is set to be lower than the limit value of the pressure control command value 1P, and the speed control command value v1 is set to be slightly higher than the pressure control command value 1P. , I'm trying to yell.

従って、圧力制御指令値y、=CV開度指令値V、とな
ってTBV関度偏差ui1は零となり、また、常時はバ
イパス弁オープニングジヤツキ設定器19は零に設定さ
れていることから、高値選択器20により零が高値選択
されてTBV開度指令値す1.となり、TBV6は全閉
となってCv3だけで圧力制御が行なわれる。
Therefore, the pressure control command value y, = CV opening command value V, and the TBV relation deviation ui1 becomes zero, and since the bypass valve opening jack setting device 19 is normally set to zero, The high value selector 20 selects zero as the high value, and the TBV opening command value 1. Therefore, TBV6 is fully closed and pressure control is performed only by Cv3.

圧力制御運転中に実速度u2が上昇すると、速度制御指
令値す、が減少し、速度制御指令値U、が圧力制御指令
値−v7より低くなるのでcV開度指令値す、は速度制
御指令値V、となり、cv開度は閉方向に制御される。
When the actual speed u2 increases during pressure control operation, the speed control command value S decreases, and the speed control command value U becomes lower than the pressure control command value -v7, so the cV opening command value S, becomes the speed control command The value becomes V, and the CV opening degree is controlled in the closing direction.

この時は圧力制御指令値try>cv開度指令値す、と
なるので、TBV開度偏差υ、1〉oとなり、TBVは
開方向に制御される。
At this time, the pressure control command value try>cv opening command value S, so the TBV opening deviation υ, 1>o, and the TBV is controlled in the opening direction.

すなわち、Cv3の閉によりタービン4に流入する蒸気
量は減少し、余剰蒸気はTBV6に流れ、原子炉1から
見た蒸気流量は一定となり、タービン4の入口蒸気圧力
も一定のままとなる。
That is, by closing Cv3, the amount of steam flowing into the turbine 4 decreases, excess steam flows into the TBV6, the steam flow rate seen from the reactor 1 becomes constant, and the inlet steam pressure of the turbine 4 also remains constant.

上記のように通常の圧力制御運転時には実速度や実圧力
が変動してもCv3およびTBV6の開度が制御される
ことによりタービン入口圧力は一定に制御される。
As described above, during normal pressure control operation, even if the actual speed and actual pressure vary, the turbine inlet pressure is controlled to be constant by controlling the opening degrees of Cv3 and TBV6.

(発明が解決しようとする畷題) 上記のように通常の圧力制御運転時には実速度や実圧力
が変動してもCv3およびTBV6の開度が制御され、
タービン入口蒸気圧力が一定に制御されるので、何ら問
題は起こらないが、Cv閉故障で実圧力U、が上昇した
場合には次のような問題が発生する。
(Problem to be solved by the invention) As mentioned above, during normal pressure control operation, the opening degrees of Cv3 and TBV6 are controlled even if the actual speed and actual pressure change,
Since the turbine inlet steam pressure is controlled to be constant, no problem occurs, but if the actual pressure U increases due to a Cv closing failure, the following problem occurs.

複数台設置されたCv3の内の1弁が閉故障した場合を
想定する。
Assume that one valve among multiple installed Cv3s has a closing failure.

CVI弁閉故障によりタービン4への流入蒸気量が減少
し、実圧力−v5が増加することにより、CV開度指令
値−v8は増加し、CV開度は開方向に制御される。
Due to the CVI valve closing failure, the amount of steam flowing into the turbine 4 decreases and the actual pressure -v5 increases, so the CV opening command value -v8 increases and the CV opening is controlled in the opening direction.

実圧力−zrS が更に増加すると、圧力制御指令値?
 ? >速度制御指令値υ、となり、CV開度指令値υ
。=速度制御指令値13=一定となってV、はV。
When the actual pressure -zrS increases further, the pressure control command value?
? >Speed control command value υ, and CV opening command value υ
. = Speed control command value 13 = constant V, is V.

