JPS5939346A - Preparation of ceramic honeycomb type catalyst carrier - Google Patents

Preparation of ceramic honeycomb type catalyst carrier

Info

Publication number
JPS5939346A
JPS5939346A JP57148778A JP14877882A JPS5939346A JP S5939346 A JPS5939346 A JP S5939346A JP 57148778 A JP57148778 A JP 57148778A JP 14877882 A JP14877882 A JP 14877882A JP S5939346 A JPS5939346 A JP S5939346A
Authority
JP
Japan
Prior art keywords
ceramic honeycomb
activated alumina
coating
catalyst carrier
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57148778A
Other languages
Japanese (ja)
Inventor
Masanori Obara
小原 正典
Masato Tsuji
正人 辻
Katsuyoshi Fujishima
藤島 勝好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYATARAA KOGYO KK
Original Assignee
KIYATARAA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYATARAA KOGYO KK filed Critical KIYATARAA KOGYO KK
Priority to JP57148778A priority Critical patent/JPS5939346A/en
Publication of JPS5939346A publication Critical patent/JPS5939346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic honeycomb catalyst carrier excellent in adhesiveness with an activated alumina film, by a method wherein an org. polymer film is formed to a structural body and coated with activated alumina. CONSTITUTION:In providing a catalyst carrier by coating a ceramic honeycomb strctual body with activated alumina, an org. polymer solution with a concn. of 0.5-2wt% prepared by dissolving polyethylene, polystyrene, polypropylene, polyester or the like in a proper solvent is applied to the ceramic honeycomb structural body and the excessive polymer solution is blown off by compressed air. Subseqnetly, the coated one is dried by hot air to form a polymer film. In the next step, the polymer film is coated with an activated alumina slurry and the coated honeycomb structural body is dried and baked to form an alumina film.

Description

【発明の詳細な説明】 この発明は内燃機関より排出される有害成分を無害化ま
たは除去するだめの触媒の支持体として使われるセラミ
ツクツ・ニカム触媒坦体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic nicium catalyst carrier used as a support for a catalyst for detoxifying or removing harmful components discharged from an internal combustion engine.

セラミツクツ・ニカム構造体はよく知られているように
その間孔率の高いことによる排気抵抗の小さいこと、粒
状触媒に比してケースの放熱が少ないため暖機特性が優
れていること、また構造上物理的摩耗がないため、振動
や排気の脈動の大きい内燃機関の排気ガス浄化用触媒の
坦体として好適なものである。
As is well known, the ceramic/nicum structure has low exhaust resistance due to its high porosity, and has excellent warm-up characteristics due to less heat dissipation from the case compared to granular catalysts. Since there is no physical abrasion, it is suitable as a carrier for catalysts for purifying exhaust gas in internal combustion engines, where vibrations and exhaust pulsations are large.

しかしながらセラミックハニカム構造体は高熱な排気ガ
スに耐えるために通常コーディエライト、ムライト、α
−アルミナまたは窒化速素といった無機質で作られてお
シかかる耐火物をそのま壕触媒坦体として利用し表面に
触媒物質を担持させても実用上必要とされる性能は得ら
れないのが普通である。
However, in order to withstand high-temperature exhaust gases, ceramic honeycomb structures are typically made of cordierite, mullite, or
-Using a refractory made of inorganic materials such as alumina or fast nitrogen nitride as a trench catalyst carrier and supporting a catalytic material on its surface usually does not provide the performance required for practical use. It is.

その理由はセラミックハニカム構造体を構成している耐
火物が所定の強度を得るために比較的高温で処理される
ので比表面積が小さくなり触媒金属の分散件が低下する
ためである。
The reason for this is that the refractory constituting the ceramic honeycomb structure is treated at a relatively high temperature in order to obtain a predetermined strength, so the specific surface area becomes small and the dispersibility of the catalytic metal decreases.

そこで一般に上記セラミックハニカム構造体の表面層に
アルミナ等の酸化物の被膜を形成することによシ触媒金
属としての白金(Pt)、パラジウム(Pd ) 、ロ
ジウム(Rh)などの貴金属を付着させ用いている。
Therefore, in general, a coating of an oxide such as alumina is formed on the surface layer of the ceramic honeycomb structure, and noble metals such as platinum (Pt), palladium (Pd), and rhodium (Rh) are attached as catalyst metals. ing.

