JP2009000648A - Exhaust gas cleaning catalyst - Google Patents

Exhaust gas cleaning catalyst Download PDF

Info

Publication number
JP2009000648A
JP2009000648A JP2007165259A JP2007165259A JP2009000648A JP 2009000648 A JP2009000648 A JP 2009000648A JP 2007165259 A JP2007165259 A JP 2007165259A JP 2007165259 A JP2007165259 A JP 2007165259A JP 2009000648 A JP2009000648 A JP 2009000648A
Authority
JP
Japan
Prior art keywords
catalyst
composite oxide
coat layer
supported
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007165259A
Other languages
Japanese (ja)
Inventor
Akemi Sato
あけみ 佐藤
Yoshiteru Yazawa
義輝 矢沢
Masamichi Kuwashima
正倫 桑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007165259A priority Critical patent/JP2009000648A/en
Priority to PCT/JP2008/061050 priority patent/WO2009001715A1/en
Publication of JP2009000648A publication Critical patent/JP2009000648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which does not use Pt and is more excellent in durability than in the case when Pt is used. <P>SOLUTION: The catalyst is a two-layer structural catalyst consisting of a lower catalyst coat layer 2 containing a catalyst powder, wherein Pd is supported on a carrier containing at least a Ce-Zr composite oxide, and a upper catalyst coat layer 3 containing a catalyst powder, wherein Rh is supported by a carrier consisting of at least one of zirconia and the Ce-Zr composite oxide. Pd is supported by the Ce-Zr composite oxide so that PdO with a higher activity is formed from Pd by an oxygen absorb-discharge capacity and a high oxidation activity based on Pt is expressed. Then, the carrier consisting of at least one of zirconia and the Ce-Zr composite oxide is excellent in heat resistance and Rh supported by it is controlled in particle growth. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、三元触媒などの排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst such as a three-way catalyst.

従来より自動車の排ガス浄化用触媒として、理論空燃比(ストイキ)において排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコージェライトなどからなる耐熱性基材にγ−アルミナからなるコート層を形成し、そのコート層に白金(Pt)、ロジウム(Rh)、パラジウム(Pd)などの貴金属を担持させたものが広く知られている。また、酸素吸蔵能をもつセリアを併用し、浄化ウィンドウを拡げた三元触媒も知られている。 Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst that purifies by performing CO and HC oxidation and NO x reduction simultaneously in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) has been used. As such a three-way catalyst, for example, a coating layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), palladium (Pd) or the like is formed on the coating layer. Those carrying a noble metal are widely known. In addition, a three-way catalyst that uses ceria having an oxygen storage capacity and expands the purification window is also known.

貴金属のうちPt及びPdは主としてCO及びHCの酸化浄化に寄与し、Rhは主としてNOx の還元浄化に寄与するとともに、RhにはPt又はPdのシンタリングを防止する作用がある。したがってPt又はPdとRhとを併用することにより、シンタリングによる活性点の減少により活性が低下するという不具合が抑制され、耐熱性が向上することがわかっている。したがって三元触媒では、Pt又はPdとRhとを併用することが望ましいことが知られている。 Of the noble metals, Pt and Pd mainly contribute to the oxidation and purification of CO and HC, Rh mainly contributes to the reduction and purification of NO x , and Rh has an action of preventing sintering of Pt or Pd. Therefore, it has been found that the combined use of Pt or Pd and Rh suppresses the disadvantage that the activity is lowered due to the reduction of the active site due to sintering, and improves the heat resistance. Therefore, it is known that it is desirable to use Pt or Pd in combination with Rh in the three-way catalyst.

ところで、近年の排ガス規制強化に対応するため、スタートアップ用触媒とアンダフロア用触媒からなる二触媒システムが数多く採用されている。ところが、この二触媒システムにおいて、スタートアップ触媒はエンジン直下に取り付けられるため、使用時の触媒の温度がアンダフロア用触媒に比べてかなり上昇し、RhによるPtやPdのシンタリング抑制効果が低減される。またPtとRhを併用すると、高温時にPtとRhとが合金化するため、Ptの酸化能及びRhの還元能が共に低下するという不具合があることも明らかとなった。   By the way, in order to respond to the recent tightening of exhaust gas regulations, many two-catalyst systems comprising a startup catalyst and an underfloor catalyst have been adopted. However, in this two-catalyst system, the startup catalyst is installed directly under the engine, so the temperature of the catalyst during use rises considerably compared to the underfloor catalyst, and the effect of suppressing sintering of Pt and Pd by Rh is reduced. . In addition, when Pt and Rh are used in combination, Pt and Rh are alloyed at high temperatures, and it has also been clarified that both Pt oxidation ability and Rh reduction ability are reduced.

さらに、貴金属種と担体種の間には、使用条件により好ましくない組合せが存在する。例えばRhをアルミナに担持した触媒では、 900℃以上の高温酸化雰囲気においてRhがアルミナ中に固溶し、性能低下が著しいという不具合がある。   Further, there are unfavorable combinations between the noble metal species and the support species depending on the use conditions. For example, in a catalyst in which Rh is supported on alumina, there is a problem that Rh is dissolved in alumina in a high-temperature oxidizing atmosphere of 900 ° C. or more, and the performance is remarkably deteriorated.

また、三元触媒には 900℃以上の高温耐久性が強く要請されている。そのためには触媒の劣化を抑制することが重要な課題である。さらにRhは資源的にきわめて稀少であり、Rhを効率よく活用するとともに、その劣化を抑制して耐熱性を高めることが望まれている。   Three-way catalysts are strongly required to have high temperature durability of 900 ° C or higher. For that purpose, it is an important subject to suppress the deterioration of the catalyst. Furthermore, Rh is extremely scarce in terms of resources, and it is desired to efficiently use Rh and suppress its deterioration to increase heat resistance.

そこで、ジルコニアにRhが担持された触媒粉末をアルミナと混合してコート層を形成することが行われている。このようにRhをジルコニアに担持することで、先に述べたRhのアルミナ中への固溶が防止され、Rhの劣化を抑制することができる。   Therefore, a catalyst layer in which Rh is supported on zirconia is mixed with alumina to form a coat layer. By supporting Rh on zirconia in this manner, solid solution of Rh in alumina described above can be prevented, and deterioration of Rh can be suppressed.

