JPS5889950A - Production of honeycomb catalyst having improved thermal shock resistance - Google Patents

Production of honeycomb catalyst having improved thermal shock resistance

Info

Publication number
JPS5889950A
JPS5889950A JP56186943A JP18694381A JPS5889950A JP S5889950 A JPS5889950 A JP S5889950A JP 56186943 A JP56186943 A JP 56186943A JP 18694381 A JP18694381 A JP 18694381A JP S5889950 A JPS5889950 A JP S5889950A
Authority
JP
Japan
Prior art keywords
catalyst
honeycomb
coating
shock resistance
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56186943A
Other languages
Japanese (ja)
Other versions
JPS621306B2 (en
Inventor
Tetsutsugu Ono
哲嗣 小野
Shoichi Ichihara
市原 昭一
Tomohisa Ohata
知久 大幡
Sadao Terui
照井 定男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP56186943A priority Critical patent/JPS5889950A/en
Priority to CA000416170A priority patent/CA1194850A/en
Priority to US06/451,475 priority patent/US4483940A/en
Publication of JPS5889950A publication Critical patent/JPS5889950A/en
Publication of JPS621306B2 publication Critical patent/JPS621306B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve thermal shock resistance markedly, by coating water soluble org. polymer compds. on a honeycomb carrier prior to coating of almina. CONSTITUTION:Org. polymer compds of >=200mol.wt., and <=500cp viscosity (e.g.; wheat flour, potatoes, gloiopeltis glue, soybean casein, gum arabic, methyl cellulose, polyacrylic acid) are coated on the surface of a honeycomb carrier. Thereafter, a catalyst component is deposited thereon and is calcined. The coating of the org. polymer compds. on the honeycomb catalyst is accomplished by immersing the honeycomb catalyst in an aq. soln. of the water soluble org. polymer compds. Taking-out the carrier from the soln. after immersion, blowing away the excess soln. in air flow and drying the same at an ordinary temp. or <=200 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はハニカム触媒の製法に関するものである。評−
には耐サーマ、ルショック性の改良された一体構造を南
するセラミツクツ1ニカム触媒の製法に関するものであ
る。 一般にハニカム触如は一体構造を杢するllllI体上
に主として活性アルミナ、白金、パラジウム、ロジウム
等の白金族金属より々る触媒成分、さらにこれらに銅、
ニッケル、コバルト、鉄等の遷移金楓又はそのへ化物、
セリウム、ランタン等の希土類元紮等を必tに応じて船
台せた触媒成分が相持されたものである。 このハニカム触kFi自動車擲の内燃機関のυF気気ガ
ス中−す化炊巣、炭化;At1−1窒素酸化物の0化処
理用および一般産業用、例えば廃ガスの悦臭処理用に広
く使用されている。このうち特に自動車用に使用される
場合には、運転条件により使用される触媒の温Kが刻々
変化する。 ところで一体構造を肩するハニカム触1mハ、セラZツ
クハニカム担体とその相体に相持した触媒成分の間にお
いてその熱膨張係数が旌々る九め相体と触媒成分の間に
歪みが出来やすく、そのため激しいm&変化サイクルの
くb返1のうちにハニカム触媒はクラックを発生
The present invention relates to a method for manufacturing a honeycomb catalyst. Review
The present invention relates to a method for manufacturing a ceramic one-nicum catalyst having an integrated structure with improved thermal resistance and shock resistance. In general, honeycomb fibers have a monolithic structure on which a catalyst component mainly consists of activated alumina, platinum group metals such as platinum, palladium, and rhodium, and copper, copper, etc.
Transition gold such as nickel, cobalt, iron, etc. or its hemide;
Catalyst components containing rare earth elements such as cerium and lanthanum are included as necessary. This honeycomb touch is widely used for the υF air gas in the internal combustion engine of the automobile, for the 0ization treatment of At1-1 nitrogen oxides, and for general industrial purposes, such as the pleasant odor treatment of waste gas. has been done. Among these, especially when used in automobiles, the temperature K of the catalyst used changes from moment to moment depending on the operating conditions. By the way, when the honeycomb structure is 1 m long, the coefficient of thermal expansion is variable between the Cera Z honeycomb carrier and the catalyst component supported on the phase body, and distortion tends to occur between the phase body and the catalyst component. As a result, honeycomb catalysts develop cracks during the intense m&change cycle.

