JP2006205002A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2006205002A
JP2006205002A JP2005018204A JP2005018204A JP2006205002A JP 2006205002 A JP2006205002 A JP 2006205002A JP 2005018204 A JP2005018204 A JP 2005018204A JP 2005018204 A JP2005018204 A JP 2005018204A JP 2006205002 A JP2006205002 A JP 2006205002A
Authority
JP
Japan
Prior art keywords
catalyst layer
upstream
downstream
exhaust gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005018204A
Other languages
Japanese (ja)
Inventor
Hisashi Kuno
央志 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005018204A priority Critical patent/JP2006205002A/en
Publication of JP2006205002A publication Critical patent/JP2006205002A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cleaning exhaust gas which has a furthermore improved early warm-up characteristic and ensures cleaning performance after warmed up. <P>SOLUTION: The catalyst for cleaning exhaust gas has an upstream-side catalyst layer 2 and a downstream-side catalyst layer 3. The weight percentage of a noble metal in the upstream-side catalyst layer 2 is made larger than that of the noble metal in the downstream-side catalyst layer 3. The formable volume of the upstream-side catalyst layer 2 per unit volume of a carrier base material is made smaller than that of the downstream-side catalyst layer 3 per unit volume of the carrier base material. Since the upstream-side catalyst layer contains more of the noble metal and the possibility that the nobel metal is brought into contact with exhaust gas in the upstream-side catalyst layer is higher, the cleaning activity of this catalyst can be improved when an engine is started. Since the formed volume of the upstream-side catalyst layer 2 is smaller than that of the downstream-side catalyst layer 3, namely, the heat capacity of the upstream-side catalyst layer becomes smaller, the early warm-up characteristic of this catalyst can be improved and the cleaning performance of this catalyst can be ensured after this catalyst is warmed up. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関などからの排ガス中の有害成分を始動時の低温域から効率よく浄化できる排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst capable of efficiently purifying harmful components in exhaust gas from an internal combustion engine or the like from a low temperature range at the time of starting.

従来より自動車の排ガス浄化用触媒として、理論空燃比(ストイキ)において排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナなどの多孔質酸化物からコート層を形成し、そのコート層に白金(Pt)、ロジウム(Rh)などの貴金属を担持させたものが広く知られている。 Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst that purifies by performing CO and HC oxidation and NO x reduction simultaneously in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) has been used. As such a three-way catalyst, for example, a coat layer is formed from a porous oxide such as γ-alumina on a heat-resistant substrate made of cordierite, and platinum (Pt), rhodium (Rh) is formed on the coat layer. Those carrying precious metals such as are widely known.

三元触媒において触媒作用を発現するのは担持されている貴金属であるが、貴金属の触媒作用が発現する温度域は比較的高温域にあるために、低温域においては活性が発現しづらく有害成分を浄化しにくいという問題がある。そのために始動時などの排ガスが低温域にある場合には、浄化性能が低いという不具合があった。   In the three-way catalyst, the supported noble metal exhibits catalytic action, but the temperature range where the catalytic action of the noble metal appears is in a relatively high temperature range, so that it is difficult to express the activity in the low temperature range. There is a problem that it is difficult to purify. Therefore, when the exhaust gas at the time of start-up is in a low temperature range, there is a problem that the purification performance is low.

そこで、三元触媒が機能する温度にできるだけ早く到達させる(早期暖機)技術が必要となる。例えば三元触媒をエンジン直下に配置して、昇温しやすくすることが行われている。しかしこの場合は、暖機後の触媒は高温に曝されることになるので、貴金属の粒成長など劣化が生じやすいという問題がある。また電気加熱を用いたり、エアーを導入することで酸化反応を促進する試みもあるが、燃費や設計の自由度を悪化させる要因となる。したがって望ましくは、従来から搭載されている触媒コンバータのみでの解決が期待されている。   Therefore, a technique for reaching the temperature at which the three-way catalyst functions as quickly as possible (early warm-up) is required. For example, a three-way catalyst is arranged directly under the engine to facilitate temperature rise. However, in this case, since the warmed-up catalyst is exposed to a high temperature, there is a problem that deterioration such as grain growth of precious metal is likely to occur. There are also attempts to promote the oxidation reaction by using electric heating or introducing air, but this causes a deterioration in fuel consumption and design freedom. Therefore, it is desirable to solve the problem only with a conventional catalytic converter.

その対策の一つとして、触媒の排ガスが流入する上流部に貴金属を高密度で担持することが有効である。このように上流部に貴金属を高密度で担持することにより、上流部において貴金属と排ガスとが接触する確率が高まり、CO及びHCの酸化反応が起きる確率が高まる。そして一旦酸化反応が起きると、その着火が伝播して酸化反応がさらに進行する。また酸化反応は発熱反応であるため、その反応熱によって三元触媒が加熱されて昇温し、貴金属の活性温度域まで速やかに昇温されるという作用もある。したがって、排ガス上流部に貴金属を高密度で担持すれば、これらの相乗効果によって低温域における浄化活性が向上する。   As one of the countermeasures, it is effective to carry a noble metal at a high density in the upstream portion where the exhaust gas of the catalyst flows. By supporting the noble metal at a high density in the upstream portion in this manner, the probability that the noble metal and the exhaust gas come into contact with each other in the upstream portion increases, and the probability that the oxidation reaction of CO and HC occurs. Once the oxidation reaction occurs, the ignition propagates and the oxidation reaction further proceeds. In addition, since the oxidation reaction is an exothermic reaction, the three-way catalyst is heated by the reaction heat to increase the temperature, and the temperature is rapidly increased to the active temperature range of the noble metal. Therefore, if the noble metal is supported at a high density in the exhaust gas upstream portion, the synergistic effect improves the purification activity in the low temperature range.

このような触媒としては、例えば特開平08−332350号公報に、上流部にPdを高密度で担持した排ガス浄化用触媒が開示されている。この公報の一実施例には、耐熱セラミックス製のハニカム基材の表面にアルミナなどの担体粉末からコート層を形成し、コート層全体にPt及びRhを担持した後、上流部のみを硝酸パラジウム水溶液に浸漬して上流部にPdをさらに担持した触媒が記載されている。また特開2001−252565号公報には、コート層の排ガスが流入する上流部の表面に、多孔質酸化物粉末と多孔質酸化物粉末に予め担持された貴金属とからなる上層コート層をもつ排ガス浄化用触媒が開示されている。   As such a catalyst, for example, Japanese Patent Laid-Open No. 08-332350 discloses an exhaust gas purification catalyst in which Pd is supported at a high density in the upstream portion. In one embodiment of this publication, a coating layer is formed from a carrier powder such as alumina on the surface of a honeycomb base material made of heat-resistant ceramics, and Pt and Rh are supported on the entire coating layer, and then only an upstream portion is a palladium nitrate aqueous solution. Describes a catalyst further immersed in Pd and further supported by Pd in the upstream portion. Japanese Patent Laid-Open No. 2001-252565 discloses an exhaust gas having an upper coat layer composed of a porous oxide powder and a noble metal previously supported on the porous oxide powder on the surface of the upstream portion where the exhaust gas of the coat layer flows. A purification catalyst is disclosed.