さらに、コート層を二層構造とし、複数種の貴金属を分離担持した排ガス浄化用触媒が提案されている。例えば特開平05−293376号公報には、コート層の最表層にRhを担持し、その内側層にPt又はPdを担持した排ガス浄化用触媒が開示されている。また特開平06−063403号公報には、PtあるいはPdを含む第1コート層と、第1コート層の上層に設けられRhを含む第2コート層とからなり、第2コート層中にセリウム及びジルコニウムを主成分とする金属酸化物粉末を含有した排ガス浄化用触媒が提案されている。   Furthermore, an exhaust gas purifying catalyst has been proposed in which the coat layer has a two-layer structure and separates and supports plural kinds of noble metals. For example, Japanese Patent Laid-Open No. 05-293376 discloses an exhaust gas purifying catalyst in which Rh is supported on the outermost layer of a coat layer and Pt or Pd is supported on the inner layer. Japanese Laid-Open Patent Publication No. 06-063403 discloses a first coat layer containing Pt or Pd and a second coat layer provided on the first coat layer and containing Rh. In the second coat layer, cerium and An exhaust gas purifying catalyst containing a metal oxide powder mainly containing zirconium has been proposed.

また特開2004−298813号公報には、担体基材の表面に、アルミナにPtを担持してなるPt担持触媒とセリア−ジルコニア複合酸化物(以下、Ce−Zr複合酸化物という)とからなる下触媒層と、Ce−Zr複合酸化物又はアルミナにRhを担持してなるRh担持触媒とアルミナ及びCe−Zr複合酸化物の少なくとも一方とからなる上触媒層と、を形成した三元触媒が提案されている。   Japanese Patent Application Laid-Open No. 2004-298813 includes a Pt-supported catalyst in which Pt is supported on alumina on the surface of a support substrate and a ceria-zirconia composite oxide (hereinafter referred to as Ce-Zr composite oxide). A three-way catalyst comprising: a lower catalyst layer; a Ce-Zr composite oxide or an Rh-supported catalyst in which Rh is supported on alumina; and an upper catalyst layer comprising at least one of alumina and Ce-Zr composite oxide. Proposed.

ところがエンジンが間欠的に停止されるような使用環境においては、リーン雰囲気となる頻度がきわめて高くなる。そのため、二層の触媒層を形成してPtとRhとを分離担持した三元触媒であっても、このような環境下にあっては貴金属の移動が促進され、結果的に耐久後の浄化性能が低下するという問題があった。   However, in a use environment where the engine is stopped intermittently, the frequency of the lean atmosphere becomes extremely high. Therefore, even in the case of a three-way catalyst in which two catalyst layers are formed and Pt and Rh are separated and supported, the movement of noble metals is promoted in such an environment, resulting in purification after endurance. There was a problem that the performance deteriorated.

またPdは低温域における酸化活性に優れ、低温排ガス中の特にHCを効率よく酸化浄化する。そこでPdを主とする三元触媒も開発されている。しかしPdはRhと合金化し易いので、上記した方法によってそれぞれ分離して担持することが望ましい。そこで特開平11−151439号公報には、セリアリッチのCe−Zr複合酸化物にPdを担持した下被覆層と、ジルコニアリッチのCe−Zr複合酸化物にPtとRhを担持した上被覆層と、からなる三元触媒が提案されている。
特開平05−293376号公報 特開平06−063403号公報 特開2004−298813号公報 特開平11−151439号公報
Pd is excellent in oxidation activity in a low temperature range, and efficiently oxidizes and purifies HC in low temperature exhaust gas. Therefore, a three-way catalyst mainly composed of Pd has been developed. However, since Pd is easily alloyed with Rh, it is desirable to carry it separately by the above-described method. Therefore, JP-A-11-151439 discloses a lower coating layer in which Pd is supported on a ceria-rich Ce-Zr composite oxide, and an upper coating layer in which Pt and Rh are supported on a zirconia-rich Ce-Zr composite oxide. A three-way catalyst is proposed.
Japanese Patent Laid-Open No. 05-293376 Japanese Patent Laid-Open No. 06-063403 JP 2004-298813 A Japanese Patent Laid-Open No. 11-151439

ところが従来の三元触媒では、高温耐久時の浄化性能の低下度合いがまだ大きく、耐久後の浄化性能をさらに高く維持することが求められている。そこで本願発明者らは鋭意研究した結果、RhばかりでなくPdについても、Ptが共存すると高温耐久時の活性が大きく低下することが明らかとなった。   However, in the conventional three-way catalyst, the degree of decrease in purification performance at the time of high temperature durability is still large, and it is required to maintain the purification performance after durability even higher. Thus, as a result of intensive studies, the inventors of the present application have clarified that not only Rh but also Pd, the activity at the time of high-temperature durability greatly decreases when Pt coexists.

本発明は上記事情に鑑みてなされたものであり、Ptを用いることなく、Ptを用いた場合より耐久性に優れた触媒とすることを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the problem which should be solved to make it the catalyst excellent in durability rather than the case where Pt is used, without using Pt.

上記課題を解決する本発明の排ガス浄化用触媒の特徴は、担体基材と、担体基材の表面に形成された下触媒コート層と、下触媒コート層の表面に形成された上触媒コート層と、からなる排ガス浄化用触媒であって、下触媒コート層は少なくともCe−Zr複合酸化物を含む担体にPdが担持されてなる触媒粉末を含み、上触媒コート層はジルコニア及びCe−Zr複合酸化物の少なくとも一方からなる担体にRhが担持されてなる触媒粉末を含むことにある。   The exhaust gas purifying catalyst of the present invention that solves the above problems is characterized in that a carrier substrate, a lower catalyst coat layer formed on the surface of the carrier substrate, and an upper catalyst coat layer formed on the surface of the lower catalyst coat layer The lower catalyst coat layer includes a catalyst powder in which Pd is supported on a support containing at least a Ce-Zr composite oxide, and the upper catalyst coat layer includes a zirconia and Ce-Zr composite. The object is to include a catalyst powder in which Rh is supported on a support made of at least one of oxides.

