JP2006231280A - Solid oxidation catalyst for combustion - Google Patents

Solid oxidation catalyst for combustion Download PDF

Info

Publication number
JP2006231280A
JP2006231280A JP2005053160A JP2005053160A JP2006231280A JP 2006231280 A JP2006231280 A JP 2006231280A JP 2005053160 A JP2005053160 A JP 2005053160A JP 2005053160 A JP2005053160 A JP 2005053160A JP 2006231280 A JP2006231280 A JP 2006231280A
Authority
JP
Japan
Prior art keywords
carrier
honeycomb carrier
group viii
honeycomb
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005053160A
Other languages
Japanese (ja)
Inventor
Katsumi Noji
勝己 野地
Satonobu Yasutake
聡信 安武
Masanao Yonemura
将直 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005053160A priority Critical patent/JP2006231280A/en
Publication of JP2006231280A publication Critical patent/JP2006231280A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxidation catalyst for combustion having excellent durability causing no peeling even in a case that a high flow rate gas is oxidized. <P>SOLUTION: The solid oxidation catalyst for combustion is constituted by supporting an active component which contains at least one element and/or one compound selected from Group VIII metal elements and Group VIII metal oxides, or a mixture of the above active component and a rare earth metal oxide, on a monolithically molded honeycomb carrier which contains alumina or a monolithically molded honeycomb carrier, which contains a composite oxide of at least one selected from the oxides of zirconia, magnesia, silica and a rare earth metal and alumina, so as to become a volume of 2% or more with respect to the pore volume of the honeycomb carrier. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ソリッド型燃焼用酸化触媒に関する。本発明は、特には、高流速の可燃性ガスを酸化処理する場合に用いても剥離しにくい、耐久性に優れたソリッド型燃焼用酸化触媒に関する。   The present invention relates to an oxidation catalyst for solid combustion. In particular, the present invention relates to a solid-type combustion oxidation catalyst excellent in durability, which is difficult to peel off even when used for oxidizing a high flow rate combustible gas.

メタンや一酸化炭素を含む可燃性ガスを酸化するための排ガス酸化触媒としては、通常、コート型の触媒が広く使用されている。コート型の触媒は、例えば、アルミナ、チタニア、ジルコニアなどの複合酸化物および希土類元素を含有する担体粉末に、白金やパラジウム酸化物を担持させた粉末を、耐熱基材にコートしてなるものが知られている(例えば、特許文献1を参照。)   As an exhaust gas oxidation catalyst for oxidizing a combustible gas containing methane or carbon monoxide, a coat-type catalyst is generally widely used. The coat-type catalyst is, for example, one obtained by coating a heat-resistant substrate with a powder in which platinum or palladium oxide is supported on a carrier powder containing a complex oxide such as alumina, titania, zirconia, and a rare earth element. (For example, refer to Patent Document 1)

しかし、かかるコート型触媒は基材から触媒活性成分を担持した担体成分が剥離しやすく、高流速の可燃性ガスを浄化するのに用いるためには耐久性が不十分であった。このため、触媒に流通させるガスの流速を低く設定し、コート層が基材から剥離しないようにして使用していた。しかし、ガス流速を低く設定することで、触媒断面積が大きくなり、触媒容量のコンパクト化が困難であるという問題があった。   However, such a coat-type catalyst easily peels off the carrier component carrying the catalytically active component from the base material, and has insufficient durability for use in purifying high-flowing combustible gas. For this reason, the flow rate of the gas flowing through the catalyst is set to be low so that the coat layer does not peel from the substrate. However, by setting the gas flow rate low, there is a problem that the catalyst cross-sectional area becomes large and it is difficult to make the catalyst capacity compact.

いっぽう、セラミックス原料粉末にバインダを混合させ、目的の形状に成型した後乾燥し、触媒となる金属元素を含む溶液を含浸して焼結させた触媒の製造方法が開示されている(例えば、特許文献2を参照。)。しかし、特許文献2に記載の方法で製造された触媒では、触媒活性とハニカム強度の両立という点で不都合があった。
特開平9−296907号公報 特開昭61−101249号公報
On the other hand, a method for producing a catalyst is disclosed in which a ceramic raw material powder is mixed with a binder, molded into a desired shape, dried, impregnated with a solution containing a metal element to be a catalyst and sintered (for example, patents). See reference 2.) However, the catalyst produced by the method described in Patent Document 2 has a disadvantage in that both catalyst activity and honeycomb strength are compatible.
JP-A-9-296907 JP 61-101249 A

高流速のガスを処理する場合でも耐久性が高く、かつ高活性の触媒を提供することを目的とする。   An object of the present invention is to provide a catalyst having high durability and high activity even when processing a gas having a high flow rate.

本発明は、ソリッド型燃焼用酸化触媒であって、アルミナを含んでなる一体成型されたハニカム担体、または、ジルコニア、マグネシア、シリカ及び希土類酸化物から選択される一以上の酸化物とアルミナとの複合酸化物を含んでなる一体成型されたハニカム担体に、VIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物を含む活性成分、またはVIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物と希土類酸化物とを含む活性成分を、前記ハニカム担体の細孔容積に対して2%以上の体積となるように担持させてなる。
ここで、一体成型されたハニカム担体とは、セラミックスなどの基材を用いることなく担体成分を成型して得られる担体を指称する。
The present invention is a solid combustion oxidation catalyst, comprising an integrally formed honeycomb carrier comprising alumina, or one or more oxides selected from zirconia, magnesia, silica, and rare earth oxides, and alumina. An integrally formed honeycomb carrier comprising a composite oxide, an active ingredient containing one or more elements and / or compounds selected from Group VIII metal elements and Group VIII metal oxides, or Group VIII metal elements and Group VIII An active component containing one or more elements and / or compounds selected from metal oxides and a rare earth oxide is supported so as to have a volume of 2% or more with respect to the pore volume of the honeycomb carrier.
Here, the integrally formed honeycomb carrier refers to a carrier obtained by molding a carrier component without using a substrate such as ceramics.

前記ハニカム担体が押出成型により得られたものであることが好ましい。   The honeycomb carrier is preferably obtained by extrusion molding.