さらに、特開2002−210371号公報には、HC吸着材層と触媒層を有し、HC吸着材層の熱容量を排ガス上流側で小さく排ガス下流側で大きくした排ガス浄化用触媒が開示されている。このように排ガス上流側の熱容量を小さくすることで、昇温特性が向上するため早期暖機が促進され低温域における浄化活性が向上する。
特開平08−332350号 特開2001−252565号 特開2002−210371号
Furthermore, JP-A-2002-210371 discloses an exhaust gas purifying catalyst having an HC adsorbent layer and a catalyst layer, wherein the heat capacity of the HC adsorbent layer is reduced on the exhaust gas upstream side and increased on the exhaust gas downstream side. . By reducing the heat capacity on the exhaust gas upstream side in this way, the temperature rise characteristic is improved, so that early warm-up is promoted and the purification activity in the low temperature region is improved.
JP 08-332350 A JP 2001-252565 A JP 2002-210371

ところが排ガス規制が年々厳しくなっているため、上記した従来技術を利用してもエンジン始動時の数十秒間は触媒の機能が不十分となり、さらなる早期暖機特性の向上が求められている。また排ガス上流側に貴金属を高密度で担持しただけでは、触媒が十分に暖まった暖機後の浄化性能が不十分であることも明らかとなった。   However, since exhaust gas regulations are becoming stricter year by year, even if the above-described conventional technology is used, the function of the catalyst becomes insufficient for several tens of seconds at the time of engine start, and further improvement in early warm-up characteristics is required. It was also revealed that the purification performance after warm-up when the catalyst was sufficiently warmed was insufficient only by supporting the noble metal at a high density upstream of the exhaust gas.

本発明は上記事情に鑑みてなされたものであり、早期暖機特性をさらに向上させるとともに、暖機後の浄化性能も確保することを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and it is an object to be solved to further improve early warm-up characteristics and to ensure purification performance after warm-up.

上記課題を解決する本発明の排ガス浄化用触媒の特徴は、担体基材と、担体基材の排ガス上流側に形成された上流側触媒層と、上流側触媒層の排ガス下流側で担体基材に形成された下流側触媒層と、を有する排ガス浄化用触媒であって、
上流側触媒層及び下流側触媒層は酸化物担体粉末と貴金属とからなり、
上流側触媒層における貴金属の重量百分率(酸化物担体粉末と貴金属との合計重量に対する貴金属の重量の割合)は下流側触媒層における貴金属の重量百分率より大きく、担体基材の単位体積当たりにおける触媒層の形成量は、上流側触媒層の方が下流側触媒層より少ないことにある。
The exhaust gas purifying catalyst of the present invention that solves the above problems is characterized in that a carrier substrate, an upstream catalyst layer formed on the exhaust gas upstream side of the carrier substrate, and a carrier substrate on the exhaust gas downstream side of the upstream catalyst layer A downstream catalyst layer formed on the exhaust gas purification catalyst,
The upstream catalyst layer and the downstream catalyst layer are composed of an oxide carrier powder and a noble metal,
The weight percentage of the noble metal in the upstream catalyst layer (the ratio of the weight of the noble metal to the total weight of the oxide support powder and the noble metal) is larger than the weight percentage of the noble metal in the downstream catalyst layer, and the catalyst layer per unit volume of the carrier base material The amount of formation is that the upstream catalyst layer is smaller than the downstream catalyst layer.

上流側触媒層は、排ガス流入側端面から10〜50mmの長さの範囲に形成されていることが望ましい。   The upstream catalyst layer is desirably formed in a range of 10 to 50 mm from the end surface on the exhaust gas inflow side.

本発明の排ガス浄化用触媒によれば、早期暖機特性がさらに向上するため始動時の浄化率が向上するとともに、暖機後の浄化性能も同時に確保することができる。   According to the exhaust gas purifying catalyst of the present invention, early warm-up characteristics are further improved, so that the purification rate at start-up is improved, and purification performance after warm-up can be ensured at the same time.

本発明の排ガス浄化用触媒は、担体基材と、担体基材の排ガス上流側に形成された上流側触媒層と、上流側触媒層の排ガス下流側で担体基材に形成された下流側触媒層と、から構成されている。   The exhaust gas purifying catalyst of the present invention includes a carrier substrate, an upstream catalyst layer formed on the exhaust gas upstream side of the carrier substrate, and a downstream catalyst formed on the carrier substrate on the exhaust gas downstream side of the upstream catalyst layer. Layer.

担体基材としては、ハニカム形状、フォーム形状などのものが用いられ、その材質はコージェライトなどの耐熱セラミック製のもの、金属製のものなどを用いることができる。   As the carrier base material, a honeycomb shape, a foam shape, or the like is used, and the material thereof can be a heat-resistant ceramic such as cordierite, a metal, or the like.

上流側触媒層及び下流側触媒層は、共に酸化物担体粉末と貴金属とからなるものであり、担体基材の排ガス上流側と下流側に形成されている。両層ともに、酸化物担体としては、 Al2O3、TiO2、ZrO2、CeO2、CeO2−ZrO2複合酸化物、CeO2−ZrO2−Al2O3 複合酸化物などが例示されるが、酸素吸放出能( OSC)を有し貴金属の粒成長も抑制できるCeO2を含む酸化物が好ましい。中でも高い OSCを有するCeO2−ZrO2複合酸化物が特に好ましい。CeO2−ZrO2複合酸化物の組成は制限されないが、原子比Ce:Zrが2:1近傍にあるものが特に望ましい。Zrが少なくなると耐久性が低下する傾向があり、Ceが少なくなると OSCが低下するとともに担持されている貴金属の粒成長が生じやすくなる傾向がある。また、Pr6O11、 La2O3などをさらに複合化したCeO2−ZrO2複合酸化物を用いることも好ましい。なお上流側触媒層及び下流側触媒層の酸化物担体は、両層に同種のものを用いてもよいし異種であってもよい。 Both the upstream catalyst layer and the downstream catalyst layer are made of an oxide carrier powder and a noble metal, and are formed on the exhaust gas upstream side and downstream side of the carrier base material. In both layers, examples of the oxide support include Al 2 O 3 , TiO 2 , ZrO 2 , CeO 2 , CeO 2 —ZrO 2 composite oxide, CeO 2 —ZrO 2 —Al 2 O 3 composite oxide, and the like. However, an oxide containing CeO 2 that has an oxygen storage / release capability (OSC) and can also suppress the growth of noble metal grains is preferable. Among them, CeO 2 —ZrO 2 composite oxide having high OSC is particularly preferable. The composition of the CeO 2 —ZrO 2 composite oxide is not limited, but it is particularly desirable that the atomic ratio Ce: Zr is in the vicinity of 2: 1. When Zr decreases, durability tends to decrease, and when Ce decreases, OSC decreases and grain growth of the supported noble metal tends to occur. It is also preferable to use a CeO 2 —ZrO 2 composite oxide in which Pr 6 O 11 , La 2 O 3 and the like are further composited. The oxide carriers in the upstream catalyst layer and the downstream catalyst layer may be the same or different in both layers.

上流側触媒層及び下流側触媒層の貴金属としては、共にPt、Pd、Rhなど従来用いられている貴金属を用いることができる。HCの酸化活性に優れるPt及びPdの少なくとも一方と、NOx の還元活性に優れるRhとの両方を併用することが特に好ましい。また上流側触媒層及び下流側触媒層における貴金属は、両層に同種のものを用いてもよいし異種であってもよい。 Conventionally used noble metals such as Pt, Pd, and Rh can be used as the noble metals of the upstream catalyst layer and the downstream catalyst layer. And at least one of Pt and Pd having superior oxidation activity of HC, it is particularly preferable to use both the Rh superior in reducing activity of NO x. The noble metals in the upstream catalyst layer and the downstream catalyst layer may be the same or different in both layers.