下触媒コート層中に含まれたCe−Zr複合酸化物は、Ce/Zr原子比が1より大きいことが好ましい。   The Ce—Zr composite oxide contained in the lower catalyst coat layer preferably has a Ce / Zr atomic ratio greater than 1.

また上触媒コート層中に含まれるCe−Zr複合酸化物は、Ce/Zr原子比が1より小さいことが好ましい。   Further, the Ce—Zr composite oxide contained in the upper catalyst coat layer preferably has a Ce / Zr atomic ratio of less than 1.

本発明の排ガス浄化用触媒は、少なくともCe−Zr複合酸化物を含む担体にPdが担持された下触媒コート層を有している。担体に少なくともCe−Zr複合酸化物を含むことで、その酸素吸放出能によってPdからより活性の高いPdO が生成し、Ptに準じた高い酸化活性が発現される。またPdはRhに比べて耐熱性が低いが、PdO となること、及び排ガスの熱が伝わりにくい下層に担持したことで、Pdの粒成長が抑制される。したがって下触媒コート層によって、高温耐久後も高い酸化活性が発現される。   The exhaust gas purifying catalyst of the present invention has a lower catalyst coat layer in which Pd is supported on a carrier containing at least a Ce-Zr composite oxide. By containing at least the Ce-Zr composite oxide in the support, PdO having higher activity is generated from Pd by its oxygen absorption / release ability, and high oxidation activity according to Pt is expressed. Although Pd has lower heat resistance than Rh, it becomes PdO 2 and is supported on the lower layer where the heat of the exhaust gas is difficult to transmit, thereby suppressing Pd grain growth. Accordingly, the lower catalyst coat layer exhibits high oxidation activity even after high temperature durability.

一方の上触媒コート層では、ジルコニア及びCe−Zr複合酸化物の少なくとも一方からなる担体にRhが担持されている。ジルコニア及びCe−Zr複合酸化物の少なくとも一方からなる担体は耐熱性に優れ、それに担持されたRhも粒成長が抑制されている。したがって、排ガスの熱が直接的に伝わる上触媒コート層においても、高温耐久時における浄化活性の低下の度合いが小さく、高温耐久後もRhの高い還元活性が発現される。   In one upper catalyst coat layer, Rh is supported on a support made of at least one of zirconia and Ce—Zr composite oxide. A carrier composed of at least one of zirconia and Ce-Zr composite oxide is excellent in heat resistance, and Rh supported thereon also suppresses grain growth. Therefore, even in the upper catalyst coat layer in which the heat of exhaust gas is directly transmitted, the degree of reduction in purification activity during high temperature durability is small, and reduction activity with high Rh is exhibited even after high temperature durability.

すなわち本発明の排ガス浄化用触媒によれば、Ptを用いずして高温耐久後にPtを用いた場合より高い浄化活性が発現される。   That is, according to the exhaust gas purifying catalyst of the present invention, higher purifying activity is exhibited than when Pt is used after high temperature durability without using Pt.

そして下触媒コート層にCe/Zr原子比が1より大きなCe−Zr複合酸化物を用いれば、酸素吸放出能がさらに高まるためにPdはよりPdO となり易い。したがってPdの粒成長がさらに抑制されるとともに、Pdによる酸化活性がさらに向上する。   If a Ce—Zr composite oxide having a Ce / Zr atomic ratio greater than 1 is used for the lower catalyst coat layer, the oxygen absorption / release capability is further increased, so that Pd is more likely to become PdO 2. Therefore, the grain growth of Pd is further suppressed and the oxidation activity by Pd is further improved.

また上触媒コート層にCe/Zr原子比が1より小さなCe−Zr複合酸化物を用いれば、浄化活性の耐久性がさらに向上する。これは、Rhの安定性がさらに向上するためと考えられている。   Further, if a Ce—Zr composite oxide having a Ce / Zr atomic ratio smaller than 1 is used for the upper catalyst coat layer, the durability of the purification activity is further improved. This is considered to further improve the stability of Rh.

本発明の排ガス浄化用触媒は、担体基材と、担体基材の表面に形成された下触媒コート層と、下触媒コート層の表面に形成された上触媒コート層と、からなる。   The exhaust gas purifying catalyst of the present invention comprises a support substrate, a lower catalyst coat layer formed on the surface of the support substrate, and an upper catalyst coat layer formed on the surface of the lower catalyst coat layer.

担体基材としては、コージェライトなどの耐熱性酸化物から形成されたモノリスハニカム基材、メタルから形成されたメタルハニカム基材などを用いることができる。その形状は、ハニカム形状の他にフォーム形状、ペレット形状などとすることもできる。   As the carrier substrate, a monolith honeycomb substrate formed from a heat-resistant oxide such as cordierite, a metal honeycomb substrate formed from metal, and the like can be used. In addition to the honeycomb shape, the shape may be a foam shape, a pellet shape, or the like.

担体基材の表面に形成された下触媒コート層は、少なくともCe−Zr複合酸化物を含む担体にPdが担持されてなる。この担体は少なくともCe−Zr複合酸化物を含むものであり、Ce−Zr複合酸化物のみから担体を構成することもできる。しかしCe−Zr複合酸化物は活性アルミナなどに比べて比表面積が小さいので、所望の量のPdを担持するのが困難となる場合が考えられる。このような場合には、活性アルミナなど比表面積の大きな多孔質酸化物を併用してもよい。   The lower catalyst coat layer formed on the surface of the support substrate is formed by supporting Pd on a support containing at least a Ce-Zr composite oxide. This support contains at least the Ce—Zr composite oxide, and the support can be composed of only the Ce—Zr composite oxide. However, Ce-Zr composite oxide has a specific surface area smaller than that of activated alumina or the like, and it may be difficult to support a desired amount of Pd. In such a case, a porous oxide having a large specific surface area such as activated alumina may be used in combination.