【7、
それが徐々に成長シ1、最腔の場合には触媒自体か二ヶ
以上に割れ、使用上支障を来たす危険性が指摘されてい
る。 製にハニカム触媒かエンジン出口に近い所に設置された
場合には、その排気iiA度も高く、従って使用温度差
が大きくなるのでノ\ニカムfIffi媒の物理的mt
le、%に耐サーマルショック性は特に強く要求される
ととKなるのである。 本発明1Jこの賢求を充分に洒址させるセラ定ツクハニ
カムM媒の製法を提供することを目的とする。 本実1省らはこの目的を満足きせるために鋭意横肘した
結果、ノ・二カム相体にアルミナコーティングを残す前
に水溶性の高分子1機化合物をコーティングすると振動
および排気ガス流によるノにカム触媒からの触媒コート
層の剥離等の実用との問題を引きおこすことなく、かつ
触媒の活性にも全く悪影曽を及はさずに耐サーマルショ
ック性を著しく向上させることが出来ることを見出し本
発明を完成させることが出来たのである。 本発明の目的を更に説明する0通常の方法V(おいては
ハニカムとその上に相持した触tIiは先に述べた棟r
(熱膨張係数が廊なっているた約、使用中の急激な輻度
変化の影智を自接受けることに々る。 製に平均細孔径1〜]0ンクロン程度の細孔を廟するセ
ラミックハニカムはハニカム相体の゛橿孔内に熱膨張係
数の!!々るアルミナ等の触媒成分が浸入相持されるの
で両者の熱膨張係数の差によるへ了クラック発生率が謳
まる傾向にある。本実甲においてはこのハニカム相体と
相持触媒成分の熱膨張率のMKよると見られるw体クラ
ック発生を11η上f ”l ;(め:て一旦都体子性
の弔機化合物をハニカム触媒の表面にコーティングし、
その上に触媒成分を相持、焼成すれば予めコーティング
した前記高分子性有機化合物は燃えて無くなるため、)
飄二カ五和本と相持された触媒5ν分の間にはを、外的
に薄膜相当の間隙が生ずるため、前記の熱膨張差による
歪発生を緩和することができる。そして、本発明の方法
によると先にコーティングする高分子壱機什台物のコー
テイング量により、即ち、コーテイング膜の厚さを変え
ることによし、目的とする耐サーマルショック性の程要
をメ−えるごとが出来る。 本発明に使用される高分子1隈化合物としてはその取扱
い上水溶性であることが望ましい。使用される高分子化
合物の分子量としては200以上であることが好ましい
、特に好ましくは500以上である。使用される倉はそ
の粘度により陳述され、500Cp(センチボイズ)以
下、好ましくけ200 ep以下、特に好ましくけ10
0 ep以下である。そして、本発明に使用される高分
子1機化合物はコーティング後°乾燥した後、いわゆる
皮膜を形成し、しかも次の操作である触媒取分相持の除
に当核触媒成分含鳴水性媒体と親和性をある程厩士する
性餉を保付するものが望ましい。より具体的に好ましい
水溶性高分子性MW化合物を挙げると、例えば、各種の
殿粉(小麦、コーン、ばれいしよ、タピオカ)、ふのセ
、大豆カゼイン、−アラビアガム、トラガントガムなど
の天然ガム類、ニカワtカゼイン、各種flu工殿粉、
殿粉銹導体、メチルセルロース、エチルセルロース、ヒ
ドロキシエチルセルロース、カルボキシメチルセルロー
ス、各糧ポリビニル了ルコー髪、ポリアクリル酩および
その誘導体、マレイン酸系共重合体−1えば酢酸ビニー
ル無水マレイン鈑共重合体、スチレンマレイン番共重合
体などが挙げられ、それぞれ単独および2種以上の混合
物で使用することか出来る・成JI!性とその後の触媒
用持の芥易さを考慮すルト%に好ましくは各種ポリビニ
ルアルコール、ポリアクリル麺およびその誘導体か挙け
られる。 上記1分子性壱機化合物の【用量としては水溶液態Jf
(1,5〜SO容”ii俤の間であれは使用出来るでき
る。 セラミックハニカ五指体へのコーティング方法はハニカ
ム担体を上記水浴性品分子性有機化合物水浴液中に浸漬
しく常圧、減圧、加圧状態いずれでも良い)、その徒取
出し、例えば空気気流中で余分の浴液を吹きとげし、常
IMまたFi200℃以下で、即ち水溶性高分子性冷機
化合物が燃暁等で変債しない温度で乾燥するか、場合に
よってはそのまま次の触媒相持操作に供する。この水溶
性高分子性有機化合物のコーテイング後の触Isル分相
持は通常の方法で行ないつる。 本発明に使用されるセラミックハニカム担体は通常使用
されつるものはいずれも使用可能であり、とくにコージ
ェライト、ムライト、αアルミナ、ジルコンなどの耐熱
性セラミックが好ましい。 以下に本発明を実施例により具体的KW明するが、不発
−祉これら実施例のみに限定されるものではない。 実施例 1 分子t500でかつ完全ケン化したポリビニ、ルチルコ
ール(クラレ■製PVA105)の51量チ水溶液】、
Otを作゛す300セル/平方インチで直径90m1m
 s長さ11Oq/mのコージェライト製セラミックハ
ニカム(平均細孔径4ミクロン)t、上記液の中に2分
間完全に浸漬させて取出し、空気気流中で余分の溶液を
吹き飛ばし、120℃で約5時間乾燥したm lk、 
k *約IFの電量増加か社められた。この1.0tに
2分間浸漬させ、上記同様取出l−た彼、空気気流中で
余分のスラリーを吹き飛ばし、120℃で乾燥し、次い
で700℃で焼成した。このチルずす&分のコーティン
グ工程を2回〈9返し、約509のアルミナが相持して
いた。その後1.4上記アルミナ相持担体を浸油させ、
1時r&+’l後取出し、120℃でIIi燥し、次い
で700℃で焼成し、完成触媒をえた。 実施例 2 分子1i1706でかつ約80憾ケン化したポリビニル
アルコール(スラリ■fiPVA217 )03重量4
水溶液を使う以外は全て実施例1と同様にして完成触媒
をえた。 実施例 3 分子量1700でかつ完全ケン化したポリビニルアルコ
ール(クラレ@與pvA1t7)の3重量4A溶液を使
う以外は全て実施例1と同様にして完成触媒をえた。 実施例 4 e子量約4000のポリアクリル酪アンモニウムのSX
t憾水溶水溶液う以外は全て実施例1と同@にして完成
触媒をえた。 実施例 5 コーンスター8チの5g111%水浴液を使う以外は全
て実施例1と同@Kして完成触媒をえた。 比較例 l 実施例1の方法において被膜処^ツを施すことな〈実施
例1と同様にして完成触媒をえた。 実施例 6 実施例1と同様の方法において分子量1700でかつ完
全ケン化したポリビニルアルコール(スラリ■l1lP
VA117)の3重量憾水溶液′を用いて被膜処理を施
した実施例1と同様のコージェライト担体を、次に比表
面約100g”/fの活性アルミナ7509を25fの
硝酪アルミニウムを含む7600Cの水浴液の中に入れ
磁製ボールミルで16時1′11湿式粉砕したステ11
−中に2分間浸漬させ、空気気流中で余分のスラリーを
吹き飛はし、120℃で乾燥し、次いで500℃で焼成
し、約709のアルミナを相持、させた、その後0.4
7 Fの白金を含む塩化白金酪と(+、23 fのパラ
ジウムを含む増什パラジウム塩ル水溶液を混合させた触
媒液1tを約50℃に加熱し、上記アルミナ相持担体を
fgかさせ、30分抜取出し、120℃で乾燥し、次い
て5容Ili憾の水素を含む窒素気流中500℃で1時
間還元焼欣し、完敗触媒をえた。 実施例 7 分子量500でかつ完全ケン化したポリビニルチルコー
ル(クラレ軸製PVA105)の1011量係水浴液を
使う以外は全て実施例6と同様にして完成触媒をえた。 比111e  2 実輪例6の方法において被膜処理を施すことなく実施例
6と同様にして完成触媒をえた。 実施例 8 実施例1〜7および比較例1.2でえられた各触媒の耐
サーマルショック性の試験を次の様にして実施
[7,
It has been pointed out that if it grows gradually, the catalyst itself may break into two or more pieces in the case of the innermost cavity, which may cause problems in use. If a honeycomb catalyst is installed near the engine outlet, the exhaust temperature will be high, and the operating temperature difference will be large, so the physical mt of the honeycomb catalyst will be