このセラミックハニカム構造体に触媒的に有効な活性ア
ルミナのコーティング被膜を形成することによって良好
な触媒坦体に改質できることは、米国特許第3,565
,830号によυ開示されており、コーティング方法も
この米国特許明細書中に記載されている。この方法は(
イ)活性アルミナスラリー液中にセラミックハニカム構
造体を浸漬する方法、またはセラミ、クツ・ニカム構造
体に活性アルミナスラリー液を流しかける方法および(
ロ)セラミックハニカム構造体に真空容器中で活性アル
ミナスラリー液をコーティングする方法、である。これ
らの方法によシ活性アルミナスラリー液をセラミ、クツ
・ニカム構造体の表面層に塗布した後、圧縮空気によシ
余分なコーテイング液を吹き払う。しかる後に乾燥、焼
成を行い活性アルミナ被膜を形成する。
U.S. Pat. No. 3,565 discloses that this ceramic honeycomb structure can be modified into a good catalyst carrier by forming a catalytically effective active alumina coating.
, 830, and a coating method is also described therein. This method is (
b) A method of immersing a ceramic honeycomb structure in an activated alumina slurry, or a method of pouring an activated alumina slurry onto a ceramic, shoe-nicum structure, and (
b) A method of coating a ceramic honeycomb structure with an activated alumina slurry in a vacuum container. After applying the activated alumina slurry liquid to the surface layer of the ceramic or shoe-nicum structure by these methods, the excess coating liquid is blown off with compressed air. Thereafter, drying and firing are performed to form an activated alumina film.

しかしながら上述の方法の欠点として、セラミックハニ
カム構造体の細孔内に活性アルミナスラリーが密接に入
シ込むため、セラミックノ−ニカム構造体と活性アルミ
ナ被膜との密着性が極度に高められている。したがって
、このような体を使用して熱衝撃試験を実施すると、セ
ラミックハニカム構造体の細孔内に入シ込んだ、一般的
にセラミックハニカム構造体を構成するセラミックより
熱膨張率の高い活性アルミナの影Vを受はセラミックハ
ニカム構造体に応力がかかシセラミックハニカム構造体
に亀裂を生じて割れ易くなることが指摘さオ[ている。
However, a drawback of the above-mentioned method is that the activated alumina slurry infiltrates closely into the pores of the ceramic honeycomb structure, resulting in extremely high adhesion between the ceramic honeycomb structure and the activated alumina coating. Therefore, when performing a thermal shock test using such a body, activated alumina, which has entered the pores of the ceramic honeycomb structure and has a higher coefficient of thermal expansion than the ceramic that generally constitutes the ceramic honeycomb structure, can be detected. It has been pointed out that stress is applied to the ceramic honeycomb structure, causing cracks in the ceramic honeycomb structure and making it more likely to break.

図面を用いて以上のことを説明すれd1第1図は前述の
コーティング方法を使用したセラミックハニカム触媒担
体の断面図である。セラミックハニカム構造体Iには細
孔2があり、活性アルミナ被膜3の一部3′は細孔2の
中に密接に入シ込んでいる。このため活性アルミナ被膜
3とセラミックハニカム構造体1とは密着性が良く活性
アルミナ被膜は剥離しにくくなっているが、熱衝撃試験
後のセラミックハニカム触媒坦体の断面図第2図ではセ
ラミックハニカム構造体1に亀裂4を生じセラミックハ
ニカム構造体Iは割れ易すくなっている。
The above will be explained with reference to the drawings. Fig. 1 is a sectional view of a ceramic honeycomb catalyst carrier using the above-mentioned coating method. The ceramic honeycomb structure I has pores 2, into which a portion 3' of the activated alumina coating 3 is intimately inserted. Therefore, the activated alumina coating 3 and the ceramic honeycomb structure 1 have good adhesion and the activated alumina coating is difficult to peel off. Cracks 4 are generated in the body 1, and the ceramic honeycomb structure I is easily broken.

この発明はこのような事情に鑑みてなされたものでその
目的は、熱衝撃を受けてもセラミックハニカム構造体に
亀裂を生ずることがなくかつ活性アルミナ被膜の密着性
の優れたセラミックハニカム触媒坦体を製造する方法を
提供することにある。
This invention was made in view of the above circumstances, and its purpose is to provide a ceramic honeycomb catalyst carrier that does not cause cracks in the ceramic honeycomb structure even when subjected to thermal shock and has excellent adhesion of the activated alumina coating. The purpose is to provide a method for manufacturing.