本発明は、また別の局面によれば、ソリッド型燃焼用酸化触媒の製造方法であって、アルミナを含んでなる担体成分、またはジルコニア、マグネシア、シリカ及び希土類酸化物から選択される一以上の酸化物とアルミナとの複合酸化物を含んでなる担体成分と、成型助剤とを混合してハニカム担体を成型する工程と、成型されたハニカム担体を焼成する工程と、焼成されたハニカム担体に、VIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物を含む活性成分、またはVIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物と希土類酸化物とを含む活性成分を、該ハニカム担体の細孔容積に対して2%以上の体積となるように含浸させる工程とを含む。   According to another aspect of the present invention, there is provided a method for producing a solid combustion oxidation catalyst, comprising a support component comprising alumina, or one or more selected from zirconia, magnesia, silica and rare earth oxides. A step of mixing a carrier component comprising a composite oxide of oxide and alumina and a molding aid to form a honeycomb carrier, a step of firing the molded honeycomb carrier, and a fired honeycomb carrier. , An active ingredient comprising one or more elements and / or compounds selected from Group VIII metal elements and Group VIII metal oxides, or one or more elements selected from Group VIII metal elements and Group VIII metal oxides and / or Impregnating an active ingredient containing a compound and a rare earth oxide so as to have a volume of 2% or more with respect to the pore volume of the honeycomb carrier.

本発明の効果として、剥離しにくく、耐久性に優れ、かつ可燃性ガスに対して高い触媒活性を示すソリッド型燃焼用酸化触媒を得ることができた。かかるソリッド型燃焼用酸化触媒は、特に、高い流速の可燃性ガスを長時間にわたって処理する必要がある場合に有効である。また、圧壊強度の向上にも有効であり、且つ、活性成分を金属酸化物として担持することで、金属と金属酸化物との酸化還元反応による体積膨張でハニカムの強度が低下することを抑制することが出来る。   As an effect of the present invention, it was possible to obtain a solid-type combustion oxidation catalyst that hardly peels off, has excellent durability, and exhibits high catalytic activity against combustible gas. Such a solid combustion oxidation catalyst is particularly effective when a high flow rate combustible gas needs to be treated for a long time. In addition, it is effective in improving the crushing strength, and by supporting the active component as a metal oxide, it is possible to suppress a decrease in the strength of the honeycomb due to volume expansion due to a redox reaction between the metal and the metal oxide. I can do it.

本発明の一実施形態によるソリッド型燃焼用酸化触媒は、基材を用いることなく一体成型されたハニカム担体に、一以上の活性成分を担持させてなるものである。   A solid combustion oxidation catalyst according to an embodiment of the present invention is formed by supporting one or more active components on a honeycomb carrier integrally formed without using a base material.

ハニカム担体は、実質的に担体成分と、成形助剤とから構成される。
担体成分は、アルミナ(Al23)を必須の成分として含む。したがって、アルミナからなる一成分系の担体成分であってもよく、アルミナと、ジルコニア(ZrO2)、マグネシア(MgO)、シリカ(SiO2)、希土類酸化物から選択される一以上の酸化物とを含む複合酸化物からなる担体成分であってもよい。特には、アルミナと、ジルコニア、マグネシア、またはシリカと、希土類酸化物とを含む三元系の複合酸化物からなる触媒成分であることが好ましい。ここで、希土類酸化物としては、La23、CeO2、Nd23が挙げられるが、これらには限定されない。
The honeycomb carrier is substantially composed of a carrier component and a molding aid.
The carrier component contains alumina (Al 2 O 3 ) as an essential component. Therefore, it may be a one-component carrier component made of alumina, and alumina and one or more oxides selected from zirconia (ZrO 2 ), magnesia (MgO), silica (SiO 2 ), and rare earth oxides It may be a carrier component made of a complex oxide containing. In particular, the catalyst component is preferably a ternary composite oxide containing alumina, zirconia, magnesia, or silica, and a rare earth oxide. Here, examples of the rare earth oxide include La 2 O 3 , CeO 2 , and Nd 2 O 3, but are not limited thereto.

担体成分が、アルミナを含む二以上の複合酸化物から構成される場合、担体成分の全質量中、アルミナが、80〜90質量%であることが好ましい。触媒活性と耐久性との両立のためである。   When the support component is composed of two or more composite oxides containing alumina, the alumina content is preferably 80 to 90% by mass in the total mass of the support component. This is because the catalyst activity and durability are compatible.

成型助剤は、担体成分を一体成型するために用いられる。成型助剤としては、担体成分のバインダとして機能し、一体成型されたハニカム担体に必要な強度を付与し、かつ、ハニカム担体の触媒作用に影響が与えないものを用いることができる。例えば、ハニカム担体の圧壊強度を、3〜10kg/cm2とすることができるように、成型助剤を選択することができる。成型助剤の例としては、有機系バインダ、特には、セルロース、デンプン等を使用することができるが、特定の成型助剤には限定されない。また成型助剤の含有量は、ハニカム担体の全質量中、10〜35質量%であることが好ましい。 The molding aid is used for integrally molding the carrier component. As the molding aid, one that functions as a binder of the carrier component, imparts necessary strength to the integrally molded honeycomb carrier, and does not affect the catalytic action of the honeycomb carrier can be used. For example, the molding aid can be selected so that the crushing strength of the honeycomb carrier can be 3 to 10 kg / cm 2 . As an example of the molding aid, an organic binder, particularly cellulose, starch and the like can be used, but it is not limited to a specific molding aid. Moreover, it is preferable that content of a shaping | molding adjuvant is 10-35 mass% in the total mass of a honeycomb support | carrier.