本発明の最大の特徴は、上流側触媒層における貴金属の重量百分率(酸化物担体粉末と貴金属との合計重量に対する貴金属の重量の割合)は下流側触媒層における貴金属の重量百分率より大きく、担体基材の単位体積当たりにおける触媒層の形成量は、上流側触媒層の方が下流側触媒層より少ないことにある。   The greatest feature of the present invention is that the weight percentage of the noble metal in the upstream catalyst layer (the ratio of the weight of the noble metal to the total weight of the oxide support powder and the noble metal) is larger than the weight percentage of the noble metal in the downstream catalyst layer. The formation amount of the catalyst layer per unit volume of the material is that the upstream catalyst layer is smaller than the downstream catalyst layer.

上流部に貴金属を多く含有することで、上流部において貴金属と排ガスとが接触する確率が高まり、CO及びHCの酸化反応が起きる確率が高まる。そして一旦酸化反応が起きると、その着火が伝播して酸化反応がさらに進行する。また酸化反応は発熱反応であるため、その反応熱によって触媒が加熱されて昇温し、貴金属の活性温度域まで速やかに昇温されるという作用もある。したがって、上流側触媒層に貴金属を多く含有すれば、これらの相乗効果によって始動時における浄化活性が向上する。   By containing a large amount of noble metal in the upstream portion, the probability that the noble metal and the exhaust gas come into contact with each other in the upstream portion increases, and the probability that the oxidation reaction of CO and HC occurs. Once the oxidation reaction occurs, the ignition propagates and the oxidation reaction further proceeds. In addition, since the oxidation reaction is an exothermic reaction, the catalyst is heated by the reaction heat to increase the temperature, and the temperature is rapidly increased to the activation temperature range of the noble metal. Therefore, if the upstream catalyst layer contains a large amount of precious metal, the synergistic effect improves the purification activity at the start.

さらに上流側触媒層を下流側触媒層より少なく形成することで、上流側における熱容量が小さくなるため早期暖機特性が向上し、上記作用と相乗して始動時における浄化活性がさらに向上する。そして詳細な理由は不明であるが、上流側触媒層を下流側触媒層より少なく形成することで、暖機後の浄化性能の低下も抑制することができる。   Further, by forming fewer upstream catalyst layers than downstream catalyst layers, the heat capacity on the upstream side is reduced, so that the early warm-up characteristics are improved, and the purification activity at the start-up is further improved in synergy with the above action. And although a detailed reason is unknown, the fall of the purification performance after warming-up can also be suppressed by forming fewer upstream catalyst layers than downstream catalyst layers.

上流側触媒層は、排ガス流入側端面から10〜50mmの長さの範囲に形成することが望ましい。排ガス流入側端面から10mm未満の範囲で上流側触媒層を形成しても、早期暖機特性の向上には不十分である。また排ガス流入側端面から50mmを超えた範囲で上流側触媒層を形成しても、始動時の浄化活性の向上効果が飽和する。   The upstream catalyst layer is desirably formed in a range of 10 to 50 mm from the end surface on the exhaust gas inflow side. Even if the upstream catalyst layer is formed within a range of less than 10 mm from the end surface on the exhaust gas inflow side, it is insufficient for improving the early warm-up characteristics. Even if the upstream catalyst layer is formed in a range exceeding 50 mm from the exhaust gas inflow side end face, the effect of improving the purification activity at the time of starting is saturated.

上流側触媒層及び下流側触媒層の形成量は、上流側触媒層の方が下流側触媒層より少なければ特に制限されないが、両層ともに担体基材1リットルあたり40〜 400gの範囲が好ましい。形成量が少なすぎると担持密度が増大するために貴金属が粒成長しやすく耐久性が低下する。また形成量が多すぎると排気圧損が上昇するようになる。   The amount of the upstream catalyst layer and the downstream catalyst layer formed is not particularly limited as long as the upstream catalyst layer is smaller than the downstream catalyst layer, but both layers are preferably in the range of 40 to 400 g per liter of the carrier substrate. If the amount formed is too small, the carrying density increases, so that the noble metal easily grows and the durability is lowered. If the amount of formation is too large, the exhaust pressure loss will increase.

上流側触媒層及び下流側触媒層の貴金属の含有量は、上流側触媒層の方が多ければ特に制限されないが、両層ともに、Ptの場合は 0.1〜10重量%が好ましく、Pdの場合は 0.1〜20重量%が好ましく、Rhの場合は0.05〜10重量%の範囲が好ましい。貴金属を多く含有するほど浄化活性は向上するものの、コストが増大するとともに粒成長しやすくなる。   The precious metal content in the upstream catalyst layer and the downstream catalyst layer is not particularly limited as long as the upstream catalyst layer is larger, but both layers are preferably 0.1 to 10% by weight in the case of Pt, and in the case of Pd 0.1 to 20% by weight is preferable, and in the case of Rh, a range of 0.05 to 10% by weight is preferable. Although the purification activity is improved as the amount of noble metal is increased, the cost increases and the grains grow more easily.

本発明の触媒を製造するには、担体基材の一方の端面からスラリーを注入して上流側コート層を形成し、それに貴金属を担持して上流側触媒層を形成する。また他方の端面からスラリーを注入して下流側コート層を形成し、それに貴金属を担持して下流側触媒層を形成する方法がある。コート層を形成するには、通常のウォッシュコート法を用いることができる。また貴金属の担持には、吸着担持法、吸水担持法など従来と同様の担持法を用いることができる。酸化物担体粉末に予め貴金属を担持した触媒粉末を含むスラリーを上記のようにコートして、上流側触媒層又は下流側触媒層を形成してもよい。   In order to produce the catalyst of the present invention, a slurry is injected from one end face of the carrier base material to form an upstream coat layer, and a noble metal is supported thereon to form an upstream catalyst layer. Further, there is a method in which a slurry is injected from the other end face to form a downstream coat layer, and a noble metal is supported thereon to form a downstream catalyst layer. In order to form the coat layer, a normal washcoat method can be used. For supporting the noble metal, a conventional supporting method such as an adsorption supporting method or a water absorbing supporting method can be used. The upstream catalyst layer or the downstream catalyst layer may be formed by coating the oxide carrier powder with the slurry containing the catalyst powder in which the noble metal is supported in advance as described above.