に抑えられCv開度は一定に制御される。この時、TB
V開度偏差す、1=圧力制御指令値v7−速度制御指令
値υ、〉0 となり、TBV開度は開方向に制御される
The Cv opening degree is controlled to be constant. At this time, T.B.
V opening deviation S, 1 = pressure control command value v7 - speed control command value υ, >0, and the TBV opening is controlled in the opening direction.

Cv開度およびTBV開度が開方向に制御されても実圧
力υ、が更に増加すると、圧力制御指令値せ、=最大流
量制限値となり、TBV開度偏差す、□=最大流量制限
値−速度制御指令値9.: −定となり、TBV開度は
一定に制御される。
Even if the Cv opening degree and the TBV opening degree are controlled in the opening direction, if the actual pressure υ further increases, the pressure control command value becomes = maximum flow rate limit value, and the TBV opening degree deviation □ = maximum flow rate limit value - Speed control command value9. : - constant, and the TBV opening degree is controlled constant.

従って、CV3最大開度は速度制御指令値す8、すなわ
ち設定速度V1により抑えられ、TBV6最大開度は最
大流量制限値−速度制御指令値V3゜すなわち最大流量
制限値−設定速度fユによって抑えられ、Cv3および
TBV6を流れる給蒸気流量はCV閉故障時のCV3最
大開度時蒸気流量+TBV6最大開度時蒸気流量に抑え
られる。
Therefore, the maximum opening degree of CV3 is suppressed by the speed control command value S8, that is, the set speed V1, and the maximum opening degree of TBV6 is suppressed by the maximum flow rate limit value - the speed control command value V3°, that is, the maximum flow rate limit value - the set speed fyu. The supply steam flow rate flowing through Cv3 and TBV6 is suppressed to the steam flow rate at the maximum opening of CV3+the steam flow rate at the maximum opening of TBV6 at the time of CV closing failure.

複数台のCv3の全部が正常な場合には、原子炉1発生
蒸気量く正常時のCV3最大開度時蒸気流量+TBV6
最大開度時蒸気流量が成立するために問題はないが、C
Vl弁閉故障の場合には、CV3最大最大開度時流気流
量常時より小さくなり原子炉1発生蒸気量〉C閉故障時
のCV3最大開度時蒸気流量+TBV6最大開度時蒸気
流量となり、余剰蒸気により原子炉圧力が上昇し原子炉
保護インターロックが作動して原子炉スクラムに至る虞
れがある。
If all of the multiple CV3 units are normal, the amount of steam generated in reactor 1 is equal to the steam flow rate at maximum opening of CV3 during normal operation + TBV6
There is no problem because the steam flow rate at the maximum opening is established, but C
In the case of a Vl valve closing failure, the air flow rate at the maximum opening of CV3 becomes smaller than normal, and the amount of steam generated in the reactor 1 > the steam flow rate at the maximum opening of CV3 at the time of the C closing failure + the steam flow rate at the maximum opening of TBV6, resulting in a surplus. There is a risk that the steam will increase the reactor pressure and activate the reactor protection interlock, leading to a reactor scram.