しかしながら活性アルミナなどの量が多くなるにつれて担体全体としての酸素吸放出能が低下するので、Ce−Zr複合化酸化物の量は担体の20重量%以上とすることが望ましい。またPdは全体の20質量%以上がCe−Zr複合化酸化物に担持されていることが望ましい。   However, as the amount of activated alumina or the like increases, the oxygen absorption / release capability of the entire support decreases, so the amount of Ce—Zr composite oxide is preferably 20% by weight or more of the support. Further, it is preferable that 20% by mass or more of Pd is supported on the Ce—Zr composite oxide.

下触媒コート層に用いられるCe−Zr複合酸化物は、Ce/Zr原子比が1より大きいことが好ましい。すなわち質量%に換算すれば、Ce−Zr複合酸化物中にセリアが58.3質量%を超える量で含まれていることが望ましい。このようにセリアが多いCe−Zr複合酸化物を用いることで、酸素吸放出能がより高まる。したがってPdからPdO がより生成し易くなり、Pdの酸化活性がさらに向上するとともに、高温耐久時のPdの粒成長がより抑制される。   The Ce-Zr composite oxide used for the lower catalyst coat layer preferably has a Ce / Zr atomic ratio of greater than 1. That is, in terms of mass%, it is desirable that ceria is contained in the Ce-Zr composite oxide in an amount exceeding 58.3 mass%. By using such a Ce-Zr composite oxide with a large amount of ceria, the oxygen absorption / release capability is further enhanced. Therefore, PdO is more easily generated from Pd, the oxidation activity of Pd is further improved, and the grain growth of Pd during high temperature durability is further suppressed.

下触媒コート層に用いられるCe−Zr複合酸化物中のセリアは、95質量%以下であることが望ましい。セリアが95質量%を超えるとCe−Zr複合酸化物の熱安定性が低下するため、担持されているPdの粒成長が生じ易くなり高温耐久性が低下する。またCe−Zr複合酸化物には、Nd、Y、La、Prなどの希土類元素の酸化物が含まれていてもよい。このような酸化物を含むことで、Ce−Zr複合酸化物の熱安定性がさらに向上する。なお、この場合でも、セリアは55質量%以上含まれていることが望ましい。   The ceria in the Ce—Zr composite oxide used for the lower catalyst coat layer is desirably 95% by mass or less. When ceria exceeds 95% by mass, the thermal stability of the Ce-Zr composite oxide is lowered, so that the grain growth of the supported Pd is likely to occur and the high temperature durability is lowered. Further, the Ce-Zr composite oxide may contain rare earth element oxides such as Nd, Y, La, and Pr. By including such an oxide, the thermal stability of the Ce—Zr composite oxide is further improved. Even in this case, it is desirable that ceria is contained in an amount of 55% by mass or more.

下触媒コート層に担持されるPdの担持量は、触媒の見掛けの体積1L当たり 0.1〜20gの範囲とすることが好ましい。なお「見掛けの体積」とは、ペレット形状の担体基材の場合には真の体積をいい、ハニカム形状の担体基材の場合にはセル通路の容積も含めた体積をいう。Pdの担持量が 0.1g/Lより少ないと初期の浄化活性が十分でなく、20g/Lを超えて担持しても浄化性能が飽和して無駄なPdを担持することになる。   The amount of Pd supported on the lower catalyst coat layer is preferably in the range of 0.1 to 20 g per liter of the apparent volume of the catalyst. The “apparent volume” means a true volume in the case of a pellet-shaped carrier substrate, and a volume including the volume of a cell passage in the case of a honeycomb-shaped carrier substrate. If the loading amount of Pd is less than 0.1 g / L, the initial purification activity is not sufficient, and even if the loading exceeds 20 g / L, the purification performance is saturated and wasteful Pd is loaded.

下触媒コート層の表面に形成された上触媒コート層は、ジルコニア及びCe−Zr複合酸化物の少なくとも一方からなる担体にRhが担持されてなる。ジルコニアのみあるいはCe−Zr複合酸化物のみからなる担体を用いてもよいし、ジルコニアとCe−Zr複合酸化物との混合物からなる担体を用いることもできる。少なくともジルコニアを含む担体を用いることで、Rhによる水蒸気改質反応の活性が向上し、NOx の還元活性が向上する。なおアルミナなど他の多孔質酸化物を用いると、Rhの固溶によって活性が大幅に低下するので、他の多孔質酸化物は用いるべきでない。しかしバインダ成分として不可避に含まれるアルミナなどは、この限りではない。 The upper catalyst coat layer formed on the surface of the lower catalyst coat layer is formed by supporting Rh on a carrier made of at least one of zirconia and Ce-Zr composite oxide. A support made of only zirconia or a Ce-Zr composite oxide may be used, or a support made of a mixture of zirconia and Ce-Zr composite oxide may be used. By using a carrier containing at least zirconia, the activity of the steam reforming reaction by Rh is improved, and the reduction activity of NO x is improved. If other porous oxides such as alumina are used, the activity is greatly reduced by the solid solution of Rh, so other porous oxides should not be used. However, alumina, which is inevitably included as a binder component, is not limited to this.

上触媒コート層に用いられるCe−Zr複合酸化物は、Ce/Zr原子比が1より小さいことが好ましい。すなわち質量%に換算すれば、Ce−Zr複合酸化物中にジルコニアが41.7質量%を超える量で含まれていることが望ましい。このようにジルコニアが多いCe−Zr複合酸化物を用いることで、Rhによる水蒸気改質反応の活性が向上する。   The Ce-Zr composite oxide used for the upper catalyst coat layer preferably has a Ce / Zr atomic ratio of less than 1. That is, in terms of mass%, it is desirable that zirconia is contained in the Ce-Zr composite oxide in an amount exceeding 41.7 mass%. Thus, the activity of the steam reforming reaction by Rh is improved by using the Ce-Zr composite oxide containing a large amount of zirconia.