またPt又はPdとRhとを同一の酸化物担体粒子に担持すると、Rhの活性が低下するという不具合がある。そこでRhは、Pt又はPdとは別の酸化物担体粒子に担持することが望ましい。このようにするには、Pt及びPdの少なくとも一方を酸化物担体粉末に担持した触媒粉末と、Rhを別の酸化物担体粉末に担持した触媒粉末とを混合して触媒層を形成すればよい。あるいは、Pt及びPdの少なくとも一方を酸化物担体粉末に担持した触媒粉末から下触媒層を形成し、その表面にRhを別の酸化物担体粉末に担持した触媒粉末から上触媒層を形成することも好ましい。なおRhを担持する酸化物担体としては、ZrO2あるいはLaなどで安定化された安定化ZrO2を用いるのが好ましい。 Further, when Pt or Pd and Rh are supported on the same oxide carrier particle, there is a problem that the activity of Rh is reduced. Therefore, it is desirable that Rh be supported on oxide carrier particles different from Pt or Pd. For this purpose, a catalyst layer may be formed by mixing a catalyst powder in which at least one of Pt and Pd is supported on an oxide support powder and a catalyst powder in which Rh is supported on another oxide support powder. . Alternatively, a lower catalyst layer is formed from a catalyst powder in which at least one of Pt and Pd is supported on an oxide support powder, and an upper catalyst layer is formed from a catalyst powder in which Rh is supported on another oxide support powder on the surface thereof. Is also preferable. As the oxide carrier supporting Rh, it is preferable to use stabilized ZrO 2 stabilized with ZrO 2 or La.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1及び図2に本実施例の排ガス浄化用触媒の構成を示す。この排ガス浄化用触媒は、コージェライトからなり3ミル、 600cpsi、直径 103mm、長さ 130mmのハニカム形状の担体基材1と、担体基材1の排ガス上流側に形成された上流側触媒層2と、上流側触媒層2の排ガス下流側に形成された下流側触媒層3と、から構成されている。上流側触媒層2は、排ガス流入側端面から30mmの長さの範囲に形成され、下流側触媒層3はその下流側の長さ 100mmの範囲に形成されている。また上流側触媒層2は、担体基材1の1リットルあたり43g形成され、下流側触媒層3は担体基材の1リットルあたり 362g形成されている。
Example 1
1 and 2 show the configuration of the exhaust gas purifying catalyst of this embodiment. This exhaust gas purifying catalyst is made of cordierite and has a 3 mil, 600 cpsi, 103 mm diameter, 130 mm long honeycomb-shaped carrier substrate 1, and upstream catalyst layer 2 formed on the upstream side of the carrier substrate 1. The downstream catalyst layer 3 is formed on the downstream side of the exhaust gas of the upstream catalyst layer 2. The upstream catalyst layer 2 is formed in a range of 30 mm in length from the end surface on the exhaust gas inflow side, and the downstream catalyst layer 3 is formed in a range of 100 mm in length on the downstream side. Further, the upstream catalyst layer 2 is formed in an amount of 43 g per liter of the carrier substrate 1, and the downstream catalyst layer 3 is formed in an amount of 362 g per liter of the carrier substrate.

以下、この触媒の製造方法を説明して、構成の詳細な説明に代える。   Hereinafter, the manufacturing method of this catalyst is demonstrated and it replaces with the detailed description of a structure.

<上流側スラリーの調製>
市販のCeO2−ZrO2系複合酸化物(重量比CeO2:ZrO2: La2O3:Pr6O11=60:30:3:7)粉末1kgをイオン交換水5リットルに分散させて撹拌し、そこへジニトロジアンミン白金溶液(Pt:4.4wt%)1227gを加えてさらに4時間撹拌した。次いで 120℃で蒸発乾固し、 350℃で2時間焼成後に粉砕して、Ptを 5.4重量%担持したPt( 5.4)/CZ粉末を調製した。
<Preparation of upstream slurry>
Commercially available CeO 2 —ZrO 2 composite oxide (weight ratio CeO 2 : ZrO 2 : La 2 O 3 : Pr 6 O 11 = 60: 30: 3: 7) 1 kg of powder was dispersed in 5 liters of ion-exchanged water. The mixture was stirred, and 1227 g of a dinitrodiammine platinum solution (Pt: 4.4 wt%) was added thereto, followed by further stirring for 4 hours. Next, it was evaporated to dryness at 120 ° C., calcined at 350 ° C. for 2 hours, and pulverized to prepare Pt (5.4) / CZ powder carrying 5.4 wt% Pt.

また別に、Laで安定化されたZrO2(重量比ZrO2: La2O3=95:5)粉末1kgをイオン交換水5リットルに分散させて撹拌し、そこへ硝酸ロジウム溶液(Rh:2.8wt%) 964gを加えてさらに4時間撹拌した。次いで 120℃で蒸発乾固し、 350℃で2時間焼成に粉砕して、Rhを2.7重量%担持したRh( 2.7)/ZL粉末を調製した。 Separately, 1 kg of La-stabilized ZrO 2 (weight ratio ZrO 2 : La 2 O 3 = 95: 5) powder was dispersed in 5 liters of ion-exchanged water and stirred, and then a rhodium nitrate solution (Rh: 2.8) wt%) 964 g was added and the mixture was further stirred for 4 hours. Next, it was evaporated to dryness at 120 ° C. and pulverized at 350 ° C. for 2 hours to prepare Rh (2.7) / ZL powder carrying 2.7% by weight of Rh.

上記で調製されたPt( 5.4)/CZ粉末 833gと、Rh( 2.7)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gを秤量し、ボールミルにて3時間ミリングして上流側スラリーを調製した。 833 g of Pt (5.4) / CZ powder prepared above, 444 g of Rh (2.7) / ZL powder, 111 g of γ-Al 2 O 3 powder, 1110 g of alumina sol (solid content 10 wt%), and 24 g of ion-exchanged water. Weighed and milled with a ball mill for 3 hours to prepare an upstream slurry.

<下流側スラリーの調製>
一方、上記と同様にして、Ptを0.77重量%担持したPt(0.77)/CZ粉末と、Rhを0.39重量%担持したRh(0.39)/ZL粉末を調製した。そしてPt(0.77)/CZ粉末 833gと、Rh(0.39)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gを秤量し、ボールミルにて3時間ミリングして下流側スラリーを調製した。
<Preparation of downstream slurry>
On the other hand, Pt (0.77) / CZ powder carrying 0.77% by weight of Pt and Rh (0.39) / ZL powder carrying 0.39% by weight of Rh were prepared in the same manner as described above. Then, 833 g of Pt (0.77) / CZ powder, 444 g of Rh (0.39) / ZL powder, 111 g of γ-Al 2 O 3 powder, 1110 g of alumina sol (solid content 10 wt%), and 24 g of ion-exchanged water were weighed and ball milled. A downstream slurry was prepared by milling for 3 hours.

<触媒層の形成>
先ず、担体基材1に触媒層を形成するために必要なスラリー量を求めた。上記した上流側スラリー及び下流側スラリーと同様の性状のスラリーを用意し、ハニカム通路が鉛直となるように載置された担体基材1の下端面から大型シリンダを用いてスラリーを注入し、上端面から溢れ出るまでに要するスラリー量(M)を測定した。
<Formation of catalyst layer>
First, the amount of slurry required to form the catalyst layer on the carrier substrate 1 was determined. A slurry having the same properties as the upstream slurry and the downstream slurry described above is prepared, and the slurry is injected from the lower end surface of the carrier substrate 1 placed so that the honeycomb passage is vertical, using a large cylinder, The amount of slurry (M) required to overflow from the end face was measured.

新しい担体基材1を用意してハニカム通路が鉛直となるように載置し、下端面から(M×30)/ 130の量の上流側スラリーを注入した後、下端面から吸引して余分なスラリーを除去し、 250℃で乾燥して上流側触媒層2を形成した。重量測定の結果、上流側触媒層2は担体基材1の1リットルあたり43g形成されていた。   A new carrier base material 1 is prepared and placed so that the honeycomb passage is vertical, and after an amount of (M × 30) / 130 upstream slurry is injected from the lower end surface, the excess is sucked from the lower end surface. The slurry was removed and dried at 250 ° C. to form the upstream catalyst layer 2. As a result of the weight measurement, 43 g of the upstream catalyst layer 2 was formed per liter of the carrier substrate 1.

次いで担体基材1を上下逆に載置し、下端面から(M× 100)/ 130の量の下流側スラリーを注入した後、下端面から吸引して余分なスラリーを除去し、 250℃で乾燥して下流側触媒層3を形成した。重量測定の結果、下流側触媒層3は担体基材1の1リットルあたり 362g形成されていた。   Next, the carrier substrate 1 is placed upside down, and (M × 100) / 130 downstream slurry is injected from the lower end surface, and then the excess slurry is removed by suction from the lower end surface at 250 ° C. The downstream catalyst layer 3 was formed by drying. As a result of the weight measurement, 362 g of the downstream catalyst layer 3 was formed per liter of the carrier substrate 1.