本発明は複数台のCvの実開度の間の偏差によりCv閉
故障を検出し、Cv閉故障信号によりTBVを強制間し
、これによってタービン入口蒸気圧力または原子炉ドー
ム圧力の上昇を防止し、タービン入口蒸気圧力または原
子炉ドーム圧力の安定な制御を行なうタービン制御装置
を提供することを目的としている。
The present invention detects a Cv closing failure based on the deviation between the actual opening degrees of a plurality of Cvs, forcibly closes the TBV using a Cv closing failure signal, and thereby prevents an increase in turbine inlet steam pressure or reactor dome pressure. It is an object of the present invention to provide a turbine control device that stably controls turbine inlet steam pressure or reactor dome pressure.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の目的を達成するために本発明は原子炉で発生して
タービンに導かれる蒸気の流量を調節する複数台の蒸気
加減弁およびタービンをバイパスする蒸気の流量を調整
するタービンバイパス弁の開度を制御してタービン速度
および、タービン入口蒸気圧力または原子炉ドーム圧力
を制御するタービン制御装置において、 複数台の蒸気加減弁の実開度の間の偏差により蒸気加減
弁閉故障を検出し、蒸気加減弁閉故障信号を出力する蒸
気加減弁閉故障検出部と、この蒸気加減弁閉故障検出部
から出力された蒸気加減弁閉故障信号によりタービンバ
イパス弁を開動作させるタービンバイパス弁強制関開度
設定を出力する信号切換部と、タービンバイパス弁強制
開開度設定をタービンバイパス弁開度指令値に加える加
算部とを設けたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a plurality of steam control valves that adjust the flow rate of steam generated in a nuclear reactor and guided to a turbine, and a flow rate of steam that bypasses the turbine. In a turbine control device that controls the turbine speed and turbine inlet steam pressure or reactor dome pressure by controlling the opening of the turbine bypass valve that adjusts the A steam moderation valve closing failure detection section detects a moderation valve closing failure and outputs a steam moderation valve closing failure signal, and a steam moderation valve closing failure signal output from the steam moderation valve closing failure detection section opens the turbine bypass valve. The present invention is characterized by being provided with a signal switching unit that outputs a turbine bypass valve forced opening setting to be operated, and an addition unit that adds the turbine bypass valve forced opening setting to a turbine bypass valve opening command value. .

(作用) これによってCv3が閉故障した時にもTBV6が強制
間されることによりタービン入口蒸気圧力または原子炉
ドーム圧力の上昇は防止され、またCv3により安定な
圧力制御が行なわれる。
(Function) As a result, even when Cv3 has a closing failure, TBV6 is forcibly closed, thereby preventing an increase in turbine inlet steam pressure or reactor dome pressure, and stable pressure control is performed by Cv3.

(実施例) 本発明の一実施例を第1図に示す。(Example) An embodiment of the present invention is shown in FIG.

第1図は従来の第4図に対して2点鎖線で示す部分が追
加されており、他は第4図と同一である。
FIG. 1 is the same as FIG. 4 except for the addition of a portion indicated by a two-dot chain line to the conventional FIG. 4.

第1図ではCv3の設置台数はn台としている。In FIG. 1, the number of installed Cv3s is n.

CV開閉故障検出24は、第1Cv実開度?、。Is the CV opening/closing failure detection 24 the first CV actual opening? ,.

第2CV実開度V□1.第nCV実開度V1゜を入力し
、これらの実開度の偏差に基づきCv閉故障信号V1.
を出力する。
2nd CV actual opening degree V□1. The n-th CV actual opening degree V1° is input, and the Cv closed failure signal V1.
Output.

信号切換部25はタービンバイパス弁強制開開度設定2
6とリレー接点27により構成され、リレー接点27は
Cv閉故障信号υ、9により閉じられる。このリレー接
点27が閉じられることにより圧力制御指令値す、から
Cv開度指令値V、を減じたTBV開度偏差v11にタ
ービンバイパス弁強制開開度設定が加算器28aにより
加えられ最終的なTBV開度指令値vigとなる。
The signal switching unit 25 is a turbine bypass valve forced opening setting 2
6 and a relay contact 27, and the relay contact 27 is closed by the Cv closing fault signal υ,9. When this relay contact 27 is closed, the turbine bypass valve forced opening setting is added by the adder 28a to the TBV opening deviation v11 obtained by subtracting the Cv opening command value V from the pressure control command value S, and the final value is This becomes the TBV opening command value vig.

第2図にCv3が4弁の場合Cv閉故障検出部24の一
実施例を示す。
FIG. 2 shows an embodiment of the Cv closing failure detection unit 24 when Cv3 has four valves.

第1CV実開度yisと第2CV実開度yitとは加算
器28で減算され、その偏差y、、−y1.が比較器2
9に入力され、偏差が規定値以上の場合に比較器29よ
り第1/第2CV異常信号V2゜が出力される。
The first CV actual opening degree yis and the second CV actual opening degree yit are subtracted by an adder 28, and the deviation y, -y1. is comparator 2
9, and when the deviation is equal to or greater than the specified value, the comparator 29 outputs the first/second CV abnormal signal V2°.