Thermal shock resistance is especially strongly required in le,%. The object of the present invention is to provide a method for producing a ceramic honeycomb M medium that fully satisfies this goal. As a result of careful efforts to satisfy this objective, the Ministry of Honjitsu and colleagues found that coating a water-soluble polymeric monomer compound before leaving an alumina coating on the Ni-Cam phase would cause vibrations and exhaust gas flow. It has been found that thermal shock resistance can be significantly improved without causing practical problems such as peeling of the catalyst coating layer from the cam catalyst, and without having any negative impact on the activity of the catalyst. Heading: We were able to complete the present invention. To further explain the object of the present invention, the conventional method V (in which the honeycomb and the mutual contact tIi on it are
(Since the coefficient of thermal expansion is narrow, it is likely to be affected by rapid changes in intensity during use.) In honeycomb, a catalyst component such as alumina having a different thermal expansion coefficient is infiltrated into the pores of the honeycomb phase body, so there is a tendency for the occurrence of cracks to occur due to the difference in the thermal expansion coefficient between the two. In this practical example, the generation of w-type cracks, which is considered to be due to the MK of the coefficient of thermal expansion of the honeycomb phase and the supporting catalyst component, is suppressed by 11η above f''l; coated on the surface of
If a catalyst component is added on top of it and fired, the pre-coated polymeric organic compound will burn and disappear.)
Since a gap equivalent to a thin film is externally created between the 5v portion of the catalyst and the supported catalyst, the generation of distortion due to the difference in thermal expansion can be alleviated. According to the method of the present invention, the desired level of thermal shock resistance can be determined by changing the amount of coating on the polymer fixture to be coated first, that is, by changing the thickness of the coating film. I can do things. The polymer compound used in the present invention is desirably water-soluble for handling purposes. The molecular weight of the polymer compound used is preferably 200 or more, particularly preferably 500 or more. The viscosity used is determined by its viscosity, preferably below 500 Cp (centiboise), preferably below 200 ep, particularly preferably below 10 ep.
It is less than 0 ep. After being coated and dried, the polymer monomer compound used in the present invention forms a so-called film, and has an affinity with the aqueous medium containing the core catalyst component, except for the next operation, which is to separate and support the catalyst. It is desirable to have something that maintains the sexiness to a certain extent. More specifically preferred water-soluble polymeric MW compounds include, for example, various starches (wheat, corn, potato, tapioca), funose, soybean casein, and natural gums such as gum arabic and gum tragacanth. , glue casein, various flu starch powders,
Starch conductor, methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, various polyvinyl esters, polyacrylic alcohol and its derivatives, maleic acid copolymers-1, such as vinyl acetate anhydride maleic copolymer, styrene maleic Examples include copolymers, which can be used alone or in a mixture of two or more. Preferably, various polyvinyl alcohols, polyacrylic noodles, and derivatives thereof are included in the rut%, taking into consideration the properties and ease of use of the catalyst afterward. [Dose of the above monomolecular compound is Jf in aqueous solution]