この発明の方法は、セラミツクツ・ニカム構造体に活性
アルミナをコーティングして触媒坦体な製造する方法に
おいて、あらかじめ該構造体に有機高分子の被膜を形成
し、しかる後に活性アルミナをコーティングし、さらに
乾燥、焼成を行って活性アルミナ被膜を形成することを
特徴とするものである。
The method of the present invention is a method of manufacturing a catalyst carrier by coating a ceramic nicum structure with activated alumina, in which a film of an organic polymer is formed on the structure in advance, and then an activated alumina is coated on the structure. It is characterized by forming an activated alumina film by drying and firing.

以下この発明の方法を詳細に説明する。The method of this invention will be explained in detail below.

先ず有機高分子の溶液を調整する。使用する高分子とし
ては、ポリエチレン、ボリヌチレン、ポリゾロピレン、
ポリビニールアセタール 、1?リエステル、ポリアミ
ド樹脂、アクリル樹脂、スチロール樹脂、セルロール誘
導体、ポリビニルアルコール、ゴム等が用いられる。溶
媒は、使用する高分子に適汗させて用いるのが望ましい
。この高分子溶液の濃度はセラミツクツ・ニカム構造体
の種類によっても異なるが、一般に0.05〜20重量
%の範囲が望ましい。0.05重it%未満の濃度では
形成した高分子被膜によるセラミックハニカム構造体の
被膜が不十分であるため活性アルミナコーティング時に
活性アルミナスラリーがセラミツクツ・ニカム構造体の
細孔内に密接に入り込むので前記したように耐熱衝撃性
に劣る。高分子溶液の濃度が20重はチをこえる場合は
、高分子被膜によるセラミックハニカム構造体の被覆が
極度に進みセラミックハニカム(14造体の表面は完全
に高分子被膜で伽われる。このことはセラミツクツ・ニ
カム構造体の吸水量がほとんど無くなること、あるいは
電子顕微鯉写真によっても確認されている。従って活性
アルミナ被膜はセラミツクツ・ニカム構造体表面上にほ
とんど接することが不可能になるはかシでなく、セラミ
ック/・ニカム構造体表面上と空隙を持って形成される
ため耐剥離性に劣シ活性アルミナ被膜が容易に剥離脱落
する。
First, a solution of an organic polymer is prepared. Polymers used include polyethylene, borinutylene, polyzolopyrene,
Polyvinyl acetal, 1? Polyester, polyamide resin, acrylic resin, styrene resin, cellulose derivative, polyvinyl alcohol, rubber, etc. are used. It is desirable that the solvent be used in a manner suitable for the polymer used. The concentration of this polymer solution varies depending on the type of ceramic nicum structure, but is generally desirably in the range of 0.05 to 20% by weight. If the concentration is less than 0.05% by weight, the coating of the ceramic honeycomb structure by the formed polymer film will be insufficient, and the activated alumina slurry will closely enter the pores of the ceramic honeycomb structure during active alumina coating. As mentioned above, it has poor thermal shock resistance. When the concentration of the polymer solution exceeds 20 times the concentration, the coating of the ceramic honeycomb structure with the polymer film progresses to an extreme extent, and the surface of the ceramic honeycomb structure is completely covered with the polymer film. It has also been confirmed by electron micrographs that the amount of water absorbed by the ceramic-nicum structure is almost completely eliminated.Therefore, it is almost impossible for the activated alumina coating to come into contact with the surface of the ceramic-nicum structure. The activated alumina coating has poor peeling resistance because it is formed with voids on the surface of the ceramic/nicum structure, and the activated alumina coating easily peels off.

このことを図面を用いて説明すれば、第3図は20重量
%をこえた濃度の高分子溶液によυ高分子被膜を形成し
た後、活性アルミナ被膜をコーティングしたセラミック
ハニカム触媒担体の断面図である。細孔2の中に活性ア
ルミナ被膜3が全く入シ込まず、しかもセラミックハニ
カム構造体1との間に空隙5を生じている。このため剥
離試験において活性アルミナ被膜が剥離してしまい触媒
担体として不適当で牟る。
To explain this using drawings, Figure 3 is a cross-sectional view of a ceramic honeycomb catalyst carrier coated with an activated alumina film after forming a υ polymer film with a polymer solution with a concentration exceeding 20% by weight. It is. The activated alumina coating 3 does not penetrate into the pores 2 at all, and gaps 5 are created between the activated alumina coating 3 and the ceramic honeycomb structure 1. For this reason, the activated alumina coating peeled off during the peel test, making it unsuitable as a catalyst carrier.