同様に、第1CV実開度f□、と第3CV実開度yzx
とは加算器30で減算され、その偏差V2□−pisが
比較器31に入力され、偏差が規定値以上の場合に比較
器31より第1/第3CV異常信号v2□が出力される
Similarly, the first CV actual opening degree f□ and the third CV actual opening degree yzx
is subtracted by the adder 30, the deviation V2□-pis is input to the comparator 31, and when the deviation is greater than or equal to the specified value, the comparator 31 outputs the first/third CV abnormal signal v2□.

同様に、第1CV実開度す1.と第4CV実開度す2.
とは加算器32で減算され、その偏差す2.−vl、が
比較1133に入力され、偏差が規定値以上の場合に比
較器33より第1/第4CV異常信号す、。
Similarly, the first CV actual opening degree is 1. and 4th CV actual opening degree 2.
is subtracted by the adder 32, and the deviation is subtracted by the adder 32. -vl is input to the comparator 1133, and when the deviation is greater than or equal to the specified value, the comparator 33 outputs the first/fourth CV abnormal signal S.

が出力される。is output.

各異常信号# 、、 、 ? 、、 、 ? 2.は誤
信号による誤検比を検出するための27ウトオブ30シ
ツク34に入力され、2アウトオブ30シツク34は各
異常信号v2゜、v2□、す2.の内の2個以上が成立
している場合に、第1CV閉故障?2sの論理信号を出
力する。
Each abnormal signal # , , ? ,, , ? 2. is input to a 27 out of 30 pick 34 for detecting a false detection ratio due to an erroneous signal, and a 2 out of 30 pick 34 receives each abnormal signal v2°, v2□, 2. If two or more of the following are true, is the 1st CV closed failure? Outputs a 2s logic signal.

同様にして作られた第2CV閉故障り35.第3Cv閉
故障v27.第4CV閉故障す2.の論理信号はオアロ
ジック35に入力され、オアロジック35よりCv閉故
障信号yxsが出力される。
2nd CV closed failure made in the same way 35. 3rd Cv closed failure v27. 4th CV closing failure2. The logic signal is input to the OR logic 35, and the OR logic 35 outputs a Cv closed fault signal yxs.

上記のように1通常の圧力制御運転時にはTBv6は全
閉で、Cv3だけで圧力制御が行なわれている。
As described above, during normal pressure control operation, TBv6 is fully closed and pressure control is performed only by Cv3.

圧力制御運転時にCv閉故障が発生したとすると、実圧
力υ5の上昇開始とほぼ同時にCv開閉故障検出24に
よりCv閉故障が検出され、信号切換部25のリレー接
点27が閉じられる。このためTBV開度偏差V11に
タービンバイパス弁強制開開度設定が加算され、最終的
なTBV開度指令値1r1.が出力されてTBV6は強
制間される。
If a Cv closing failure occurs during pressure control operation, the Cv closing failure is detected by the Cv opening/closing failure detection 24 almost at the same time as the actual pressure υ5 starts to rise, and the relay contact 27 of the signal switching unit 25 is closed. Therefore, the turbine bypass valve forced opening setting is added to the TBV opening deviation V11, resulting in the final TBV opening command value 1r1. is output and TBV6 is forcibly interrupted.

タービンバイパス弁強制開開度設定26を原子炉1発生
蒸気量<CV閉故障時のCV3最大関度時蒸気流量十T
BV6強制開開度時蒸気流量となるように設定すること
により、Cv3およびTBV6で全部の原子炉発生蒸気
を流すことができるので、タービン入口蒸気圧力または
原子炉ドーム圧力の上昇は防止される。
Turbine bypass valve forced opening setting 26 is set as follows: Nuclear reactor 1 generated steam amount < CV3 maximum steam flow rate at CV closing failure 10T
By setting the steam flow rate at the forced opening of BV6, all reactor generated steam can flow at Cv3 and TBV6, thereby preventing an increase in turbine inlet steam pressure or reactor dome pressure.