(実施例2)
上流側スラリーとして、Ptを 3.6重量%担持したPt( 3.6)/CZ粉末 833gと、Rhを 1.8重量%担持したRh( 1.8)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを0.83重量%担持したPt(0.83)/CZ粉末 833gと、Rhを0.42重量%担持したRh(0.42)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり75g形成し、下流側触媒層3を担体基材の1リットルあたり 325g形成したこと以外は実施例1と同様にして、実施例2の触媒を調製した。
(Example 2)
As upstream slurry, 833 g of Pt (3.6) / CZ powder supporting 3.6 wt% of Pt, 444 g of Rh (1.8) / ZL powder supporting 1.8 wt% of Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (0.83) / CZ powder supporting 0.83 wt% of Pt, 444 g of Rh (0.42) / ZL powder supporting 0.42 wt% of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. Then, in the same manner as in Example 1, except that 75 g of the upstream catalyst layer 2 was formed per liter of the support base material and 325 g of the downstream catalyst layer 3 was formed per liter of the support base material. A catalyst was prepared.

(実施例3)
上流側スラリーとして、Ptを 2.7重量%担持したPt( 2.7)/CZ粉末 833gと、Rhを1.35重量%担持したRh(1.35)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを 0.9重量%担持したPt( 0.9)/CZ粉末 833gと、Rhを0.45重量%担持したRh(0.45)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 100g形成し、下流側触媒層3を担体基材の1リットルあたり 300g形成したこと以外は実施例1と同様にして、実施例3の触媒を調製した。
(Example 3)
As an upstream slurry, 833 g of Pt (2.7) / CZ powder supporting 2.7 wt% of Pt, 444 g of Rh (1.35) / ZL powder supporting 1.35 wt% of Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (0.9) / CZ powder supporting 0.9 wt% of Pt, 444 g of Rh (0.45) / ZL powder supporting 0.45 wt% of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. Then, the same procedure as in Example 1 was performed except that 100 g of the upstream catalyst layer 2 was formed per liter of the carrier substrate 1 and 300 g of the downstream catalyst layer 3 was formed per liter of the carrier substrate. A catalyst was prepared.

(実施例4)
上流側スラリーとして、Ptを 1.8重量%担持したPt( 1.8)/CZ粉末 833gと、Rhを 0.9重量%担持したRh( 0.9)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.08重量%担持したPt(1.08)/CZ粉末 833gと、Rhを0.54重量%担持したRh(0.54)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 150g形成し、下流側触媒層3を担体基材の1リットルあたり 250g形成したこと以外は実施例1と同様にして、実施例4の触媒を調製した。
Example 4
As an upstream slurry, 833 g of Pt (1.8) / CZ powder supporting 1.8 wt% Pt, 444 g of Rh (0.9) / ZL powder supporting 0.9 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.08) / CZ powder supporting 1.08% by weight of Pt, 444 g of Rh (0.54) / ZL powder supporting 0.54% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. Then, the same procedure as in Example 1 was performed except that 150 g of the upstream catalyst layer 2 was formed per liter of the carrier substrate 1 and 250 g of the downstream catalyst layer 3 was formed per liter of the carrier substrate. A catalyst was prepared.

(実施例5)
上流側スラリーとして、Ptを 1.8重量%担持したPt( 1.8)/CZ粉末 833gと、Rhを 0.9重量%担持したRh( 0.9)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.08重量%担持したPt(1.08)/CZ粉末 833gと、Rhを0.54重量%担持したRh(0.54)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。
(Example 5)
As an upstream slurry, 833 g of Pt (1.8) / CZ powder supporting 1.8 wt% Pt, 444 g of Rh (0.9) / ZL powder supporting 0.9 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.08) / CZ powder supporting 1.08% by weight of Pt, 444 g of Rh (0.54) / ZL powder supporting 0.54% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used.

そして上流側触媒層2を排ガス流入側端面から10mmの長さの範囲に形成し、下流側触媒層3をその下流側の長さ 120mmの範囲に形成するとともに、上流側触媒層2を担体基材1の1リットルあたり 150g形成し、下流側触媒層3を担体基材の1リットルあたり 250g形成したこと以外は実施例1と同様にして、実施例5の触媒を調製した。   Then, the upstream catalyst layer 2 is formed within a length range of 10 mm from the exhaust gas inflow side end face, the downstream catalyst layer 3 is formed within a length range of 120 mm downstream thereof, and the upstream catalyst layer 2 is formed on the carrier base. A catalyst of Example 5 was prepared in the same manner as in Example 1 except that 150 g per liter of the material 1 was formed and 250 g of the downstream catalyst layer 3 was formed per liter of the support substrate.

(実施例6)
上流側スラリーとして、Ptを 1.8重量%担持したPt( 1.8)/CZ粉末 833gと、Rhを 0.9重量%担持したRh( 0.9)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.08重量%担持したPt(1.08)/CZ粉末 833gと、Rhを0.54重量%担持したRh(0.54)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。
(Example 6)
As an upstream slurry, 833 g of Pt (1.8) / CZ powder supporting 1.8 wt% Pt, 444 g of Rh (0.9) / ZL powder supporting 0.9 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.08) / CZ powder supporting 1.08% by weight of Pt, 444 g of Rh (0.54) / ZL powder supporting 0.54% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used.

そして上流側触媒層2を排ガス流入側端面から50mmの長さの範囲に形成し、下流側触媒層3をその下流側の長さ80mmの範囲に形成するとともに、上流側触媒層2を担体基材1の1リットルあたり 150g形成し、下流側触媒層3を担体基材の1リットルあたり 250g形成したこと以外は実施例1と同様にして、実施例6の触媒を調製した。   The upstream catalyst layer 2 is formed in a range of 50 mm from the exhaust gas inflow side end surface, the downstream catalyst layer 3 is formed in a range of 80 mm in length downstream thereof, and the upstream catalyst layer 2 is formed on the carrier base. A catalyst of Example 6 was prepared in the same manner as in Example 1 except that 150 g per liter of the material 1 was formed and 250 g of the downstream catalyst layer 3 was formed per liter of the support substrate.

(比較例1)
上流側スラリーとして、Ptを1.35重量%担持したPt(1.35)/CZ粉末 833gと、Rhを0.68重量%担持したRh(0.68)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.35重量%担持したPt(1.35)/CZ粉末 833gと、Rhを0.68重量%担持したRh(0.68)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 200g形成し、下流側触媒層3を担体基材の1リットルあたり 200g形成したこと以外は実施例1と同様にして、比較例1の触媒を調製した。
(Comparative Example 1)
As upstream slurry, 833 g of Pt (1.35) / CZ powder supporting 1.35 wt% Pt, 444 g of Rh (0.68) / ZL powder supporting 0.68 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.35) / CZ powder supporting 1.35 wt% of Pt, 444 g of Rh (0.68) / ZL powder supporting 0.68 wt% of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. Then, in the same manner as in Example 1, except that the upstream catalyst layer 2 was formed at 200 g per liter of the carrier base material 1 and the downstream catalyst layer 3 was formed at 200 g per liter of the carrier base material. A catalyst was prepared.