(Anything between 1.5 and SO volume can be used.) The coating method for the ceramic honeycomb pentate bodies involves immersing the honeycomb carrier in the above-mentioned water bathing product molecular organic compound water bathing solution at normal pressure, reduced pressure, (Any pressurized state is fine), take it out, for example, blow off the excess bath liquid in an air stream, and keep it under normal IM or Fi 200℃, that is, the water-soluble polymeric refrigerant compound will not be deformed due to burning etc. The ceramic used in the present invention is dried at a high temperature or, if necessary, is directly subjected to the next catalyst-supporting operation.After coating with the water-soluble polymeric organic compound, the catalyst-supporting step is carried out by a conventional method. Any commonly used vine carrier can be used as the honeycomb carrier, and heat-resistant ceramics such as cordierite, mullite, α-alumina, and zircon are particularly preferred. -Welfare is not limited to these examples.Example 1 51% aqueous solution of completely saponified polyvinyl rutile alcohol (PVA105 manufactured by Kuraray ■) with a molecular weight of t500],
300 cells/square inch to make a diameter of 90m1m
A cordierite ceramic honeycomb (average pore size 4 microns) with a length of 11 Oq/m was completely immersed in the above solution for 2 minutes, taken out, blown off the excess solution in an air stream, and heated at 120 °C for about 5 minutes. time dried m lk,
k *The company was criticized for increasing the amount of electricity by about IF. The sample was immersed in 1.0 t of water for 2 minutes, taken out in the same manner as above, blown off excess slurry in an air stream, dried at 120°C, and then fired at 700°C. This chilled coating process was repeated twice (9 times), and about 509 alumina was mixed. After that, 1.4 the above alumina-supported carrier is immersed in oil,
After 1 hour, it was taken out, dried at 120°C, and then calcined at 700°C to obtain a finished catalyst. Example 2 Saponified polyvinyl alcohol (slurry ■fiPVA217) with molecules 1i1706 and about 80% weight 4
A completed catalyst was obtained in the same manner as in Example 1 except that an aqueous solution was used. Example 3 A complete catalyst was obtained in the same manner as in Example 1, except that a 3 weight 4A solution of completely saponified polyvinyl alcohol (Kuraray@Yo pvA1t7) having a molecular weight of 1700 was used. Example 4 SX of polyacrylic butylammonium with an e molecular weight of about 4000
A completed catalyst was obtained using the same procedure as in Example 1 except for the aqueous solution. Example 5 A completed catalyst was obtained in the same manner as in Example 1 except that 5 g of 8 inches of corn star and 111% water bath solution was used. Comparative Example 1 A finished catalyst was obtained in the same manner as in Example 1 except that the coating treatment was not performed using the method of Example 1. Example 6 Polyvinyl alcohol with a molecular weight of 1700 and completely saponified (slurry
The same cordierite support as in Example 1 was coated with a 3-weight aqueous solution of VA117), and activated alumina 7509 with a specific surface of about 100 g"/f was coated with 7600C containing 25 f of buty-aluminum nitrate. Step 11 was placed in a water bath and wet-pulverized at 16:1'11 using a porcelain ball mill.
- immersed in alumina for 2 minutes, blown off excess slurry in a stream of air, dried at 120°C, then calcined at 500°C to incorporate about 709 alumina, then 0.4
1 t of catalyst solution prepared by mixing platinum chloride containing 7 F of platinum and an aqueous solution of palladium chloride containing (+, 23 F of palladium) was heated to about 50°C, and the alumina co-supported carrier was evaporated to 30 Fg. A portion was taken out, dried at 120°C, and then reduced and sintered at 500°C for 1 hour in a nitrogen stream containing 5 volumes of hydrogen to obtain a completely defeated catalyst. Example 7 Polyvinyl having a molecular weight of 500 and completely saponified A completed catalyst was obtained in the same manner as in Example 6, except that a 1011-volume water bath liquid of Chirukoru (PVA105 manufactured by Kuraray Axis Co., Ltd.) was used. A completed catalyst was obtained in the same manner as in Example 8. The thermal shock resistance test of each catalyst obtained in Examples 1 to 7 and Comparative Example 1.2 was carried out as follows.