次に高分子溶液をセラミックハニカム構造体にコーティ
ングする方法について述べる。コーティング方法は、前
述の(イ)、(ロ)いずれの方法でもよい。高分子溶液
をセラミックハニカム構造体の表面層にコーティングし
た後、圧縮空気により、余分な高分子溶液を吹き払う。
Next, a method for coating a ceramic honeycomb structure with a polymer solution will be described. The coating method may be any of the methods (a) and (b) described above. After coating the surface layer of the ceramic honeycomb structure with the polymer solution, the excess polymer solution is blown off with compressed air.

ついで温風をセラミックハニカム構造体に通風して乾燥
する。このようにしてセラミツクツ・ニカム構造体表面
上に高分子被膜を形成する。
Then, hot air is passed through the ceramic honeycomb structure to dry it. In this way, a polymer film is formed on the surface of the ceramic nicum structure.

次に活性アルミナスラリーを前述の(イ)あるいは(ロ
)の方法によυコーティングし、セラミックハニカム構
造体を乾燥、焼成して活性アルミナ被膜を形成する。活
性アルミナ被膜を形成する際には触媒として有効な貴金
属の白金(pt)、パラジウム(Pd)、ロジウム(R
h)等をあらかじめ活性アルミナスラリー中に添加する
か、あるいは活性アルミナ被膜形成後に、触媒担体を貴
金属溶液中に浸漬し、乾燥、焼成して融媒を形成する。
Next, the activated alumina slurry is coated by the method (a) or (b) described above, and the ceramic honeycomb structure is dried and fired to form an activated alumina coating. When forming an activated alumina film, noble metals such as platinum (pt), palladium (Pd), and rhodium (R) are used as catalysts.
h) etc. are added to the activated alumina slurry in advance, or after the activated alumina coating is formed, the catalyst carrier is immersed in a noble metal solution, dried and fired to form a melting medium.

第4図はこの発明のコーティング方法を使用して形成し
たセラミックハニカム触媒坦体の断面図で、セラミック
ハニカム構造体1には細孔2があシ活性アルミナ被膜3
は細孔2の一部に3′として入シ込んでいる。このため
剥離試験を行っても活性アルミナ被膜3はセラミックハ
ニカム構造体1から剥離脱落しないものとなっている。
FIG. 4 is a cross-sectional view of a ceramic honeycomb catalyst carrier formed using the coating method of the present invention, in which the ceramic honeycomb structure 1 has pores 2 and an activated alumina coating 3.
enters a part of the pore 2 as 3'. Therefore, the activated alumina coating 3 does not peel off from the ceramic honeycomb structure 1 even if a peel test is performed.

第5図はこの発明のコーティング方法を使用して形成し
たセラミックハニカム触媒担体の熱衝撃試験後の断面図
で、活性アルミナ被膜  3に亀裂6が生じても、空隙
5があるため亀裂がセラミックハニカム構造体1に拡が
ることはなく耐熱性良好なセラミックハニカム触媒坦体
となっている。
FIG. 5 is a cross-sectional view of a ceramic honeycomb catalyst carrier formed using the coating method of the present invention after a thermal shock test. It does not spread to the structure 1, resulting in a ceramic honeycomb catalyst carrier with good heat resistance.

次にこの発明の実施例、比較例、および参考例について
述べる。
Next, examples, comparative examples, and reference examples of the present invention will be described.

実施何重ないし実施例3 Iリビニルアルコール(PVA ) 25 #を水50
0m1と混合しこの溶液を撹拌下栓々に加熱し、液温か
80〜95℃になるよう調節する。
Example 3 I-Livinyl alcohol (PVA) 25 # water 50
0ml and heat this solution with a stopper while stirring, adjusting the liquid temperature to 80-95°C.

PVAが完全に溶解したのを確認して加熱を停止し、攪
拌を続けながら室温まで徐々に冷却した。
After confirming that PVA was completely dissolved, heating was stopped, and the mixture was gradually cooled to room temperature while stirring.