ハニカム担体に担持させる活性成分は、VIII族の金属元素及びVIII族の金属酸化物から選択される一以上の元素及び/又は酸化物を必須の成分として含む。したがって、活性成分は、一種以上のVIII族の金属元素であってよく、または一種以上VIII族の金属酸化物であってよく、あるいはVIII族の金属元素とVIII族の金属酸化物との両方を含むものであってよい。具体的には、Pt、Pd、あるいはこれらの両方を活性成分として含むことが好ましい。その他にも、活性成分として用いることができるVIII族の金属元素及びVIII族の金属酸化物としては、PdO、Ru,RuO2,Rh、Ag、Ir、IrO2等が挙げられる。 The active component to be supported on the honeycomb carrier includes, as an essential component, one or more elements and / or oxides selected from Group VIII metal elements and Group VIII metal oxides. Thus, the active ingredient may be one or more Group VIII metal elements, or may be one or more Group VIII metal oxides, or may contain both a Group VIII metal element and a Group VIII metal oxide. It may be included. Specifically, it is preferable to contain Pt, Pd, or both as active ingredients. In addition, examples of Group VIII metal elements and Group VIII metal oxides that can be used as the active component include PdO, Ru, RuO 2 , Rh, Ag, Ir, and IrO 2 .

さらに、これらの必須成分に加えて、希土類酸化物をさらに含んでもよい。好ましい希土類酸化物としてはLa23、CeO2、Nd23が挙げられるが、これらには限定されない。 Furthermore, in addition to these essential components, a rare earth oxide may be further included. Preferred rare earth oxides include, but are not limited to La 2 O 3 , CeO 2 , and Nd 2 O 3 .

本実施形態によるソリッド型燃焼用酸化触媒において、活性成分のハニカム担体への担持量が、ハニカム担体の細孔容積に対して2%以上の体積を担持することが好ましい。高流速の可燃性ガスを、高い酸化率で酸化処理するためである。また、ソリッド型ハニカム担体の強度を保つためである。特には、ハニカム担体の細孔容積に対して2%〜7%の体積に相当する重量を担持することが好ましい。なお、ハニカム担体の細孔容積は、3.0x10-4〜5.0x10-4(l/g)とすることができる。本実施形態によれば、活性成分は含浸法により、一体成型された担体の細孔内に担持されるため、剥離することなく活性成分の殆どが長時間の触媒反応に寄与することが出来る。 In the solid combustion oxidation catalyst according to the present embodiment, it is preferable that the amount of the active component supported on the honeycomb carrier is 2% or more of the pore volume of the honeycomb carrier. This is because the high flow rate combustible gas is oxidized at a high oxidation rate. Moreover, it is for maintaining the strength of the solid honeycomb carrier. In particular, it is preferable to carry a weight corresponding to a volume of 2% to 7% with respect to the pore volume of the honeycomb carrier. The pore volume of the honeycomb carrier can be set to 3.0 × 10 −4 to 5.0 × 10 −4 (l / g). According to the present embodiment, since the active component is supported in the pores of the integrally molded support by the impregnation method, most of the active component can contribute to a long-time catalytic reaction without peeling.

また、本実施形態によるソリッド型燃焼用酸化触媒は、気孔率が、15〜25%であることが好ましい。活性成分の細孔内への担持及びハニカム強度の維持のためである。   The solid combustion oxidation catalyst according to the present embodiment preferably has a porosity of 15 to 25%. This is because the active ingredient is supported in the pores and the honeycomb strength is maintained.

次に、本発明に係るソリッド型燃焼用酸化触媒を製造方法の観点から説明する。本実施形態によるソリッド型燃焼用酸化触媒の製造方法は、担体成分と成型助剤とを混合してハニカム担体を成型する工程と、成型されたハニカム担体を焼成する工程と、焼成されたハニカム担体に活性成分を含浸させる工程とを含む。   Next, the solid combustion oxidation catalyst according to the present invention will be described from the viewpoint of the production method. The method for producing a solid combustion oxidation catalyst according to the present embodiment includes a step of mixing a carrier component and a molding aid to form a honeycomb carrier, a step of firing the molded honeycomb carrier, and a fired honeycomb carrier. Impregnating with the active ingredient.

担体成分は、アルミナまたはアルミナを含む複合酸化物を調製し、所望の粒径に粉砕することで得ることができる。アルミナまたはアルミナを含む複合酸化物は既知の方法、手順にしたがって調製することができる。得られたアルミナ担体、または複合酸化物からなる担体は、次いで、水等の溶媒及び成形助剤と混合し、加熱ニーダ等の装置を用いて混練することができる。   The carrier component can be obtained by preparing alumina or a composite oxide containing alumina and grinding it to a desired particle size. Alumina or a composite oxide containing alumina can be prepared according to known methods and procedures. The obtained alumina carrier or the carrier comprising the composite oxide can then be mixed with a solvent such as water and a molding aid and kneaded using an apparatus such as a heating kneader.

ハニカム担体の成型は、混練された担体成分を、押出成型機等を使用して押出成形することにより実施することが好ましい。なお、本実施形態においては、ハニカム担体は、セラミックスなどの基材にウォッシュコートして得られるものではなく、担体成分自体を所定の形状に成型して一体化することを特徴としており、一体成型することができれば、成型方法は任意の方法であってよい。   The honeycomb carrier is preferably molded by extruding the kneaded carrier component using an extruder or the like. In the present embodiment, the honeycomb carrier is not obtained by wash-coating a base material such as ceramics, but is characterized in that the carrier component itself is molded into a predetermined shape and integrated. If it can be done, the molding method may be any method.

ハニカム担体を押出成型により形成する場合には、例えば、肉厚が、0.3〜1.0mm程度のものとすることが好ましい。ハニカム強度を維持するためである。ハニカム担体の長さや外形は、所望の触媒用途によって、当業者が決定することができ、特定の大きさには限定されない。   When the honeycomb carrier is formed by extrusion molding, for example, the thickness is preferably about 0.3 to 1.0 mm. This is to maintain the honeycomb strength. The length and the outer shape of the honeycomb carrier can be determined by those skilled in the art depending on the desired catalyst application, and are not limited to a specific size.

所定の形状に成型されたハニカム担体は、80〜100℃で乾燥した後、空気中で、1000〜1200℃で20〜30時間にわたって焼成することにより、ソリッド型ハニカム担体を得ることができる。焼成後のソリッド型ハニカム担体の気孔率は、15〜25%とすることが好ましく、気孔率を所定の値に調整することは、アルミナ等担体の粒度制御により実施することができる。   The honeycomb carrier molded into a predetermined shape is dried at 80 to 100 ° C., and then fired in air at 1000 to 1200 ° C. for 20 to 30 hours to obtain a solid honeycomb carrier. The porosity of the solid honeycomb carrier after firing is preferably 15 to 25%, and the porosity can be adjusted to a predetermined value by controlling the particle size of the carrier such as alumina.