また上触媒コート層のCe−Zr複合酸化物には、Nd、Y、La、Prなどの希土類元素の酸化物が含まれていてもよい。このような酸化物を含むことで、Ce−Zr複合酸化物の熱安定性がさらに向上する。なお、この場合でも、ジルコニアは35質量%以上含まれていることが望ましい。   Further, the Ce—Zr composite oxide of the upper catalyst coat layer may contain an oxide of rare earth elements such as Nd, Y, La, and Pr. By including such an oxide, the thermal stability of the Ce—Zr composite oxide is further improved. Even in this case, it is desirable that zirconia is contained in an amount of 35% by mass or more.

上触媒コート層に担持されるRhの担持量は、触媒の見掛けの体積1L当たり0.01〜5gの範囲とすることが好ましい。Rhの担持量が0.01g/Lより少ないと初期の浄化活性が十分でなく、5g/Lを超えて担持しても浄化性能が飽和して無駄なRhを担持することになる。   The amount of Rh supported on the upper catalyst coat layer is preferably in the range of 0.01 to 5 g per 1 L of the apparent volume of the catalyst. If the loading amount of Rh is less than 0.01 g / L, the initial purification activity is not sufficient, and even if the loading exceeds 5 g / L, the purification performance is saturated and wasteful Rh is loaded.

下触媒コート層及び上触媒コート層の形成量は特に制限されないが、例えばハニカム形状の担体基材の場合には、それぞれ担体基材の見掛けの体積1L当たり5〜 300gの範囲とし、下触媒コート層及び上触媒コート層の合計量が担体基材の見掛けの体積1L当たり 400g以下の範囲とすることが好ましい。下触媒コート層及び上触媒コート層のそれぞれのコート量が上記範囲より少ないと担持された貴金属が粒成長する場合がある。また合計コート量が上記範囲を超えると、排気圧損の上昇を招く。   The amount of formation of the lower catalyst coat layer and the upper catalyst coat layer is not particularly limited. For example, in the case of a honeycomb-shaped carrier substrate, the lower catalyst coat layer is in the range of 5 to 300 g per 1 L apparent volume of the carrier substrate. The total amount of the layer and the upper catalyst coat layer is preferably in the range of 400 g or less per 1 L of the apparent volume of the support substrate. If the coating amount of each of the lower catalyst coat layer and the upper catalyst coat layer is less than the above range, the supported noble metal may grow. If the total coating amount exceeds the above range, the exhaust pressure loss will increase.

以下、実施例及び比較例により本発明を具体的に説明する。なお以下の記述では、Ce/Zr原子比が1より小さなCe−Zr複合酸化物をZr−Ce複合酸化物粉末と表記し、Ce/Zr原子比が1より大きなCe−Zr複合酸化物と区別する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following description, a Ce-Zr composite oxide having a Ce / Zr atomic ratio of less than 1 is referred to as a Zr-Ce composite oxide powder and distinguished from a Ce-Zr composite oxide having a Ce / Zr atomic ratio of greater than 1. To do.

表1に、各実施例及び各比較例の触媒の構成をまとめて示す。   In Table 1, the structure of the catalyst of each Example and each comparative example is shown collectively.

Figure 2009000648
Figure 2009000648

(実施例1)
市販のCe−Zr複合酸化物粉末(セリア:60重量%)の所定量に対し、所定濃度の硝酸パラジウム水溶液の所定量を含浸させ、 120℃で一晩乾燥後 500℃で2時間焼成してPdを担持したPd/CZ粉末を調製した。
(Example 1)
A predetermined amount of a commercially available Ce-Zr composite oxide powder (ceria: 60% by weight) is impregnated with a predetermined amount of a palladium nitrate aqueous solution having a predetermined concentration, dried overnight at 120 ° C, and calcined at 500 ° C for 2 hours. Pd / CZ powder carrying Pd was prepared.

このPd/CZ粉末70質量部と、活性アルミナ粉末70質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、下層用スラリーを調製した。   The lower layer slurry was prepared by mixing 70 parts by mass of this Pd / CZ powder, 70 parts by mass of activated alumina powder, alumina sol as a binder and distilled water.

一方、市販のZr−Ce複合酸化物粉末(セリア:20質量%)の所定量に対し、所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、 120℃で一晩乾燥後 500℃で2時間焼成してRhを担持したRh/ZC粉末を調製した。Rh/ZC粉末におけるRhの担持量は 0.4質量%である。   Meanwhile, a predetermined amount of a commercially available Zr-Ce composite oxide powder (ceria: 20% by mass) is impregnated with a predetermined amount of a rhodium nitrate aqueous solution of a predetermined concentration, dried at 120 ° C overnight, and then fired at 500 ° C for 2 hours. Thus, Rh / ZC powder carrying Rh was prepared. The amount of Rh supported in the Rh / ZC powder is 0.4% by mass.

このRh/ZC粉末60質量部と、活性アルミナ粉末60質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、上層用スラリーを調製した。   The upper layer slurry was prepared by mixing 60 parts by mass of the Rh / ZC powder, 60 parts by mass of the activated alumina powder, alumina sol as a binder and distilled water.

次に、コージェライト製ハニカム形状の担体基材(直径 103mm、長さ 105mm、セル密度 600cpsi)を用意し、先ず下層用スラリーをウォッシュコートし 120℃で2時間乾燥後 500℃で2時間焼成して下触媒コート層を形成した。下触媒コート層は、担体基材の1Lあたり 150g形成された。   Next, prepare a cordierite honeycomb-shaped carrier substrate (diameter 103 mm, length 105 mm, cell density 600 cpsi), wash the lower layer slurry first, dry at 120 ° C for 2 hours, and then fire at 500 ° C for 2 hours. Thus, a lower catalyst coat layer was formed. The lower catalyst coat layer was formed in an amount of 150 g per liter of the carrier substrate.

次いで上層用スラリーをウォッシュコートし 120℃で2時間乾燥後 500℃で2時間焼成して、下触媒コート層の表面に上触媒コート層を形成した。上触媒コート層は、担体基材の1Lあたり 130g形成された。   Next, the upper layer slurry was wash coated, dried at 120 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours to form an upper catalyst coat layer on the surface of the lower catalyst coat layer. The upper catalyst coat layer was formed in an amount of 130 g per liter of the carrier substrate.