さらに蒸発、飛散した水を補って約4.8重液チのPV
A溶液を調整した。次に市販のコーディエライト質ハニ
カム構造体を上記溶液に浸漬し引き上げた後、細孔内に
詰まった過剰液をまず圧カグーゾ圧0.5 kvcrn
2の圧縮空気で吹き払い、さらに逆方向よυ吹き払って
全ての細孔に目詰シがないようにした。ここで使用した
セラミックハニカム構造体は、直径113+m、長さ1
00門の円筒形で壁厚約1.5謹の正方形の細孔が40
0個An2(約62個/6n2)縦方向に平行な流路を
有しているものである。PVA溶液により湿潤したセラ
ミックハニカム構造体の流路に80℃に熱した空気を3
0分通風して乾燥を行った。同様の操作を9.1車廠チ
のPVA溶液(実施例2)、13.0重1a−% 77
) PVA溶液(実施例3)についても実施した。各実
施例における高分子被朕祉は第1表に示す通りであった
。さらにあらかじめ調整した活性アルミナ懸濁液中に上
記高分子被膜を形成したセラミツクツ1ニカム構造体を
浸漬し、引き上げた後細孔内に詰まった過剰懸濁液を空
気流で吹き払った。コーテイング後のセラミックハニカ
ム構造体の流路に80℃に熱した空気を30分通風して
乾燥し、さらに230℃に熱した空気を1時間通風した
後、電気炉に入れ2時間で700℃まで昇温しこの温度
でさらに1時間焼成を続けたのち、徐々に冷却して電気
炉から取9出しだ。セラミツクツ・ニカム構造体へのこ
の活性アルミナコーティング操作をそれぞれ2度行い、
セラミツクツ・ニカム構造体への活性アルミナのコーテ
イング量を約172〜178#/個とした。このコーテ
ィング被膜の比表面積をBET法によυ測定した結果9
8 m /Iであった。
In addition, the PV of approximately 4.8 heavy liquid is supplemented by evaporated and scattered water.
Solution A was prepared. Next, a commercially available cordierite honeycomb structure was immersed in the above solution and pulled up, and the excess liquid clogging the pores was first removed under a Kaguso pressure of 0.5 kvcrn.
It was blown off with compressed air in Step 2, and then blown off in the opposite direction to make sure that all the pores were not clogged. The ceramic honeycomb structure used here has a diameter of 113+m and a length of 1
It has a cylindrical shape with 40 square pores with a wall thickness of approximately 1.5 mm.
It has 0 An2 (approximately 62/6n2) channels parallel to the longitudinal direction. Air heated to 80°C was introduced into the flow path of the ceramic honeycomb structure moistened with PVA solution for 3
It was dried by ventilation for 0 minutes. A similar operation was carried out using 9.1 liters of PVA solution (Example 2), 13.0 wt 1a-% 77
) The PVA solution (Example 3) was also tested. The polymer properties in each Example were as shown in Table 1. Further, the ceramic 1-nicum structure with the polymer film formed thereon was immersed in the activated alumina suspension prepared in advance, and after being pulled up, the excess suspension clogging the pores was blown away with an air stream. After coating, air heated to 80°C was passed through the flow channels of the ceramic honeycomb structure for 30 minutes to dry it, and then air heated to 230°C was passed through it for 1 hour, then placed in an electric furnace and heated to 700°C in 2 hours. After increasing the temperature and continuing firing at this temperature for another hour, it was gradually cooled and removed from the electric furnace. This activated alumina coating operation on the ceramic Nikum structure was performed twice each,
The amount of activated alumina coated on the ceramic nicum structure was approximately 172 to 178 #/piece. Results of measuring the specific surface area of this coating film using the BET method 9
It was 8 m/I.

実施例4 ポリビニルアルコール(PVA ) ヲエチルセルロー
スに換えて、実施例1と同様な操作を行った。エチルセ
ルロース粉末i 5 、vヲs o omtmトノトル
エン中散溶解し3.3亀量チのエチルセルロース溶液を
調整した。この溶液中に実施例1で示したセラミツクツ
・ニカム構造体を浸漬し引き上げた後、細孔に詰まった
過剰液を圧カグージ圧0.5 kg/cm2の圧縮空気
で吹き払い、さらに逆方向より吹き払って全ての細孔に
目詰まりがないようにした。上記湿潤したセラミックハ
ニカム構造体の流路に80℃に熱した空気を20分間通
風して乾燥を行なった結果表1に示す様に4.3117
個のエチルセルロース被膜を得た。以下活性アルミナコ
ーティング操作を実施例1で示した方法によシ実施し、
セラミックハニカム構造体への活性アルミナのコーテイ
ング量を17597個とした。
Example 4 The same operation as in Example 1 was performed except that polyvinyl alcohol (PVA) was replaced with ethyl cellulose. Ethyl cellulose powder i 5 was dissolved in tonotoluene to prepare an ethyl cellulose solution having a weight of 3.3 cm. After immersing the ceramic nicum structure shown in Example 1 in this solution and pulling it up, the excess liquid clogging the pores was blown away with compressed air at a pressure of 0.5 kg/cm2, and then the structure was immersed in the opposite direction. Blow it out to make sure all pores are unclogged. As shown in Table 1, the result of drying the moist ceramic honeycomb structure by blowing air heated to 80°C through the channels for 20 minutes was 4.3117.
ethylcellulose coatings were obtained. The following activated alumina coating operation was carried out according to the method shown in Example 1,
The amount of activated alumina coated on the ceramic honeycomb structure was 17,597 pieces.