活性成分のソリッド型ハニカム担体への含浸は、所望量の活性成分を含む金属塩溶液に、ソリッド型ハニカム担体を浸漬することにより実施することができる。例えば、PdOを活性成分としてリッド型ハニカム担体に担持させる場合には、硝酸パラジウム、塩化パラジウム、錯塩の水溶液をソリッド型ハニカム担体に浸漬することができ、Ptを担持させる場合には、塩化白金、ジニトロジアンミン白金、錯塩の水溶液をソリッド型ハニカム担体に浸漬することができる。   The impregnation of the active ingredient into the solid honeycomb carrier can be performed by immersing the solid honeycomb carrier in a metal salt solution containing a desired amount of the active ingredient. For example, when supporting PdO as an active ingredient on a lid-type honeycomb carrier, an aqueous solution of palladium nitrate, palladium chloride, or a complex salt can be immersed in the solid-type honeycomb carrier, and when carrying Pt, platinum chloride, An aqueous solution of dinitrodiammine platinum and a complex salt can be immersed in the solid honeycomb carrier.

活性成分をソリッド型ハニカム担体に含浸させた後、空気中で、1000〜1200℃で20〜30時間にわたって焼成することにより、本実施形態によるソリッド型燃焼用酸化触媒を得ることができる。なお、焼成後のソリッド型燃焼用酸化触媒の活性成分は金属元素または酸化物あるいはそれらの両方の状態で存在する。   After impregnating the active component into the solid honeycomb carrier, the solid type combustion oxidation catalyst according to the present embodiment can be obtained by firing in air at 1000 to 1200 ° C. for 20 to 30 hours. The active component of the solid combustion oxidation catalyst after calcination exists in the state of a metal element or an oxide or both of them.

本発明によるソリッド型燃焼用酸化触媒は、特に、高流速の排ガス等を酸化処理するのに用いることができる。具体的には、7ata、400℃換算で、流速が約20〜40m/s以上のガスを酸化処理する場合に、好ましく用いることができる。   The solid combustion oxidation catalyst according to the present invention can be used particularly for oxidizing exhaust gas having a high flow rate. Specifically, it can be preferably used when oxidizing a gas having a flow rate of about 20 to 40 m / s or more in terms of 7 ata and 400 ° C.

[実施例1]
ベーマイトAlO(OH)4粉末を水に添加し、さらに、アンモニア水を添加して得られる沈殿を濾過、水洗し、乾燥後1000℃で焼成してハニカム成分1を得た。
ハニカム成分1に成型助剤として、セルロースを、ハニカム成分と成型助剤とを合計した全質量に対し、20質量%となるように加えた後、加熱ニーダを用いて水を蒸発させながら混練し、触媒ペーストを得た。これを押出成型機にて、外形75mm角、肉厚0.45mm、長さL50mmのハニカム状に成型した。次に、80℃で24時間乾燥した後、1100℃で24時間にわたって、空気雰囲気中にて焼成し、ソリッドハニカムを得た。その後、ソリッドハニカムを硝酸パラジウム水溶液及び塩化白金水溶液に浸漬し乾燥後、1100℃で24時間空気雰囲気中にて焼成して、実施例1のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナ担体に、PtとPdとPdOが担持されたものであった。
[Example 1]
Boehmite AlO (OH) 4 powder was added to water, and the precipitate obtained by adding ammonia water was filtered, washed with water, dried and fired at 1000 ° C. to obtain honeycomb component 1.
Cellulose is added to the honeycomb component 1 as a molding aid so as to be 20% by mass based on the total mass of the honeycomb component and the molding aid, and then kneaded while evaporating water using a heating kneader. A catalyst paste was obtained. This was molded into a honeycomb shape having an outer shape of 75 mm square, a wall thickness of 0.45 mm, and a length of L50 mm with an extrusion molding machine. Next, after drying at 80 ° C. for 24 hours, firing was performed in an air atmosphere at 1100 ° C. for 24 hours to obtain a solid honeycomb. Thereafter, the solid honeycomb was immersed in an aqueous palladium nitrate solution and an aqueous platinum chloride solution, dried, and then fired at 1100 ° C. for 24 hours in an air atmosphere to obtain a solid combustion oxidation catalyst of Example 1. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was one in which Pt, Pd, and PdO were supported on an alumina carrier.

[実施例2]
ベーマイトAlO(OH)4粉末を水に添加し、さらに硝酸ランタン水溶液を添加した溶液にアンモニア水を添加して得られる沈殿を濾過、水洗し、乾燥後1000℃で焼成してハニカム成分2(La23:Al23の質量比10:90)を得た。ハニカム成分2に、実施例1と同様に成型助剤を添加し、押出成型し、焼成してソリッドハニカムを得た。さらに、実施例1と同様の方法で、同量の活性成分を含浸させ、焼成して、実施例2のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナと酸化ランタンの複合酸化物からなる担体に、PtとPdとPdOが担持されたものであった。
[Example 2]
A precipitate obtained by adding boehmite AlO (OH) 4 powder to water and further adding aqueous ammonia to a solution to which an aqueous lanthanum nitrate solution is added is filtered, washed with water, dried and fired at 1000 ° C. to obtain honeycomb component 2 (La 2 O 3 : Al 2 O 3 mass ratio 10:90) was obtained. A molding aid was added to the honeycomb component 2 in the same manner as in Example 1, extruded and fired to obtain a solid honeycomb. Further, in the same manner as in Example 1, the same amount of active component was impregnated and calcined to obtain a solid combustion oxidation catalyst of Example 2. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was obtained by supporting Pt, Pd, and PdO on a carrier made of a composite oxide of alumina and lanthanum oxide.