こうして得られた実施例1の三元触媒は、図1に示すように、担体基材1の表面にPdを担持した下触媒コート層2が形成され、下触媒コート層2の表面にRhを担持した上触媒コート層3が形成されている。Pdの担持量は担体基材の1Lあたり3gであり、Rhの担持量は担体基材の1Lあたり 0.4gである。   In the three-way catalyst of Example 1 obtained in this way, as shown in FIG. 1, the lower catalyst coat layer 2 supporting Pd was formed on the surface of the carrier substrate 1, and Rh was added to the surface of the lower catalyst coat layer 2. A supported upper catalyst coat layer 3 is formed. The amount of Pd supported is 3 g per liter of the carrier substrate, and the amount of Rh supported is 0.4 g per liter of the carrier substrate.

(比較例1)
市販のZr−Ce複合酸化物粉末(セリア:20質量%)の所定量に対し、所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、 120℃で一晩乾燥後 500℃で2時間焼成してRhを担持したRh/ZC粉末を調製した。
(Comparative Example 1)
A predetermined amount of a commercially available Zr—Ce composite oxide powder (ceria: 20% by mass) is impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration, dried at 120 ° C. overnight, and then calcined at 500 ° C. for 2 hours. Rh / ZC powder carrying Rh was prepared.

次に、Rh/ZC粉末の所定量に対し、所定濃度の硝酸パラジウム水溶液の所定量を含浸させ、 120℃で一晩乾燥後 500℃で2時間焼成してPdを担持したPd−Rh/ZC粉末を調製した。   Next, a predetermined amount of palladium nitrate aqueous solution having a predetermined concentration is impregnated with a predetermined amount of Rh / ZC powder, dried at 120 ° C. overnight and then calcined at 500 ° C. for 2 hours to carry Pd—Rh / ZC carrying Pd. A powder was prepared.

そしてこのPd−Rh/ZC粉末 130質量部と、活性アルミナ粉末 130質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、スラリーを調製した。   Then, 130 parts by mass of this Pd—Rh / ZC powder, 130 parts by mass of activated alumina powder, alumina sol as a binder and distilled water were mixed to prepare a slurry.

次いで実施例1と同様の担体基材にこのスラリーをウォッシュコートし、 120℃で2時間乾燥後 500℃で2時間焼成して、RhとPdが共存担持された触媒コート層を形成した。触媒コート層は、担体基材の1Lあたり 280g形成された。Rh及びPdの担持量は、実施例1と同一である。   Next, this slurry was wash-coated on the same carrier substrate as in Example 1, dried at 120 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours to form a catalyst coat layer in which Rh and Pd were co-supported. The catalyst coat layer was formed in an amount of 280 g per liter of the carrier substrate. The amount of Rh and Pd supported is the same as in Example 1.

(比較例2)
下層用スラリー及び上層用スラリーに、それぞれさらにジニトロジアンミン白金硝酸水溶液を混合したこと以外は実施例1と同様にして、下触媒コート層及び上触媒コート層を同量形成した。Pdの担持量は担体基材の1Lあたり3gであり、Rhの担持量は担体基材の1Lあたり 0.4gであり、Ptの担持量は担体基材の1Lあたり 1.5gである。
(Comparative Example 2)
The same amount of the lower catalyst coat layer and the upper catalyst coat layer was formed in the same manner as in Example 1 except that the lower layer slurry and the upper layer slurry were further mixed with a dinitrodiammineplatinum nitrate aqueous solution, respectively. The amount of Pd supported is 3 g per liter of the carrier substrate, the amount of Rh supported is 0.4 g per liter of the carrier substrate, and the amount of Pt supported is 1.5 g per liter of the carrier substrate.

<試験例1>
実施例1と比較例1−2の触媒をストイキ〜リーン雰囲気(A/F ≒15)で燃焼されるガソリンエンジンの排気系にそれぞれ設置し、触媒床温度 950℃で50時間保持する高温耐久試験を行った。次いで、耐久試験後の各触媒について、ストイキ雰囲気にて 200℃〜 450℃(昇温速度10℃/分)の昇温時におけるHC、CO及びNOx の浄化率を連続的に測定し、それぞれの50%浄化温度を測定した。結果を図2に示す。
<Test Example 1>
Example 1 and Comparative Example 1-2 were installed in the exhaust system of a gasoline engine burned in a stoichiometric to lean atmosphere (A / F ≈ 15), respectively, and maintained at a catalyst bed temperature of 950 ° C for 50 hours. Went. Next, for each catalyst after the endurance test, the purification rate of HC, CO and NO x at the time of temperature increase from 200 ° C. to 450 ° C. (temperature increase rate: 10 ° C./min) in a stoichiometric atmosphere was continuously measured. The 50% purification temperature was measured. The results are shown in FIG.

図2から、実施例1の触媒は比較例1−2の触媒に比べて高温耐久後の浄化性能が高いことが明らかである。つまり実施例1と比較例1との対比から、RhとPdを共存担持するより二層に分離して担持した方が高温耐久性に優れ、実施例1と比較例2との対比から、Ptを含まない方が高温耐久性に優れることが明らかである。   From FIG. 2, it is clear that the catalyst of Example 1 has a higher purification performance after endurance at high temperatures than the catalyst of Comparative Example 1-2. That is, from the comparison between Example 1 and Comparative Example 1, it is better to carry Rh and Pd separated and supported in two layers, and the high temperature durability is superior. From the comparison between Example 1 and Comparative Example 2, Pt It is clear that the high temperature durability is superior when no is contained.