(比較例2)
上流側スラリーとして、Ptを 0.9重量%担持したPt( 0.9)/CZ粉末 833gと、Rhを0.45重量%担持したRh(0.45)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを 2.7重量%担持したPt( 2.7)/CZ粉末 833gと、Rhを1.35重量%担持したRh(1.35)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 300g形成し、下流側触媒層3を担体基材の1リットルあたり 100g形成したこと以外は実施例1と同様にして、比較例2の触媒を調製した。
(Comparative Example 2)
As upstream slurry, 833 g of Pt (0.9) / CZ powder supporting 0.9 wt% of Pt, 444 g of Rh (0.45) / ZL powder supporting 0.45 wt% of Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (2.7) / CZ powder supporting 2.7% by weight of Pt, 444 g of Rh (1.35) / ZL powder supporting 1.35% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. In the same manner as in Example 1, except that 300 g of the upstream catalyst layer 2 was formed per liter of the carrier substrate 1 and 100 g of the downstream catalyst layer 3 was formed per liter of the carrier substrate, A catalyst was prepared.

(比較例3)
上流側スラリーとして、Ptを0.77重量%担持したPt(0.77)/CZ粉末 833gと、Rhを0.39重量%担持したRh(0.39)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを 5.4重量%担持したPt( 5.4)/CZ粉末 833gと、Rhを 2.7重量%担持したRh( 2.7)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 350g形成し、下流側触媒層3を担体基材の1リットルあたり50g形成したこと以外は実施例1と同様にして、比較例3の触媒を調製した。
(Comparative Example 3)
As upstream slurry, 833 g of Pt (0.77) / CZ powder supporting 0.77% by weight of Pt, 444 g of Rh (0.39) / ZL powder supporting 0.39% by weight of Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (5.4) / CZ powder supporting 5.4% by weight of Pt, 444 g of Rh (2.7) / ZL powder supporting 2.7% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. In the same manner as in Example 1, except that 350 g of the upstream catalyst layer 2 was formed per liter of the carrier base material 1 and 50 g of the downstream catalyst layer 3 was formed per liter of the carrier base material. A catalyst was prepared.

(比較例4)
上流側スラリーとして、Ptを 1.8重量%担持したPt( 1.8)/CZ粉末 833gと、Rhを 0.9重量%担持したRh( 0.9)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.08重量%担持したPt(1.08)/CZ粉末 833gと、Rhを0.54重量%担持したRh(0.54)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。
(Comparative Example 4)
As an upstream slurry, 833 g of Pt (1.8) / CZ powder supporting 1.8 wt% Pt, 444 g of Rh (0.9) / ZL powder supporting 0.9 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.08) / CZ powder supporting 1.08% by weight of Pt, 444 g of Rh (0.54) / ZL powder supporting 0.54% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used.

そして上流側触媒層2を排ガス流入側端面から5mmの長さの範囲に形成し、下流側触媒層3をその下流側の長さ 125mmの範囲に形成するとともに、上流側触媒層2を担体基材1の1リットルあたり 150g形成し、下流側触媒層3を担体基材の1リットルあたり 250g形成したこと以外は実施例1と同様にして、比較例4の触媒を調製した。   Then, the upstream catalyst layer 2 is formed in a range of 5 mm from the end surface on the exhaust gas inflow side, the downstream catalyst layer 3 is formed in a range of 125 mm in the downstream side, and the upstream catalyst layer 2 is formed on the carrier base. A catalyst of Comparative Example 4 was prepared in the same manner as in Example 1 except that 150 g per liter of the material 1 was formed and 250 g of the downstream catalyst layer 3 was formed per liter of the support substrate.

(比較例5)
上流側スラリーとして、Ptを 1.8重量%担持したPt( 1.8)/CZ粉末 833gと、Rhを 0.9重量%担持したRh( 0.9)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.08重量%担持したPt(1.08)/CZ粉末 833gと、Rhを0.54重量%担持したRh(0.54)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。
(Comparative Example 5)
As an upstream slurry, 833 g of Pt (1.8) / CZ powder supporting 1.8 wt% Pt, 444 g of Rh (0.9) / ZL powder supporting 0.9 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.08) / CZ powder supporting 1.08% by weight of Pt, 444 g of Rh (0.54) / ZL powder supporting 0.54% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used.

そして上流側触媒層2を排ガス流入側端面から65mmの長さの範囲に形成し、下流側触媒層3をその下流側の長さ65mmの範囲に形成するとともに、上流側触媒層2を担体基材1の1リットルあたり 150g形成し、下流側触媒層3を担体基材の1リットルあたり 250g形成したこと以外は実施例1と同様にして、比較例5の触媒を調製した。   The upstream catalyst layer 2 is formed in a range of 65 mm from the exhaust gas inflow side end surface, the downstream catalyst layer 3 is formed in a range of 65 mm in length downstream thereof, and the upstream catalyst layer 2 is formed on the carrier base. A catalyst of Comparative Example 5 was prepared in the same manner as in Example 1 except that 150 g per liter of the material 1 was formed and 250 g of the downstream catalyst layer 3 was formed per liter of the support substrate.

<試験・評価>
各触媒の構成を表1にまとめて示す。各触媒は、担体基材1個あたりに担持されているPt及びRhの絶対量が同一である。
<Test and evaluation>
The composition of each catalyst is summarized in Table 1. Each catalyst has the same absolute amount of Pt and Rh supported per carrier substrate.

Figure 2006205002
Figure 2006205002

各実施例及び各比較例の触媒を 4.3Lのエンジンの排気系に並列に2個それぞれ装着し、 A/F=14.6± 0.5の間で雰囲気変動させるとともに、触媒の入りガス温度が 950℃になるように制御しながら50時間保持する耐久試験を行った。   Two catalysts of each example and each comparative example were installed in parallel in the exhaust system of a 4.3L engine, the atmosphere was changed between A / F = 14.6 ± 0.5, and the gas temperature of the catalyst was 950 ℃ An endurance test was carried out for 50 hours while being controlled.

耐久試験後の各触媒を 2.4Lのエンジンの排気系にそれぞれ装着し、ストイキ雰囲気で燃焼するように制御しながら運転し、排ガス分析計にて、触媒前後の排ガス中の THC及びNOx の濃度を始動直後から連続的に測定した。そして THC及びNOx の浄化率が50%に到達するまでの時間をそれぞれ求め、各触媒層の形成量について整理した結果を図3に示す。また50%浄化到達時間のデータを上流側触媒層2の長さについて整理し、結果を図4に示す。さらに、触媒入りガス温度が 400℃になったときのHC及びNOx の浄化率を測定し、結果を図5に示す。 Each catalyst after the endurance test is installed in the exhaust system of a 2.4-liter engine and is operated while being controlled to burn in a stoichiometric atmosphere. The exhaust gas analyzer uses THC and NO x concentrations in the exhaust gas before and after the catalyst. Was measured continuously immediately after starting. FIG. 3 shows the results of obtaining the time required for the THC and NO x purification rates to reach 50%, and arranging the formation amounts of the catalyst layers. Further, the data on the 50% purification arrival time is arranged for the length of the upstream catalyst layer 2, and the result is shown in FIG. Furthermore, the purification rate of HC and NO x when the gas temperature containing the catalyst reached 400 ° C. was measured, and the results are shown in FIG.