実施例5 エチルセルロース粉末をポリスチレン粉末に換えた以外
は全〈実施例4と同様な操作を行い第1表に示す様に3
.9 & 7個のポリスチレン被膜を得た。以下、活性
アルミナコーティング操作を実施例1で示した方法によ
り実施し、セラミックハニカム構造体への活性アルミナ
のコーティング畑を175#/個とした。
Example 5 The same procedure as in Example 4 was carried out except that the ethyl cellulose powder was replaced with polystyrene powder.
.. 9 & 7 polystyrene coatings were obtained. Hereinafter, the activated alumina coating operation was carried out by the method shown in Example 1, and the number of ceramic honeycomb structures coated with activated alumina was 175 #/piece.

比較例1 従来のコーティング方法と同様に実施例1の方法におい
て^分子被膜をあらかじめ形成しない方法を実施した。
Comparative Example 1 Similar to the conventional coating method, the method of Example 1 was carried out without forming a molecular film in advance.

即ち第1表に示すように、活性アルミナ被膜形成の前処
理として高分子溶液t(よるコーティングtしない以外
は実施例1と回し方法で実施しセラミックハニカム触媒
坦体ヲ得た。このセラミックハニカムh=p媒坦体にお
ける活性アルミナのコーテイング量は174I/個であ
った。
That is, as shown in Table 1, a ceramic honeycomb catalyst carrier was obtained by carrying out the same method as in Example 1 except that coating with a polymer solution (T) was not performed as a pretreatment for forming an activated alumina film. = The coating amount of activated alumina on the p-medium carrier was 174 I/piece.

参考例1および2 実施例1の方法において第1表に示すようにPVA溶液
の濃度を変えた以外は実施例1と同じ方法で実施しセラ
ミックハニカム触媒担体を得た。このセラミックハニカ
ム触媒担体における活性アルミナのコーテイング量は1
77g/個であった。
Reference Examples 1 and 2 Ceramic honeycomb catalyst carriers were obtained in the same manner as in Example 1 except that the concentration of the PVA solution was changed as shown in Table 1. The coating amount of activated alumina in this ceramic honeycomb catalyst carrier is 1
It was 77g/piece.

熱衝撃試験結果 第1表で示したセラミックハニカム触媒坦体について熱
衝撃試験を行なった。試験方法は600〜900℃の所
定の温度に保持した電気炉に試料を入れ30分加熱後室
温の空気中に取シ出す。各所定温度で室温−加熱−室温
を1サイクルとして3サイクル繰シ返す。各サイクル毎
に打音、ルー凋、目視等による検査を行い亀裂の観察さ
れた具体数と電気炉温度の関係を調べた。その結果を第
2表に示す。
Thermal Shock Test Results A thermal shock test was conducted on the ceramic honeycomb catalyst carrier shown in Table 1. In the test method, a sample is placed in an electric furnace maintained at a predetermined temperature of 600 to 900°C, heated for 30 minutes, and then taken out into air at room temperature. Three cycles are repeated at each predetermined temperature, with one cycle of room temperature-heating-room temperature. After each cycle, inspections were conducted using hammering sounds, leakage, visual inspection, etc., and the relationship between the number of observed cracks and the electric furnace temperature was investigated. The results are shown in Table 2.