また、原子炉1発生蒸気量くCv閉故障時のCv3最大
開度時蒸気流量十TBV6強制開開度時蒸気流量であり
、CV閉故障時のCV3蒸気蒸気流量子原子炉1発生蒸
気量BV6強制開関度時蒸気流量となるので、Cv閉故
瞳時のCV3蒸気流量くCv閉故障時のdv3最大最大
開度低蒸気流量り、Cv6は圧力制御指令値V7、すな
わち、実圧力vsに追従して安定に圧力制御を行なう。
In addition, the amount of steam generated in the reactor 1 is the steam flow rate at the maximum opening of Cv3 at the time of a Cv closing failure, and the steam flow rate at the forced opening of TBV6, and the amount of steam generated in the reactor 1 is BV6. Since the steam flow rate is the same at forced opening, CV3 steam flow rate when Cv closed pupil is low, and dv3 maximum maximum opening low steam flow rate when Cv closed failure occurs.Cv6 follows the pressure control command value V7, that is, the actual pressure vs. to perform stable pressure control.

′このように圧力制御運転時にCv閉故障が発生したと
すると、Cv開閉故障検出24によりCv閉故障が検出
され、TBV6が強制間されることによりタービン入口
蒸気圧力または原子炉ドーム圧力の上昇は防止される。
'If a Cv closing failure occurs during pressure control operation in this way, the Cv closing failure is detected by the Cv opening/closing failure detection 24, and the TBV 6 is forcibly closed, thereby preventing an increase in the turbine inlet steam pressure or the reactor dome pressure. Prevented.

また、TBV強制開後のタービン入口圧力または原子炉
ドーム圧力の制御はCv6により安定に行なわれる。
Further, control of the turbine inlet pressure or the reactor dome pressure after the TBV is forced open is stably performed by Cv6.

【発明の効果〕【Effect of the invention〕

以上説明したように本発明によれば、Cv閉故障が発生
してもタービン入口蒸気圧力または原子炉ドーム圧力の
上昇は防止され、また、Cvによりタービン入口蒸気圧
力または原子炉ドーム圧力の安定な制御が行なわれる。
As explained above, according to the present invention, even if a Cv closing failure occurs, an increase in turbine inlet steam pressure or reactor dome pressure is prevented, and Cv stabilizes the turbine inlet steam pressure or reactor dome pressure. Control takes place.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるタービン制御装置の一実施例を示
す機能ブロック図、第2図は本発明の蒸気加減弁閉故障
検出部の一実施例を示す機能ブロック図、第3図は従来
のタービンプラントの一般的な構成を示す構成図、第4
図は従来のタービン制御装置の一例を示す機能ブロック
図である。 3・・・蒸気加減弁   6・・・タービンバイパス弁
20・・・高値選択器   24・・・CV開閉故障検
出25・・・信号切換部  28a =・加算器代理人
 弁理士 則 近 憲 佑 第3図 第4図
FIG. 1 is a functional block diagram showing an embodiment of a turbine control device according to the present invention, FIG. 2 is a functional block diagram showing an embodiment of a steam control valve closing failure detection section of the present invention, and FIG. 3 is a functional block diagram showing an embodiment of a turbine control device according to the present invention. Block diagram showing the general configuration of a turbine plant, No. 4
The figure is a functional block diagram showing an example of a conventional turbine control device. 3...Steam control valve 6...Turbine bypass valve 20...High value selector 24...CV opening/closing failure detection 25...Signal switching section 28a = Adder agent Patent attorney Noriyuki Chika Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 原子炉で発生してタービンに導かれる蒸気の流量を調節
する複数台の蒸気加減弁およびタービンをバイパスする
蒸気の流量を調整するタービンバイパス弁の開度を制御
してタービン速度および、タービン入口蒸気圧力または
原子炉ドーム圧力を制御するタービン制御装置において
、 上記複数台の蒸気加減弁の実開度の間の偏差により蒸気
加減弁閉故障を検出し、蒸気加減弁閉故障信号を出力す
る蒸気加減弁閉故障検出部と、上記蒸気加減弁閉故障検
出部から出力された蒸気加減弁閉故障信号により上記タ
ービンバイパス弁を開動作させるタービンバイパス弁強
制開開度設定を出力する信号切換部と、タービンバイパ
ス弁強制開開度設定をタービンバイパス弁開度指令値に
加える加算部とを設けたことを特徴とするタービン制御
装置。
[Claims] A turbine is manufactured by controlling the opening degrees of a plurality of steam control valves that adjust the flow rate of steam generated in the nuclear reactor and guided to the turbine, and a turbine bypass valve that adjusts the flow rate of steam that bypasses the turbine. In a turbine control device that controls speed, turbine inlet steam pressure, or reactor dome pressure, a steam regulator valve closing failure is detected based on the deviation between the actual opening degrees of the multiple steam regulator valves, and a steam regulator valve closing failure is detected. A steam moderation valve closing failure detection unit outputs a signal, and a turbine bypass valve forced opening degree setting for opening the turbine bypass valve is output based on the steam moderation valve closing failure signal output from the steam moderation valve closure failure detection unit. A turbine control device comprising: a signal switching unit for adding a turbine bypass valve forced opening setting to a turbine bypass valve opening command value;
JP30701690A 1990-11-15 1990-11-15 Turbine controller Pending JPH04179803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30701690A JPH04179803A (en) 1990-11-15 1990-11-15 Turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30701690A JPH04179803A (en) 1990-11-15 1990-11-15 Turbine controller