【た。即
ち、各試料を15mmの1=みのムライト板の架台の上
に乗せ、各温度にセットされた電気炉の中へ30分入れ
、30分後、室温中へ架台と共に取出し、30分放冷す
る。この一連の加熱、冷却を3回くり返、したのち触媒
に明確々ワレが発生しなければ次に50℃づつ電気炉の
温度を上げて上記同様のテストをくり返した。えられた
結果は次の第1表の辿りであるO 牙1表 第1表によれは本発明による各実施例はいずれも各比1
例より優れていることがわかる。 実−例 9 実伽例1〜7pよび比較例1,2でえられた各触媒の剥
離度の試験を次の様にして実施した。 即ち、上記の各試料をカッターで直径、高さ共に25.
4■に切断し150℃で充分に乾燥した後、各々の試料
を4500Cの木を入れた5000Cのトルビーカーの
中央に宙づりKL、、超音波発振器の出刃を200W発
生させながら20分間保持l1.20分抜水中に飛散し
た触謀粉を全て濾過L2%500℃で焼成した。 剥離度の計算は次式によって行った。 えられた結果は次の牙2表の通りである。 第2表 実施例 1  0.12重重量 2     0.11# 30.14# 40.15# 50.15# 比較例 10,13 1 実施例 60.10# t      7     0.12#比較例 20.
14# 第2表によれば各実施例と各比較例の間には剥離度の差
Fiuめられなかった。 実施例 10 実施例1〜7および比1#例】、2でえられた各触媒の
活性試験を次の様にして行った。 即ち、上記の各試料をカッターで直径33■1長さ76
■に切断し、hマルチコンバーターに人れ4気11i2
,0OOCCのエンジンを用いて触媒入口温度750℃
で100時間空間77100,000hr−1空燃比】
5,5で台上納入試験を′!J!施した。耐久テスト前
後の試料を中間速&100,000hr  ’空燃比1
5.5で触媒の活性を脚化水集(HC)および−酸什炭
素(CO)の浄化率として評価した結果は第3表 第3表によれは各央雨例と比参例の間には活性の差は紹
められなかった。
【Ta. That is, each sample was placed on a stand made of a 15 mm mullite plate, placed in an electric furnace set at each temperature for 30 minutes, and after 30 minutes, taken out to room temperature along with the stand, and left to cool for 30 minutes. do. This series of heating and cooling was repeated three times, and if no obvious cracking occurred in the catalyst, the temperature of the electric furnace was increased by 50° C. and the same test as above was repeated. The results obtained are as shown in Table 1 below. According to Table 1, each example according to the present invention has a ratio of
It turns out that this is better than the example. Practical Example 9 The peeling degree of each catalyst obtained in Practical Examples 1 to 7p and Comparative Examples 1 and 2 was tested as follows. That is, each of the above samples was cut with a cutter to a diameter and height of 25 mm.
After cutting into 4 pieces and thoroughly drying at 150°C, each sample was suspended in the center of a 5000C torbeaker containing 4500C wood and held for 20 minutes while generating 200W of blade power from an ultrasonic oscillator. All of the filtrate powder scattered in the separated water was calcined at 500°C with 2% filtration. The degree of peeling was calculated using the following formula. The results obtained are shown in Table 2 below. Table 2 Example 1 0.12 Weight 2 0.11# 30.14# 40.15# 50.15# Comparative example 10, 13 1 Example 60.10# t 7 0.12# Comparative example 20.
14# According to Table 2, there was no difference in peelability between each Example and each Comparative Example. Example 10 Examples 1 to 7 and Ratio 1# The activity test of each catalyst obtained in Example 1 and 2 was conducted as follows. That is, each of the above samples was cut with a cutter into a diameter of 33 cm and a length of 76 cm.
■ Cut it to h multi converter and put it in 4ki 11i2
,0OOCC engine with catalyst inlet temperature of 750℃
100 hours space 77100,000hr-1 air fuel ratio]
Bench delivery test at 5,5'! J! provided. Samples before and after durability test at intermediate speed &100,000hr' air fuel ratio 1
5.5, the catalyst activity was evaluated as the purification rate of hydrocarbon (HC) and -oxycarbon (CO), and the results are shown in Table 3. No difference in activity was found.