各実施例及び各比較例の触媒では、担持されている貴金属の絶対量は同一となるように調整してある。したがって図3から、上流側触媒層2の形成量が下流側触媒層3の形成量より多くなると50%浄化到達時間が長くなり、始動時の浄化性能が低いことがわかる。また図4から、上流側触媒層2の長さが10〜50mmの範囲が特に好ましいことも明らかである。   In the catalysts of Examples and Comparative Examples, the absolute amount of the noble metal supported is adjusted to be the same. Therefore, it can be seen from FIG. 3 that when the formation amount of the upstream catalyst layer 2 is larger than the formation amount of the downstream catalyst layer 3, the 50% purification arrival time becomes long and the purification performance at the start is low. It is also clear from FIG. 4 that the upstream catalyst layer 2 is particularly preferably in the range of 10 to 50 mm in length.

また図5から、上流側触媒層2の形成量が多くなると触媒暖機後の浄化率が低下していることがわかる。図5から、上流側触媒層2の形成量は 300g/L未満であることが望ましいことがわかり、本発明のように上流側触媒層の形成量を下流側触媒層の形成量より少なくすることは、暖機後の浄化性能面からも好ましいことが明らかである。   Further, it can be seen from FIG. 5 that the purification rate after catalyst warm-up decreases as the formation amount of the upstream catalyst layer 2 increases. FIG. 5 shows that the formation amount of the upstream catalyst layer 2 is preferably less than 300 g / L, and the formation amount of the upstream catalyst layer is made smaller than the formation amount of the downstream catalyst layer as in the present invention. It is clear that this is preferable from the viewpoint of purification performance after warm-up.

(比較例6)
上流側スラリーとして、Ptを1.06重量%担持したPt(1.06)/CZ粉末 833gと、Rhを0.27重量%担持したRh(0.27)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.06重量%担持したPt(1.06)/CZ粉末 833gと、Rhを0.56重量%担持したRh(0.56)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 100g形成し、下流側触媒層3を担体基材の1リットルあたり 300g形成したこと以外は実施例1と同様にして、比較例6の触媒を調製した。
(Comparative Example 6)
As upstream slurry, 833 g of Pt (1.06) / CZ powder supporting 1.06 wt% of Pt, 444 g of Rh (0.27) / ZL powder supporting 0.27 wt% of Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.06) / CZ powder supporting 1.06% by weight of Pt, 444 g of Rh (0.56) / ZL powder supporting 0.56% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. Then, in the same manner as in Example 1, except that the upstream catalyst layer 2 was formed at 100 g per liter of the carrier base material 1 and the downstream catalyst layer 3 was formed at 300 g per liter of the carrier base material. A catalyst was prepared.

(比較例7)
上流側スラリーとして、Ptを 2.6重量%担持したPt( 2.6)/CZ粉末 833gと、Rhを 1.3重量%担持したRh( 1.3)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。また下流側スラリーとして、Ptを1.17重量%担持したPt(1.17)/CZ粉末 833gと、Rhを 0.6重量%担持したRh( 0.6)/ZL粉末 444gと、γ-Al2O3粉末 111gと、アルミナゾル(固形分 10wt%)1110gと、イオン交換水24gとからなるものを用いた。そして上流側触媒層2を担体基材1の1リットルあたり 300g形成し、下流側触媒層3を担体基材の1リットルあたり 100g形成したこと以外は実施例1と同様にして、比較例7の触媒を調製した。
(Comparative Example 7)
As upstream slurry, 833 g of Pt (2.6) / CZ powder supporting 2.6 wt% Pt, 444 g of Rh (1.3) / ZL powder supporting 1.3 wt% Rh, 111 g of γ-Al 2 O 3 powder, alumina sol What consists of 1110g (solid content 10wt%) and 24g of ion-exchange water was used. Further, as downstream slurry, 833 g of Pt (1.17) / CZ powder supporting 1.17% by weight of Pt, 444 g of Rh (0.6) / ZL powder supporting 0.6% by weight of Rh, 111 g of γ-Al 2 O 3 powder, A material comprising 1110 g of alumina sol (solid content 10 wt%) and 24 g of ion-exchanged water was used. In the same manner as in Example 1, except that 300 g of the upstream catalyst layer 2 was formed per liter of the carrier substrate 1 and 100 g of the downstream catalyst layer 3 was formed per liter of the carrier substrate, Comparative Example 7 A catalyst was prepared.

<試験・評価>
上流側触媒層2が、排ガス流入側端面から30mmの長さの範囲に形成され、下流側触媒層3がその下流側の長さ 100mmの範囲に形成されている触媒の中から、実施例3、比較例1〜3、比較例6、比較例7の触媒を選択し、それぞれ上記と同様にして50%浄化到達時間と 400℃における浄化率を測定した。結果を表2に示す。
<Test and evaluation>
From the catalyst in which the upstream catalyst layer 2 is formed in the range of 30 mm length from the exhaust gas inflow side end face, and the downstream catalyst layer 3 is formed in the range of length of 100 mm downstream thereof, Example 3 The catalysts of Comparative Examples 1 to 3, Comparative Example 6 and Comparative Example 7 were selected, and the 50% purification arrival time and the purification rate at 400 ° C. were measured in the same manner as described above. The results are shown in Table 2.

Figure 2006205002
Figure 2006205002

表2より、比較例7の触媒のように、上流側触媒層の貴金属担持量が多くてもその形成量が下流側触媒層より多い場合には、比較例1〜2の触媒に比べて暖機性能は向上するものの、暖機後の浄化率が低下していることがわかる。また比較例6のように、上流側触媒層の形成量が下流側触媒層より少なくても、上流側触媒層の貴金属の担持量が比較例7より少ないと、比較例7より暖機性能が低下していることもわかる。   As shown in Table 2, when the amount of noble metal supported on the upstream side catalyst layer is larger than that on the downstream side catalyst layer as in the catalyst of Comparative Example 7, the temperature is higher than that of the catalysts of Comparative Examples 1 and 2. Although the machine performance is improved, it can be seen that the purification rate after warm-up is lowered. Further, as in Comparative Example 6, even if the amount of upstream catalyst layer formed is smaller than that of the downstream catalyst layer, if the amount of noble metal supported on the upstream catalyst layer is less than that of Comparative Example 7, the warm-up performance is higher than that of Comparative Example 7. It can also be seen that it has declined.

すなわち暖機性能と暖機後の浄化性能とを両立させるためには、上流側触媒層における貴金属の重量百分率(酸化物担体粉末と貴金属との合計重量に対する貴金属の重量の割合)を下流側触媒層における貴金属の重量百分率より大きく、担体基材の単位体積当たりにおける触媒層の形成量を、上流側触媒層の方が下流側触媒層より少なくする必要があることが明らかである。   That is, in order to achieve both warm-up performance and purification performance after warm-up, the weight percentage of the noble metal in the upstream catalyst layer (the ratio of the weight of the noble metal to the total weight of the oxide support powder and the noble metal) is set to the downstream catalyst. It is clear that the upstream catalyst layer needs to be less in the upstream catalyst layer than the downstream catalyst layer so that the amount of the catalyst layer formed per unit volume of the support substrate is larger than the weight percentage of the noble metal in the layer.

本発明の排ガス浄化用触媒は三元触媒に特に有用であるが、酸化触媒、NOx 吸蔵還元触媒、NOx 選択還元触媒などへの応用も可能である。 The exhaust gas purifying catalyst of the present invention is particularly useful as a three-way catalyst, but can also be applied to oxidation catalysts, NO x storage reduction catalysts, NO x selective reduction catalysts, and the like.