剥離試験結果 第1表に示した各試料について活性アルミナ被膜の密着
性を試験するため風量6017secの通風下における
活性アルミナの剥離量の測定を行った。まず200℃に
保持された乾燥機へ試料を20分間入れた後、取シ出し
て重量を測定し乾燥重相とした。続いて試料を触媒コン
バータに装着して通風を30分行い再び200℃に保持
された乾燥機へ試料を20分間入れた後取り出して重量
を測定した。結果を全活性アルミナ被膜量に対する剥離
活性アルミナ量の重量百分率として第3表に示す。
Peeling test results For each sample shown in Table 1, in order to test the adhesion of the activated alumina coating, the amount of peeling of the activated alumina was measured under ventilation at an air flow rate of 6017 seconds. First, the sample was placed in a dryer maintained at 200° C. for 20 minutes, then taken out, weighed, and obtained as a dry heavy phase. Subsequently, the sample was attached to a catalytic converter and ventilated for 30 minutes, and the sample was again placed in a dryer maintained at 200° C. for 20 minutes, then taken out and weighed. The results are shown in Table 3 as the weight percentage of the amount of peeled activated alumina relative to the total amount of activated alumina coating.

第3表 上記第2表および第3表から解るようにこの発明によシ
得られた試料(実施例1〜5)は、熱衝撃試験において
従来の試料(比較例1)に比らべ150〜200℃優わ
ており、また耐剥離性についても問題が無いことが解る
。また参考例1にみもれるように高分子被膜量の少ない
ものについては、活性アルミナ被膜が、セラミックハニ
カム構造体細孔内に密接に入り込んでいるため耐熱衝撃
性に劣っている。また参考例2でみられるように高分子
被膜量の多いものについては、活性アルミナ被膜が、セ
ラミックハニカム構造体細孔内にほとんど入っていない
ため耐熱衝撃性は従来の試料(比較例1)に比べ優わて
いるにもかかわらず、耐剥離を性において劣っている。
Table 3 As can be seen from Tables 2 and 3 above, the samples obtained according to the present invention (Examples 1 to 5) had a thermal shock test of 150% compared to the conventional sample (Comparative Example 1). -200°C, and it can be seen that there is no problem with peeling resistance. Furthermore, in cases where the amount of polymer coating is small, as seen in Reference Example 1, the activated alumina coating is closely embedded in the pores of the ceramic honeycomb structure, resulting in poor thermal shock resistance. In addition, for the sample with a large amount of polymer coating as seen in Reference Example 2, the activated alumina coating hardly entered the pores of the ceramic honeycomb structure, so the thermal shock resistance was lower than that of the conventional sample (Comparative Example 1). Despite being superior in comparison, it is inferior in peel resistance.

したがってこれら2つの試料(参考例1および2)につ
いては触媒担体として不十分である。
Therefore, these two samples (Reference Examples 1 and 2) are insufficient as catalyst supports.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコーティング方法によるセラミックハニ
カム触媒担体の断面図、卯、2図は従来のコーティング
方法によるセラミックハニカム触媒坦体の熱衝撃試験後
の断面図、第3図は20重量%をこえた一度の高分子溶
液によシ高分子被膜を形成させた後、活性アルミナをコ
ーティングしたセラミックハニカム触媒担体(参考例2
)の断面図、第4図はこの発明のコーティング方法を使
用したセラミックハニカム触媒担体の断面図、および第
5図はこの発明のコーティング方法を使用したセラミッ
クハニカム触媒担体の熱衝撃試験後の断【81図である
。 I・・・セラミックハニカム構造体、3.3’・・・活
性アルミナ被膜。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図
Figure 1 is a cross-sectional view of a ceramic honeycomb catalyst carrier obtained by a conventional coating method, Figure 2 is a cross-sectional view of a ceramic honeycomb catalyst carrier obtained by a conventional coating method after a thermal shock test, and Figure 3 is a cross-sectional view of a ceramic honeycomb catalyst carrier obtained by a conventional coating method. After forming a polymer coating with a polymer solution once, a ceramic honeycomb catalyst carrier coated with activated alumina (Reference Example 2) was prepared.
), FIG. 4 is a cross-sectional view of a ceramic honeycomb catalyst carrier using the coating method of the present invention, and FIG. 5 is a cross-sectional view of the ceramic honeycomb catalyst carrier after a thermal shock test using the coating method of the present invention [ Figure 81. I...Ceramic honeycomb structure, 3.3'...Activated alumina coating. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] セラミックハニカム構造体に活性アルミナをコーティン
グして触媒坦体を製造する方法において、有機高分子を
含有する溶液をあらかじめ該構造体にコーティングして
有機高分子被膜を形成した後、活性アルミナをコーティ
ングすることを4?徴とするセラミツクツ・二カム触媒
坦体の製造方法。
In a method of manufacturing a catalyst carrier by coating a ceramic honeycomb structure with activated alumina, the structure is coated in advance with a solution containing an organic polymer to form an organic polymer film, and then the activated alumina is coated. 4? A method for manufacturing a ceramic Nicam catalyst carrier.
JP57148778A 1982-08-27 1982-08-27 Preparation of ceramic honeycomb type catalyst carrier Pending JPS5939346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148778A JPS5939346A (en) 1982-08-27 1982-08-27 Preparation of ceramic honeycomb type catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148778A JPS5939346A (en) 1982-08-27 1982-08-27 Preparation of ceramic honeycomb type catalyst carrier