[実施例3]
実施例2の硝酸ランタン水溶液に替えて塩化ジルコニウム水溶液を用いた以外は実施例2と同様にしてハニカム成分3(ZrO2:Al23の質量比10:90)を調製し、ソリッドハニカムを得た。そして、実施例1と同様の方法で、同量の活性成分を含浸させ、焼成して、実施例3のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナとジルコニアの複合酸化物からなる担体に、PtとPdとPdOが担持されたものであった。
[Example 3]
A honeycomb component 3 (ZrO 2 : Al 2 O 3 mass ratio 10:90) was prepared in the same manner as in Example 2 except that a zirconium chloride aqueous solution was used instead of the lanthanum nitrate aqueous solution of Example 2, and a solid honeycomb was prepared. Obtained. Then, in the same manner as in Example 1, the same amount of active ingredient was impregnated and baked to obtain a solid combustion oxidation catalyst of Example 3. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was obtained by supporting Pt, Pd and PdO on a support made of a composite oxide of alumina and zirconia.

[実施例4]
実施例2の硝酸ランタン水溶液に替えて硝酸マグネシウム水溶液を用いた以外は実施例2と同様にして、ハニカム成分4(MgO:Al23の質量比10:90)を調製し、ソリッドハニカムを得た。そして、実施例1と同様の方法で、同量の活性成分を含浸させ、焼成して、実施例4のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナとマグネシアの複合酸化物からなる担体に、PtとPdとPdOが担持されたものであった。
[Example 4]
A honeycomb component 4 (MgO: Al 2 O 3 mass ratio 10:90) was prepared in the same manner as in Example 2 except that a magnesium nitrate aqueous solution was used instead of the lanthanum nitrate aqueous solution of Example 2, and a solid honeycomb was prepared. Obtained. Then, in the same manner as in Example 1, the same amount of active component was impregnated and baked to obtain a solid combustion oxidation catalyst of Example 4. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was obtained by supporting Pt, Pd, and PdO on a support made of a composite oxide of alumina and magnesia.

[実施例5]
実施例2の硝酸ランタン水溶液に替えてシリカゾル水溶液を用いた以外は実施例2と同様にして、ハニカム成分5(SiO2:Al23の質量比10:90)を調製し、ソリッドハニカムを得た。そして、実施例1と同様の方法で、同量の活性成分を含浸させ、焼成して、実施例5のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナとシリカの複合酸化物からなる担体に、PtとPdとPdOが担持されたものであった。
[Example 5]
A honeycomb component 5 (SiO 2 : Al 2 O 3 mass ratio 10:90) was prepared in the same manner as in Example 2 except that a silica sol aqueous solution was used instead of the lanthanum nitrate aqueous solution of Example 2, and a solid honeycomb was prepared. Obtained. Then, in the same manner as in Example 1, the same amount of active component was impregnated and baked to obtain a solid combustion oxidation catalyst of Example 5. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was obtained by supporting Pt, Pd, and PdO on a carrier made of a composite oxide of alumina and silica.

[実施例6]
ベーマイトAlO(OH)4粉末を水に添加し、さらに塩化ジルコニウム水溶液及び硝酸ランタン水溶液を添加した溶液にアンモニア水を添加して得られる沈殿を濾過、水洗し、乾燥後1000℃で焼成してハニカム成分6(La23:ZrO2:Al23の質量比10:10:90)を調製し、ソリッドハニカムを得た。そして、実施例1と同様の方法で、同量の活性成分を含浸させ、焼成して、実施例6のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナとジルコニアと酸化ランタンの複合酸化物からなる担体に、PtとPdとPdOが担持されたものであった。
[Example 6]
A honeycomb obtained by adding boehmite AlO (OH) 4 powder to water, adding ammonia water to a solution obtained by adding an aqueous solution of zirconium chloride and an aqueous solution of lanthanum nitrate, filtering, washing, drying and firing at 1000 ° C. Component 6 (La 2 O 3 : ZrO 2 : Al 2 O 3 mass ratio 10:10:90) was prepared to obtain a solid honeycomb. Then, in the same manner as in Example 1, the same amount of active component was impregnated and baked to obtain a solid combustion oxidation catalyst of Example 6. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was obtained by supporting Pt, Pd, and PdO on a carrier made of a composite oxide of alumina, zirconia, and lanthanum oxide.

[実施例7]
実施例6の塩化ジルコニウム水溶液に替えて硝酸マグネシウム水溶液を用いた以外は実施例6と同様にして、ハニカム成分7(La23:MgO:Al23の質量比10:10:90)を調製し、ソリッドハニカムを得た。そして、実施例1と同様の方法で、同量の活性成分を含浸させ、焼成して、実施例7のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナとマグネシアと酸化ランタンの複合酸化物からなる担体に、PtとPdとPdOが担持されたものであった。
[Example 7]
Honeycomb component 7 (La 2 O 3 : MgO: Al 2 O 3 mass ratio 10:10:90) in the same manner as in Example 6 except that a magnesium nitrate aqueous solution was used instead of the zirconium chloride aqueous solution of Example 6. And a solid honeycomb was obtained. Then, in the same manner as in Example 1, the same amount of active component was impregnated and baked to obtain a solid combustion oxidation catalyst of Example 7. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst had Pt, Pd, and PdO supported on a carrier made of a composite oxide of alumina, magnesia, and lanthanum oxide.

[実施例8]
実施例3のハニカム成分3に、実施例1と同様に成型助剤を添加し、成型、焼成して得られたソリッドハニカムを硝酸パラジウム水溶液及び塩化白金水溶液及び硝酸ランタン水溶液に浸漬し、乾燥後、1000℃で24時間空気雰囲気中にて焼成して、実施例8のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナとジルコニアの複合酸化物からなる担体に、PtとPdとPdOとLaが担持されたものであった。
[Example 8]
A molding aid was added to the honeycomb component 3 of Example 3 in the same manner as in Example 1, and the solid honeycomb obtained by molding and firing was immersed in an aqueous solution of palladium nitrate, an aqueous solution of platinum chloride and an aqueous solution of lanthanum nitrate, and dried. The solid-type combustion oxidation catalyst of Example 8 was obtained by firing at 1000 ° C. for 24 hours in an air atmosphere. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst was one in which Pt, Pd, PdO, and La 2 O 3 were supported on a carrier made of a composite oxide of alumina and zirconia.