Claims (2)

【特許請求の範囲】[Claims] (1)一体構造を有するセラミツクツ・二カム触皺の製
法において触媒成分を相持する前に、予めハニカム相体
上に水浴性高分子性有機化合物被膜を形成させること−
を特徴とする耐サーマルショック性の改良されたセラ建
ツクノー二カム触媒の製造方法。
(1) In the manufacturing method of ceramics/two-cam touch wrinkles having an integral structure, a water-bathable polymeric organic compound film is previously formed on the honeycomb phase body before the catalyst component is added thereto.
A method for producing a Cera-containing Tsukuno Nikam catalyst with improved thermal shock resistance, characterized by:
(2)  水浴性高分子性有機化合物がポリビニルアル
コールであることを特徴とする特許請求の範囲(1)記
載の方法・
(2) The method according to claim (1), wherein the water bathing polymeric organic compound is polyvinyl alcohol.
JP56186943A 1981-11-24 1981-11-24 Production of honeycomb catalyst having improved thermal shock resistance Granted JPS5889950A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56186943A JPS5889950A (en) 1981-11-24 1981-11-24 Production of honeycomb catalyst having improved thermal shock resistance
CA000416170A CA1194850A (en) 1981-11-24 1982-11-23 Method for manufacture of honeycomb catalyst
US06/451,475 US4483940A (en) 1981-11-24 1982-12-20 Method for manufacture of honeycomb catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186943A JPS5889950A (en) 1981-11-24 1981-11-24 Production of honeycomb catalyst having improved thermal shock resistance