Publications (1)

Publication Number Publication Date
JPS5939346A true JPS5939346A (en) 1984-03-03

Family

ID=15460452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148778A Pending JPS5939346A (en) 1982-08-27 1982-08-27 Preparation of ceramic honeycomb type catalyst carrier

Country Status (1)

Country Link
JP (1) JPS5939346A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895700A (en) * 1996-05-17 1999-04-20 Ngk Insulators, Ltd. Honeycomb structural body
JP2009513338A (en) * 2005-10-27 2009-04-02 コーニング インコーポレイテッド Microwave treatment method for porous ceramic filters with surface protection and catalytic coating
WO2016111311A1 (en) * 2015-01-07 2016-07-14 住友化学株式会社 Process for producing honeycomb filter
WO2017094640A1 (en) * 2015-11-30 2017-06-08 住友化学株式会社 Honeycomb filter intermediate, honeycomb filter, method for producing honeycomb filter intermediate, and method for producing honeycomb filter
US10281008B2 (en) 2015-05-25 2019-05-07 Thk Co., Ltd. Speed reduction or speed increasing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895700A (en) * 1996-05-17 1999-04-20 Ngk Insulators, Ltd. Honeycomb structural body
JP2009513338A (en) * 2005-10-27 2009-04-02 コーニング インコーポレイテッド Microwave treatment method for porous ceramic filters with surface protection and catalytic coating
WO2016111311A1 (en) * 2015-01-07 2016-07-14 住友化学株式会社 Process for producing honeycomb filter
US10281008B2 (en) 2015-05-25 2019-05-07 Thk Co., Ltd. Speed reduction or speed increasing apparatus
WO2017094640A1 (en) * 2015-11-30 2017-06-08 住友化学株式会社 Honeycomb filter intermediate, honeycomb filter, method for producing honeycomb filter intermediate, and method for producing honeycomb filter

Similar Documents

Publication Publication Date Title
EP0149912B1 (en) Treatment of monolithic catalyst supports
US8518857B2 (en) Ceramic structures having hydrophobic coatings
CN100528341C (en) Honeycomb structure
JP6998871B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
US20050050845A1 (en) Honeycomb structure
KR20060105737A (en) Honeycomb structure
JP2014521578A (en) Fabrication method of cemented and skinned ceramic honeycomb structure
CA2201090C (en) Ceramic honeycomb catalyst having excellent thermal shock resistance
JP2004113887A (en) Honeycomb catalyst carrier and its production method
JPH0295423A (en) Inorgannic film
JPS5939346A (en) Preparation of ceramic honeycomb type catalyst carrier
JPS62225250A (en) Powder deposition type catalyst
US4199477A (en) Method for application of porous wash coats to low porosity refractory catalytic monoliths and the resulting support
JP3553424B2 (en) Ceramic honeycomb structure, ceramic honeycomb catalyst carrier, and ceramic honeycomb catalytic converter using the same
JP4369097B2 (en) Coating material, honeycomb structure and manufacturing method thereof
JP2651170B2 (en) Ceramics porous body
US20060154816A1 (en) Method for coating a catalyst carrier containing two different partial structures with a catalytically active coating, and catalyst obtained thereby
JP2003326162A (en) Catalyst for purifying exhaust gas and its manufacturing method
JPS63205143A (en) Preparation of combustion catalyst
JPS63107751A (en) Method for coating catalyst carrier
CN111250124A (en) Preparation method of carrier with composite coating
JPS626856B2 (en)
JPS6319221B2 (en)
JP2004050062A (en) Catalyst structure
JPH024413A (en) Particulate collecting filter