[実施例9]
実施例1のハニカム成分1に、実施例1と同様に成型助剤を添加し、成型、焼成して得られたソリッドハニカムを硝酸パラジウム水溶液に浸漬し、乾燥後、1000℃で24時間空気雰囲気中にて焼成して、実施例9のソリッド型燃焼用酸化触媒を得た。焼成後のソリッド型燃焼用酸化触媒の活性成分は、金属元素または酸化物あるいはそれらの両方の状態で存在した。得られた触媒は、アルミナ担体に、PdとPdOが担持されたものであった。
[Example 9]
A molding aid was added to the honeycomb component 1 of Example 1 in the same manner as in Example 1, and the solid honeycomb obtained by molding and firing was immersed in an aqueous palladium nitrate solution, dried, and then air-conditioned at 1000 ° C. for 24 hours. The solid-type combustion oxidation catalyst of Example 9 was obtained by calcination. The active components of the solid combustion oxidation catalyst after calcination existed in the state of a metal element and / or an oxide. The obtained catalyst had Pd and PdO supported on an alumina support.

[比較例1]
ベーマイトAlO(OH)4粉末を水に添加し、さらに塩化ジルコニウム水溶液及び硝酸ランタン水溶液を添加した溶液にアンモニア水を添加して得られる沈殿を濾過、水洗し乾燥後1000℃で焼成して比較担体成分1(La23:ZrO2:Al23の質量比、10:10:90)を得た。担体成分を、硝酸パラジウム及び塩化白金水溶液に浸漬し、乾燥、焼成後、ジルコニアゾル10質量%および適量の水と混合した後、粉砕して触媒スラリーを調製した。このスラリーを基材に、100g/m2となるようにウォッシュコートした後焼成して、比較例1の触媒を得た。
[Comparative Example 1]
The precipitate obtained by adding boehmite AlO (OH) 4 powder to water and adding ammonia water to a solution added with an aqueous solution of zirconium chloride and an aqueous solution of lanthanum nitrate is filtered, washed with water, dried, and calcined at 1000 ° C. for comparison carrier Component 1 (La 2 O 3 : ZrO 2 : Al 2 O 3 mass ratio, 10:10:90) was obtained. The carrier component was immersed in an aqueous solution of palladium nitrate and platinum chloride, dried, calcined, mixed with 10% by mass of zirconia sol and an appropriate amount of water, and pulverized to prepare a catalyst slurry. The slurry was coated on the base material so as to be 100 g / m 2 and then baked to obtain a catalyst of Comparative Example 1.

[比較例2]
活性成分を担持させない以外は実施例1と同様にして、比較例2の触媒を得た。
[Comparative Example 2]
A catalyst of Comparative Example 2 was obtained in the same manner as in Example 1 except that no active component was supported.

[比較例3]
活性成分の担持量を、担体1リットルあたりのPdの含浸量を30gとした以外は実施例1と同様にして、比較例3の触媒を得た。
[Comparative Example 3]
A catalyst of Comparative Example 3 was obtained in the same manner as in Example 1 except that the amount of active ingredient supported was 30 g of impregnation of Pd per liter of support.

[実験例]
上記実施例1〜9および比較例2、3で得られた触媒について、気孔率、圧壊強度を測定した。気孔率(%)は、充填密度(g/l)×細孔容積(l/g)×100で求められる。細孔容積は、島津製作所製 水銀ポロシメータ オートポアIVにより測定した。なお、気孔率は、活性成分を担持する前の担体について測定した。圧壊強度は、木屋製作所製 木屋式硬度計により測定した。
[Experimental example]
The catalysts obtained in Examples 1 to 9 and Comparative Examples 2 and 3 were measured for porosity and crushing strength. The porosity (%) is obtained by packing density (g / l) × pore volume (l / g) × 100. The pore volume was measured with a mercury porosimeter Autopore IV manufactured by Shimadzu Corporation. The porosity was measured for the carrier before supporting the active ingredient. The crushing strength was measured with a Kiyama hardness tester manufactured by Kiyama Seisakusho.

また、上記実施例1〜9および比較例1〜3で得られた触媒について、触媒の質量減少量およびメタンガスの酸化率を測定した。質量減少量は、約1gのハニカム(サイズ:縦約4mm×横約6mm×長さ50mm)に断面流速150m/sの空気を流通して、28時間後の質量を計測することにより実施した。   Moreover, about the catalyst obtained in the said Examples 1-9 and Comparative Examples 1-3, the mass reduction amount of the catalyst and the oxidation rate of methane gas were measured. The amount of mass reduction was measured by flowing air with a cross-sectional flow velocity of 150 m / s through about 1 g of a honeycomb (size: about 4 mm long × about 6 mm wide × 50 mm long) and measuring the mass after 28 hours.

メタンガスの酸化率は、メタンの初期濃度が4mol%のガスを、上記実施例で得られた外形75mm角、肉厚0.45mm、長さL50mmのハニカム状の触媒を3段連結したものに、圧力7ata、温度400℃、流速30m/s(7ata,400℃換算)で接触させ、以下の式に基づいて算出した。
メタンガス酸化率(%)=(触媒入口メタンガス濃度−触媒出口メタンガス濃度)/触媒入口メタンガス濃度*100
The oxidation rate of methane gas was obtained by connecting a gas having an initial concentration of methane of 4 mol% to a honeycomb catalyst having an outer shape of 75 mm square, a wall thickness of 0.45 mm, and a length L50 mm obtained in the above-described embodiment. Contact was made at a pressure of 7 ata, a temperature of 400 ° C., and a flow rate of 30 m / s (7 ata, converted to 400 ° C.), and calculation was made based on the following formula.
Methane gas oxidation rate (%) = (catalyst inlet methane gas concentration−catalyst outlet methane gas concentration) / catalyst inlet methane gas concentration * 100

実施例および比較例で製造した各触媒の組成および気孔率、圧壊強度、メタンガス酸化率の測定結果を表1に示す。

Figure 2006231280
Table 1 shows the composition of each catalyst manufactured in Examples and Comparative Examples, and the measurement results of porosity, crushing strength, and methane gas oxidation rate.
Figure 2006231280