(実施例2)
Zr−Ce複合酸化物粉末(セリア:20質量%)に代えてジルコニア粉末を用いたこと以外は実施例1と同様にして、上層用スラリーを調製した。この上層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
(Example 2)
An upper layer slurry was prepared in the same manner as in Example 1 except that zirconia powder was used instead of the Zr-Ce composite oxide powder (ceria: 20% by mass). A three-way catalyst was prepared in the same manner as in Example 1 except that this upper layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例3)
Zr−Ce複合酸化物粉末(セリア:20質量%)に代えてZr−Ce複合酸化物粉末(セリア:10質量%)を用いたこと以外は実施例1と同様にして、上層用スラリーを調製した。この上層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
(Example 3)
An upper layer slurry was prepared in the same manner as in Example 1 except that the Zr-Ce composite oxide powder (ceria: 10% by mass) was used instead of the Zr-Ce composite oxide powder (ceria: 20% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this upper layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例4)
Zr−Ce複合酸化物粉末(セリア:20質量%)に代えてZr−Ce複合酸化物粉末(セリア:40質量%)を用いたこと以外は実施例1と同様にして、上層用スラリーを調製した。この上層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
Example 4
An upper layer slurry was prepared in the same manner as in Example 1 except that the Zr-Ce composite oxide powder (ceria: 40% by mass) was used instead of the Zr-Ce composite oxide powder (ceria: 20% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this upper layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例5)
Zr−Ce複合酸化物粉末(セリア:20質量%)に代えてZr−Ce複合酸化物粉末(セリア:50質量%)を用いたこと以外は実施例1と同様にして、上層用スラリーを調製した。この上層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
(Example 5)
An upper layer slurry was prepared in the same manner as in Example 1 except that the Zr-Ce composite oxide powder (ceria: 50% by mass) was used instead of the Zr-Ce composite oxide powder (ceria: 20% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this upper layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例6)
Ce−Zr複合酸化物粉末(セリア:60質量%)に代えてCe−Zr複合酸化物粉末(セリア:50質量%)を用いたこと以外は実施例1と同様にして、下層用スラリーを調製した。この下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
(Example 6)
A lower layer slurry was prepared in the same manner as in Example 1 except that Ce-Zr composite oxide powder (ceria: 50% by mass) was used instead of Ce-Zr composite oxide powder (ceria: 60% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例7)
Ce−Zr複合酸化物粉末(セリア:60質量%)に代えてCe−Zr複合酸化物粉末(セリア:70質量%)を用いたこと以外は実施例1と同様にして、下層用スラリーを調製した。この下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
(Example 7)
A slurry for the lower layer was prepared in the same manner as in Example 1 except that Ce-Zr composite oxide powder (ceria: 70% by mass) was used instead of Ce-Zr composite oxide powder (ceria: 60% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例8)
Ce−Zr複合酸化物粉末(セリア:60質量%)に代えてCe−Zr複合酸化物粉末(セリア:80質量%)を用いたこと以外は実施例1と同様にして、下層用スラリーを調製した。この下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
(Example 8)
A lower layer slurry was prepared in the same manner as in Example 1 except that Ce-Zr composite oxide powder (ceria: 80% by mass) was used instead of Ce-Zr composite oxide powder (ceria: 60% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例9)
Ce−Zr複合酸化物粉末(セリア:60質量%)に代えてCe−Zr複合酸化物粉末(セリア:90質量%)を用いたこと以外は実施例1と同様にして、下層用スラリーを調製した。この下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。Rh及びPdの担持量は、実施例1と同一である。
Example 9
A lower layer slurry was prepared in the same manner as in Example 1 except that Ce-Zr composite oxide powder (ceria: 90% by mass) was used instead of Ce-Zr composite oxide powder (ceria: 60% by mass). did. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used. The amount of Rh and Pd supported is the same as in Example 1.

(実施例10)
活性アルミナ粉末の所定量に所定濃度の硝酸パラジウム水溶液の所定量を含浸させ、 120℃で一晩乾燥後 500℃で2時間焼成して、Pdを担持したPd/Al2O3 粉末を調製した。
(Example 10)
A predetermined amount of palladium nitrate aqueous solution having a predetermined concentration was impregnated into a predetermined amount of activated alumina powder, dried at 120 ° C. overnight and then calcined at 500 ° C. for 2 hours to prepare Pd / Al 2 O 3 powder supporting Pd. .

次に実施例1と同様に調製されたPd/CZ粉末70質量部と、Pd/Al2O3 粉末70質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、下層用スラリーを調製した。実施例1で用いた下層用スラリーに代えてこの下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。 Next, 70 parts by mass of Pd / CZ powder prepared in the same manner as in Example 1, 70 parts by mass of Pd / Al 2 O 3 powder, alumina sol as a binder and distilled water were mixed to prepare a lower layer slurry. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used instead of the lower layer slurry used in Example 1.

Rh及びPdの担持量は、実施例1と同一である。また下触媒コート層におけるPdは、Ce−Zr複合酸化物粉末と Al2O3粉末とに同量ずつ担持されている。 The amount of Rh and Pd supported is the same as in Example 1. Further, Pd in the lower catalyst coat layer is supported on the Ce-Zr composite oxide powder and the Al 2 O 3 powder by the same amount.

(実施例11)
実施例1と同様に調製されたPd/CZ粉末20質量部と、実施例8と同様に調製されたPd/Al2O3 粉末80質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、下層用スラリーを調製した。実施例1で用いた下層用スラリーに代えてこの下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。
(Example 11)
20 parts by mass of Pd / CZ powder prepared in the same manner as in Example 1, 80 parts by mass of Pd / Al 2 O 3 powder prepared in Example 8, and alumina sol as a binder and distilled water were mixed. A slurry for the lower layer was prepared. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used instead of the lower layer slurry used in Example 1.

Rh及びPdの担持量は、実施例1と同一である。また下触媒コート層におけるPdは、Ce−Zr複合酸化物粉末に20%が担持され、 Al2O3粉末に80%が担持されている。 The amount of Rh and Pd supported is the same as in Example 1. In the lower catalyst coat layer, 20% of Pd is supported on the Ce—Zr composite oxide powder and 80% is supported on the Al 2 O 3 powder.

(比較例3)
活性アルミナ粉末の所定量に所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、 120℃で一晩乾燥後 500℃で2時間焼成して、Rhを担持したRh/Al2O3 粉末を調製した。
(Comparative Example 3)
Rh / Al 2 O 3 powder supporting Rh was prepared by impregnating a predetermined amount of an active alumina powder with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration, drying at 120 ° C. overnight, and firing at 500 ° C. for 2 hours. .