Publications (2)

Publication Number Publication Date
JPS5889950A true JPS5889950A (en) 1983-05-28
JPS621306B2 JPS621306B2 (en) 1987-01-12

Family

ID=16197431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186943A Granted JPS5889950A (en) 1981-11-24 1981-11-24 Production of honeycomb catalyst having improved thermal shock resistance

Country Status (1)

Country Link
JP (1) JPS5889950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529775A (en) * 2005-02-14 2008-08-07 コーニング インコーポレイテッド Coated ceramic catalyst support and method
WO2012161833A1 (en) * 2011-03-30 2012-11-29 Corning Incorporated Methods for coating ceramic catalyst supports with base coatings and ceramic catalyst supports having base coatings
JP2014105222A (en) * 2012-11-22 2014-06-09 San Nopco Ltd Viscosity-reducing agent, slurry for exhaust emission control catalyst and method of producing the same, and internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529775A (en) * 2005-02-14 2008-08-07 コーニング インコーポレイテッド Coated ceramic catalyst support and method
EP1855800A4 (en) * 2005-02-14 2009-07-01 Corning Inc Coated ceramic catalyst supports and method
WO2012161833A1 (en) * 2011-03-30 2012-11-29 Corning Incorporated Methods for coating ceramic catalyst supports with base coatings and ceramic catalyst supports having base coatings
CN103459028A (en) * 2011-03-30 2013-12-18 康宁股份有限公司 Methods for coating ceramic catalyst supports with base coatings and ceramic catalyst supports having base coatings
JP2014510631A (en) * 2011-03-30 2014-05-01 コーニング インコーポレイテッド Method for coating ceramic catalyst support with undercoat and ceramic catalyst support with undercoat
JP2014105222A (en) * 2012-11-22 2014-06-09 San Nopco Ltd Viscosity-reducing agent, slurry for exhaust emission control catalyst and method of producing the same, and internal combustion engine

Also Published As

Publication number Publication date
JPS621306B2 (en) 1987-01-12

Similar Documents

Publication Publication Date Title
US4483940A (en) Method for manufacture of honeycomb catalyst
JP2002177794A (en) Ceramic catalytic body and ceramic support
JP2004358463A (en) Method for manufacturing palladium three way catalyst of double layered coating structure
JP2013502316A5 (en)
JP2006231280A (en) Solid oxidation catalyst for combustion
JPS6051544A (en) Oxidizing catalyst
JPS5889950A (en) Production of honeycomb catalyst having improved thermal shock resistance
JP2008136979A (en) Catalyst for purifying exhaust gas and its manufacturing method
JPS6051545A (en) Oxidizing catalyst
JPS6051543A (en) Oxidizing catalyst
JP4540785B2 (en) Exhaust gas purification catalyst molding
JPS621543B2 (en)
JPH04250852A (en) Catalyst to oxidize carbon-containing compound and its production
CN111250124A (en) Preparation method of carrier with composite coating
JPH01142208A (en) Filter for collecting diesel particulate
JPS5939346A (en) Preparation of ceramic honeycomb type catalyst carrier
JPH01115458A (en) Production of catalyst for purification of waste gas
JPS6137979B2 (en)
JP2010099632A (en) Apparatus for purifying exhaust gas
JPH02198641A (en) Catalyst and production thereof
JPH03101840A (en) Catalytic body for high temperature combustion
JPS59196740A (en) Formation of porous alumina coating film on inorganic carrier
JPH03101839A (en) Catalytic body for high temperature combustion
JPS58183948A (en) High temperature combustion catalyst
JPH04131127A (en) Apparatus for purifying exhaust gas