本発明の一実施例の排ガス浄化用触媒の斜視図である。It is a perspective view of the catalyst for exhaust gas purification of one Example of this invention. 本発明の一実施例の排ガス浄化用触媒の断面図である。It is sectional drawing of the catalyst for exhaust gas purification of one Example of this invention. 上流側触媒層の形成量と50%浄化到達時間との関係を示すグラフである。It is a graph which shows the relationship between the formation amount of an upstream catalyst layer, and 50% purification | cleaning arrival time. 上流側触媒層の長さと50%浄化到達時間との関係を示すグラフである。It is a graph which shows the relationship between the length of an upstream catalyst layer, and 50% purification arrival time. 上流側触媒層の形成量と暖機後の浄化率との関係を示すグラフである。It is a graph which shows the relationship between the formation amount of an upstream catalyst layer, and the purification rate after warm-up.

符号の説明Explanation of symbols

1:担体基材 2:上流側触媒層 3:下流側触媒層   1: Support base material 2: Upstream catalyst layer 3: Downstream catalyst layer

Claims (2)

担体基材と、該担体基材の排ガス上流側に形成された上流側触媒層と、該上流側触媒層の排ガス下流側で該担体基材に形成された下流側触媒層と、を有する排ガス浄化用触媒であって、
該上流側触媒層及び該下流側触媒層は酸化物担体粉末と貴金属とからなり、
該上流側触媒層における該貴金属の重量百分率(酸化物担体粉末と貴金属との合計重量に対する貴金属の重量の割合)は該下流側触媒層における該貴金属の重量百分率より大きく、
該担体基材の単位体積当たりにおける触媒層の形成量は、該上流側触媒層の方が該下流側触媒層より少ないことを特徴とする排ガス浄化用触媒。
Exhaust gas having a carrier base material, an upstream catalyst layer formed on the exhaust gas upstream side of the carrier base material, and a downstream catalyst layer formed on the carrier base material on the exhaust gas downstream side of the upstream catalyst layer A purification catalyst,
The upstream catalyst layer and the downstream catalyst layer are composed of an oxide carrier powder and a noble metal,
The weight percentage of the noble metal in the upstream catalyst layer (the ratio of the weight of the noble metal to the total weight of the oxide support powder and the noble metal) is greater than the weight percentage of the noble metal in the downstream catalyst layer,
The exhaust gas purifying catalyst characterized in that the catalyst layer is formed in a unit amount per unit volume of the carrier base material in the upstream catalyst layer being smaller than that in the downstream catalyst layer.
前記上流側触媒層は、排ガス流入側端面から10〜50mmの長さの範囲に形成されている請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the upstream catalyst layer is formed in a range of 10 to 50 mm from an end surface on the exhaust gas inflow side.
JP2005018204A 2005-01-26 2005-01-26 Catalyst for cleaning exhaust gas Pending JP2006205002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018204A JP2006205002A (en) 2005-01-26 2005-01-26 Catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018204A JP2006205002A (en) 2005-01-26 2005-01-26 Catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2006205002A true JP2006205002A (en) 2006-08-10

Family

ID=36962389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018204A Pending JP2006205002A (en) 2005-01-26 2005-01-26 Catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2006205002A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532196A (en) * 2006-03-31 2009-09-10 コーニング インコーポレイテッド Gas-through-flow ceramic substrate with catalyst for quick ignition and method for producing the same
WO2010053163A1 (en) * 2008-11-06 2010-05-14 株式会社 キャタラー Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
JP2012086199A (en) * 2010-10-22 2012-05-10 Toyota Motor Corp Exhaust purifying catalyst
JP2014001679A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Catalytic converter
JP2014522726A (en) * 2011-08-10 2014-09-08 クリーン ディーゼル テクノロジーズ インコーポレーテッド Catalysts containing lanthanide-doped zirconia and methods of manufacture
JP2017136577A (en) * 2016-02-05 2017-08-10 トヨタ自動車株式会社 Electrically heating catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622674B2 (en) * 1985-09-24 1994-03-30 マツダ株式会社 Engine exhaust gas purification catalyst
JPH08332350A (en) * 1995-06-07 1996-12-17 Toyota Motor Corp Catalyst for exhaust gas purification
JP2001252565A (en) * 2000-03-10 2001-09-18 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2004000838A (en) * 2002-05-31 2004-01-08 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP4682151B2 (en) * 2004-11-25 2011-05-11 株式会社キャタラー Exhaust gas purification catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622674B2 (en) * 1985-09-24 1994-03-30 マツダ株式会社 Engine exhaust gas purification catalyst
JPH08332350A (en) * 1995-06-07 1996-12-17 Toyota Motor Corp Catalyst for exhaust gas purification
JP2001252565A (en) * 2000-03-10 2001-09-18 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2004000838A (en) * 2002-05-31 2004-01-08 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP4682151B2 (en) * 2004-11-25 2011-05-11 株式会社キャタラー Exhaust gas purification catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532196A (en) * 2006-03-31 2009-09-10 コーニング インコーポレイテッド Gas-through-flow ceramic substrate with catalyst for quick ignition and method for producing the same
WO2010053163A1 (en) * 2008-11-06 2010-05-14 株式会社 キャタラー Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
EP2347822A1 (en) * 2008-11-06 2011-07-27 Cataler Corporation Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
CN102209587A (en) * 2008-11-06 2011-10-05 株式会社科特拉 Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
JPWO2010053163A1 (en) * 2008-11-06 2012-04-05 株式会社キャタラー Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
EP2347822A4 (en) * 2008-11-06 2012-09-05 Cataler Corp Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
US8721976B2 (en) 2008-11-06 2014-05-13 Cataler Corporation Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
US9144789B2 (en) 2008-11-06 2015-09-29 Cataler Corporation Diesel exhaust gas purification catalyst and diesel exhaust gas purification system
JP2012086199A (en) * 2010-10-22 2012-05-10 Toyota Motor Corp Exhaust purifying catalyst
JP2014522726A (en) * 2011-08-10 2014-09-08 クリーン ディーゼル テクノロジーズ インコーポレーテッド Catalysts containing lanthanide-doped zirconia and methods of manufacture
JP2014001679A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Catalytic converter
JP2017136577A (en) * 2016-02-05 2017-08-10 トヨタ自動車株式会社 Electrically heating catalyst

Similar Documents

Publication Publication Date Title
JP4935219B2 (en) Exhaust gas purification catalyst
JP5807782B2 (en) Exhaust gas purification catalyst
JP4833605B2 (en) Exhaust gas purification catalyst
WO2006057067A1 (en) Catalyst for exhaust gas purification
EP3730203A1 (en) Exhaust gas purification catalyst
JP2006075724A (en) Catalyst for exhaust gas cleaning
JP2011212639A (en) Catalyst for vehicle exhaust gas purification
WO2014129634A1 (en) Exhaust gas purifying catalyst and exhaust gas purification method using same
JP2009285605A (en) Catalyst for cleaning exhaust gas
JP2006205050A (en) Catalyst for cleaning exhaust gas
JP6889252B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using it
JP4716087B2 (en) Exhaust gas purification catalyst
JP7255459B2 (en) Exhaust gas purification catalyst
JP2006205002A (en) Catalyst for cleaning exhaust gas
JP5332131B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3882627B2 (en) Exhaust gas purification catalyst
JP6735912B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPWO2011052676A1 (en) Exhaust gas purification device for internal combustion engine
JP2009000648A (en) Exhaust gas cleaning catalyst
JP2002282692A (en) Catalyst for cleaning exhaust gas
JP2003245553A (en) Catalyst powder and catalyst for cleaning exhaust gas
JP2001252565A (en) Exhaust gas cleaning catalyst
JP2005021793A (en) Exhaust gas cleaning catalyst
JP4389159B2 (en) Exhaust gas purification catalyst
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140328