次に、実施例1で製造した触媒を用いて、各種可燃性ガスの酸化率を測定した。可燃性ガスの酸化率は、可燃性ガスを、上記実施例で得られた外形75mm角、肉厚0.45mm、長さL50mmのハニカム状の触媒を3段連結したものに、圧力7ata、温度400℃、流速30m/s(7ata,400℃換算)で接触させ、以下の式に基づいて算出した。
可燃性ガス酸化率(%)=(触媒入口可燃性ガス濃度−触媒出口可燃性ガス濃度)/触媒入口可燃性ガス濃度*100
Next, the oxidation rate of various combustible gases was measured using the catalyst produced in Example 1. The oxidation rate of the flammable gas was determined by combining the flammable gas with three stages of honeycomb-shaped catalyst obtained in the above-mentioned example having a 75 mm square shape, a wall thickness of 0.45 mm, and a length L50 mm, pressure 7 data, temperature Contact was made at 400 ° C. and a flow rate of 30 m / s (7 ata, converted to 400 ° C.), and calculation was made based on the following formula.
Combustible gas oxidation rate (%) = (Catalyst inlet combustible gas concentration−Catalyst outlet combustible gas concentration) / Catalyst inlet combustible gas concentration * 100

用いた可燃性ガスの種類、初期濃度、および各可燃性ガスの酸化率の測定結果を表2に示す。

Figure 2006231280
Table 2 shows the type of combustible gas used, the initial concentration, and the measurement results of the oxidation rate of each combustible gas.
Figure 2006231280

表1に示す結果から、本発明のソリッド型燃焼用酸化触媒によれば、高流速のメタンガスを処理した場合であっても、触媒質量減少量が少なく、また良好なメタンガスの酸化率を示した。特に、比較例1のコート型ハニカム触媒と比較したときに、その質量減少量は1/10であり、耐久性を大きく向上させることができた。また、表2より、本発明のソリッド型燃焼用酸化触媒によれば、種々の可燃性ガスについても同様に、高活性を示すことがわかった。   From the results shown in Table 1, according to the solid combustion oxidation catalyst of the present invention, even when a high flow rate methane gas was treated, the catalyst mass decrease was small and a good oxidation rate of methane gas was exhibited. . In particular, when compared with the coated honeycomb catalyst of Comparative Example 1, the mass reduction amount was 1/10, and the durability could be greatly improved. Table 2 also shows that according to the solid combustion oxidation catalyst of the present invention, various combustible gases exhibit high activity as well.

本発明の活用例として、ガスエンジン、ガスタービン、ディーゼルエンジン等用の触媒として用いることができる。   As an application example of the present invention, it can be used as a catalyst for a gas engine, a gas turbine, a diesel engine or the like.

Claims (3)

アルミナを含んでなる一体成型されたハニカム担体、または、ジルコニア、マグネシア、シリカ及び希土類酸化物から選択される一以上の酸化物とアルミナとの複合酸化物を含んでなる一体成型されたハニカム担体に、VIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物を含む活性成分、またはVIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物と希土類酸化物とを含む活性成分を、前記ハニカム担体の細孔容積に対して2%以上の体積となるように担持させてなるソリッド型燃焼用酸化触媒。 An integrally molded honeycomb carrier comprising alumina or an integrally molded honeycomb carrier comprising a composite oxide of one or more oxides selected from zirconia, magnesia, silica and rare earth oxides and alumina , An active ingredient comprising one or more elements and / or compounds selected from Group VIII metal elements and Group VIII metal oxides, or one or more elements selected from Group VIII metal elements and Group VIII metal oxides and / or A solid-type combustion oxidation catalyst in which an active component containing a compound and a rare earth oxide is supported so as to have a volume of 2% or more with respect to the pore volume of the honeycomb carrier. 前記一体成型されたハニカム担体が、押出成型により得られたものである請求項1に記載のソリッド型燃焼用酸化触媒。 2. The solid combustion oxidation catalyst according to claim 1, wherein the integrally formed honeycomb carrier is obtained by extrusion molding. アルミナを含んでなる担体成分、またはジルコニア、マグネシア、シリカ及び希土類酸化物から選択される一以上の酸化物とアルミナとの複合酸化物を含んでなる担体成分と、成型助剤とを混合してハニカム担体を成型する工程と、
成型されたハニカム担体を焼成する工程と、
焼成されたハニカム担体に、VIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物を含む活性成分、またはVIII族金属元素及びVIII族金属酸化物から選択される一以上の元素及び/または化合物と希土類酸化物とを含む活性成分を、該ハニカム担体の細孔容積に対して2%以上の体積となるように担持させる工程と
を含むソリッド型燃焼用酸化触媒の製造方法。
A molding component is mixed with a carrier component comprising alumina, or a carrier component comprising a composite oxide of alumina and one or more oxides selected from zirconia, magnesia, silica and rare earth oxides. Forming a honeycomb carrier; and
A step of firing the molded honeycomb carrier;
The fired honeycomb carrier is an active ingredient containing one or more elements and / or compounds selected from Group VIII metal elements and Group VIII metal oxides, or one selected from Group VIII metal elements and Group VIII metal oxides. A solid-type combustion oxidation catalyst comprising a step of supporting an active component containing the above elements and / or compounds and a rare earth oxide so as to have a volume of 2% or more with respect to the pore volume of the honeycomb carrier. Production method.
JP2005053160A 2005-02-28 2005-02-28 Solid oxidation catalyst for combustion Pending JP2006231280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053160A JP2006231280A (en) 2005-02-28 2005-02-28 Solid oxidation catalyst for combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053160A JP2006231280A (en) 2005-02-28 2005-02-28 Solid oxidation catalyst for combustion

Publications (1)

Publication Number Publication Date
JP2006231280A true JP2006231280A (en) 2006-09-07

Family

ID=37039505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053160A Pending JP2006231280A (en) 2005-02-28 2005-02-28 Solid oxidation catalyst for combustion

Country Status (1)