Publications (1)

Publication Number Publication Date
JPH04179803A true JPH04179803A (en) 1992-06-26

Family

ID=17964012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30701690A Pending JPH04179803A (en) 1990-11-15 1990-11-15 Turbine controller

Country Status (1)

Country Link
JP (1) JPH04179803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594384A1 (en) * 1992-10-19 1994-04-27 General Electric Company System and method for controlling a nuclear reactor upon steam flow control valve failure
US8086148B2 (en) 2008-02-26 2011-12-27 Ricoh Company, Ltd. Electrophotographic image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594384A1 (en) * 1992-10-19 1994-04-27 General Electric Company System and method for controlling a nuclear reactor upon steam flow control valve failure
JPH06201891A (en) * 1992-10-19 1994-07-22 General Electric Co <Ge> Device and method of controlling nuclear reactor
US8086148B2 (en) 2008-02-26 2011-12-27 Ricoh Company, Ltd. Electrophotographic image forming apparatus

Similar Documents

Publication Publication Date Title
JP5271380B2 (en) Flow compensation for turbine control valve testing
JPH04179803A (en) Turbine controller
JP4301681B2 (en) Steam turbine controller for nuclear power plant
JPH039003A (en) Turbine control device
JPH0343605A (en) Turbine controlling device
JPH0343606A (en) Turbine controlling device
JPS6142084B2 (en)
JPH0849505A (en) Steam valve testing device
JPH04214907A (en) Turbine controlling device
JPH0343603A (en) Turbine controlling device
JPH03149303A (en) Steam turbine control device
JP2863581B2 (en) Turbine steam control valve controller
JPH02298606A (en) Turbine control device
JPS6039845B2 (en) Nuclear turbine pressure control device
JPS62107205A (en) Controller for turbine
JPH026795A (en) Main steam isolation valve for nuclear power station
JPH09287407A (en) Steam valve control device
JPS59221407A (en) Diagnosing device for abnormality of adjusting valve in power plant
JPH05296001A (en) Steam pipeline
JPS61215404A (en) Control device for steam turbine
JPH04366798A (en) Turbine controller
JP2823347B2 (en) Turbine control device
JPS63117298A (en) Turbine controller
JPH02143001A (en) Minimum flow valve controller of feed water pump
JPH10267214A (en) Waste heat recovery boiler controller