Country Link
JP (1) JP2006231280A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217934A (en) * 2011-04-08 2012-11-12 Toyota Motor Corp Exhaust gas purification catalyst
WO2013074147A1 (en) * 2011-11-17 2013-05-23 Johnson Matthey Public Limited Company Supported noble metal catalyst for treating exhaust gas
CN105709734A (en) * 2016-01-02 2016-06-29 浙江大学 Catalyst for low-temperature catalytic combustion of volatile aromatic hydrocarbon organic matters and method for preparing catalyst
CN110116009A (en) * 2019-05-30 2019-08-13 陕西省煤化工工程技术研究中心 Containing wet VOCs catalysis oxidation integral catalyzer and its preparation method and application
CN110124645A (en) * 2019-05-20 2019-08-16 江苏中科睿赛环境工程有限公司 A kind of VOCs catalyst for catalytic combustion and preparation method thereof
CN111282571A (en) * 2020-03-20 2020-06-16 北京工业大学 Preparation method and application of praseodymium-neodymium-palladium doped cerium-manganese composite catalyst
CN113996292A (en) * 2021-10-20 2022-02-01 北京动力机械研究所 Preparation and application of integral torch combustion catalyst
US11383226B2 (en) 2018-05-11 2022-07-12 Murata Manufacturing Co., Ltd. Catalyst for organic substance decomposition and organic substance decomposing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309183A (en) * 1995-05-18 1996-11-26 Babcock Hitachi Kk Highly heat-resistant catalyst and manufacture thereof
JP2002221022A (en) * 2001-01-25 2002-08-09 Toyota Motor Corp Diesel particulate filter and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309183A (en) * 1995-05-18 1996-11-26 Babcock Hitachi Kk Highly heat-resistant catalyst and manufacture thereof
JP2002221022A (en) * 2001-01-25 2002-08-09 Toyota Motor Corp Diesel particulate filter and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217934A (en) * 2011-04-08 2012-11-12 Toyota Motor Corp Exhaust gas purification catalyst
KR102099165B1 (en) 2011-11-17 2020-04-09 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Supported noble metal catalyst for treating exhaust gas
WO2013074147A1 (en) * 2011-11-17 2013-05-23 Johnson Matthey Public Limited Company Supported noble metal catalyst for treating exhaust gas
KR20140110863A (en) * 2011-11-17 2014-09-17 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Supported noble metal catalyst for treating exhaust gas
JP2015502845A (en) * 2011-11-17 2015-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Supported noble metal catalysts for exhaust gas treatment
RU2631814C2 (en) * 2011-11-17 2017-09-26 Джонсон Мэтти Паблик Лимитед Компани Applied catalyst based on noble metal for exhaust gas treatment
CN105709734A (en) * 2016-01-02 2016-06-29 浙江大学 Catalyst for low-temperature catalytic combustion of volatile aromatic hydrocarbon organic matters and method for preparing catalyst
US11383226B2 (en) 2018-05-11 2022-07-12 Murata Manufacturing Co., Ltd. Catalyst for organic substance decomposition and organic substance decomposing apparatus
US11529613B2 (en) 2018-05-11 2022-12-20 Murata Manufacturing Co., Ltd. Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition apparatus
US11571683B2 (en) 2018-05-11 2023-02-07 Murata Manufacturing Co., Ltd. Honeycomb-structured catalyst for organic substance decomposition and organic substance decomposing apparatus
US11642661B2 (en) 2018-05-11 2023-05-09 Murata Manufacturing Co., Ltd. Supported catalyst for organic substance decomposition and organic substance decomposition device
US11648537B2 (en) 2018-05-11 2023-05-16 Murata Manufacturing Co., Ltd. Supported catalyst for organic substance decomposition and organic substance decomposing apparatus
CN110124645A (en) * 2019-05-20 2019-08-16 江苏中科睿赛环境工程有限公司 A kind of VOCs catalyst for catalytic combustion and preparation method thereof
CN110116009A (en) * 2019-05-30 2019-08-13 陕西省煤化工工程技术研究中心 Containing wet VOCs catalysis oxidation integral catalyzer and its preparation method and application
CN111282571A (en) * 2020-03-20 2020-06-16 北京工业大学 Preparation method and application of praseodymium-neodymium-palladium doped cerium-manganese composite catalyst
CN111282571B (en) * 2020-03-20 2022-06-21 北京工业大学 Preparation method and application of praseodymium-neodymium-palladium doped cerium-manganese composite catalyst
CN113996292A (en) * 2021-10-20 2022-02-01 北京动力机械研究所 Preparation and application of integral torch combustion catalyst
CN113996292B (en) * 2021-10-20 2023-12-19 北京动力机械研究所 Preparation and application of integral torch burning catalyst

Similar Documents

Publication Publication Date Title
JP5376261B2 (en) Exhaust gas purification catalyst
JP2006231280A (en) Solid oxidation catalyst for combustion
KR20170093899A (en) Nitrous oxide removal catalysts for exhaust systems
JP2004358463A (en) Method for manufacturing palladium three way catalyst of double layered coating structure
JP2003518434A5 (en)
JP6709652B2 (en) Porous ceramic structure
JP6604815B2 (en) Exhaust gas purification device
US10125020B2 (en) Ammonia oxidation catalysts
JP2007203208A (en) Catalyst for cleaning exhaust gas
JP2015077543A (en) Honeycomb structure, method of manufacturing the same, and exhaust emission control catalyst
JP2006051431A (en) Ternary catalyst for exhaust gas purification, and its production method
JP2007313500A (en) Catalyst for exhaust gas purification, and method for manufacturing this catalyst
JP2006314894A (en) Production method of catalyst for cleaning emission gas
EP3078416B1 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2005066482A (en) Exhaust gas cleaning catalyst and method for evaluating low temperature cleaning capacity of catalyst
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP2006205002A (en) Catalyst for cleaning exhaust gas
JP2006192365A (en) Catalyst for cleaning exhaust gas from internal-combustion engine, method for manufacturing the catalyst, and exhaust gas-cleaning apparatus
JPH1076159A (en) Exhaust gas purification catalyst and its production
JP2011125839A (en) Catalyst for cleaning exhaust
JP2003245560A (en) Catalyst carrier structure body and catalyst for cleaning exhaust gas
JP2007054685A (en) Catalyst for water gas shift reaction
JP2008296102A (en) Exhaust gas purifying catalyst and its manufacturing method
JP2006341152A (en) Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110106