次に実施例1と同様のZr−Ce複合酸化物粉末(セリア:20質量%)60質量部と、このRh/Al2O3 粉末60質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、上層用スラリーを調製した。実施例1で用いた上層用スラリーに代えてこの上層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。 Next, 60 parts by mass of the same Zr—Ce composite oxide powder (ceria: 20% by mass) as in Example 1, 60 parts by mass of this Rh / Al 2 O 3 powder, alumina sol as a binder and distilled water were mixed. A slurry for the upper layer was prepared. A three-way catalyst was prepared in the same manner as in Example 1 except that this upper layer slurry was used instead of the upper layer slurry used in Example 1.

Rh及びPdの担持量は、実施例1と同一である。また上触媒コート層におけるRhは、全量が Al2O3粉末に担持されている。 The amount of Rh and Pd supported is the same as in Example 1. The total amount of Rh in the upper catalyst coat layer is supported on Al 2 O 3 powder.

(比較例4)
実施例1と同様に調製されたRh/ZC粉末60質量部と、比較例3と同様に調製されたRh/Al2O3 粉末60質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、上層用スラリーを調製した。実施例1で用いた上層用スラリーに代えてこの上層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。
(Comparative Example 4)
60 parts by mass of Rh / ZC powder prepared in the same manner as in Example 1, 60 parts by mass of Rh / Al 2 O 3 powder prepared in the same manner as in Comparative Example 3, alumina sol as a binder and distilled water were mixed. An upper layer slurry was prepared. A three-way catalyst was prepared in the same manner as in Example 1 except that this upper layer slurry was used instead of the upper layer slurry used in Example 1.

Rh及びPdの担持量は、実施例1と同一である。また上触媒コート層におけるRhは、Zr−Ce複合酸化物粉末と Al2O3粉末とに同量ずつ担持されている。 The amount of Rh and Pd supported is the same as in Example 1. Further, the same amount of Rh is supported on the Zr—Ce composite oxide powder and the Al 2 O 3 powder in the upper catalyst coat layer.

(比較例5)
実施例1と同様のCe−Zr複合酸化物粉末(セリア:60質量%)70質量部と、実施例10と同様に調製されたPd/Al2O3 粉末70質量部と、バインダとしてのアルミナゾル及び蒸留水を混合し、下層用スラリーを調製した。実施例1で用いた下層用スラリーに代えてこの下層用スラリーを用いたこと以外は実施例1と同様にして、三元触媒を調製した。
(Comparative Example 5)
70 parts by mass of Ce-Zr composite oxide powder (ceria: 60% by mass) similar to Example 1, 70 parts by mass of Pd / Al 2 O 3 powder prepared in the same manner as Example 10, and alumina sol as a binder And distilled water was mixed and the slurry for lower layers was prepared. A three-way catalyst was prepared in the same manner as in Example 1 except that this lower layer slurry was used instead of the lower layer slurry used in Example 1.

Rh及びPdの担持量は、実施例1と同一である。また下触媒コート層におけるPdは、全量が Al2O3粉末に担持されている。 The amount of Rh and Pd supported is the same as in Example 1. Further, the entire amount of Pd in the lower catalyst coat layer is supported on Al 2 O 3 powder.

<試験例2>
実施例1〜11及び比較例3〜5の触媒について、それぞれ試験例1と同様にして高温耐久試験を行い、高温耐久後の各触媒について、試験例1と同様にして50%浄化温度を測定した。結果を図4〜図7に示す。
<Test Example 2>
The catalysts of Examples 1 to 11 and Comparative Examples 3 to 5 were subjected to a high temperature durability test in the same manner as in Test Example 1, and the 50% purification temperature was measured in the same manner as in Test Example 1 for each catalyst after the high temperature durability. did. The results are shown in FIGS.

図4は実施例1〜5の結果を示し、上触媒コート層のZr−Ce複合酸化物中のセリア量と50%浄化温度との関係を示している。図4から、上触媒コート層のZr−Ce複合酸化物中のセリア量は、40質量%未満が好ましいこと、つまりジルコニア量が60質量%以上が好ましいことがわかる。   FIG. 4 shows the results of Examples 1 to 5, and shows the relationship between the amount of ceria in the Zr—Ce composite oxide of the upper catalyst coat layer and the 50% purification temperature. 4 that the amount of ceria in the Zr—Ce composite oxide of the upper catalyst coating layer is preferably less than 40% by mass, that is, the amount of zirconia is preferably 60% by mass or more.

また図5は実施例1及び実施例6〜9の結果を示し、触媒コート層のCe−Zr複合酸化物中のセリア量と50%浄化温度との関係を示している。図5から、下触媒コート層のCe−Zr複合酸化物中のセリア量は、60質量%〜90質量%の範囲が望ましいことがわかる。   FIG. 5 shows the results of Example 1 and Examples 6 to 9, and shows the relationship between the amount of ceria in the Ce—Zr composite oxide of the catalyst coat layer and the 50% purification temperature. FIG. 5 shows that the amount of ceria in the Ce—Zr composite oxide of the lower catalyst coat layer is preferably in the range of 60 mass% to 90 mass%.

図6は、実施例1、実施例10〜11及び比較例5の結果を示し、Pdを担持した担体の種類による影響を示している。図6から、 Al2O3粉末に担持されたPdの割合が高くなるにつれて高温耐久後の活性が低下することがわかり、下触媒コート層におけるPdはCe−Zr複合酸化物粉末に担持するのが望ましいことがわかる。 FIG. 6 shows the results of Example 1, Examples 10 to 11 and Comparative Example 5, and shows the influence of the type of the carrier supporting Pd. FIG. 6 shows that the activity after high-temperature durability decreases as the proportion of Pd supported on the Al 2 O 3 powder increases. Pd in the lower catalyst coat layer is supported on the Ce-Zr composite oxide powder. It turns out that is desirable.

本発明の一実施例に係る排ガス浄化用触媒の要部を拡大して示す模式的な断面図である。It is typical sectional drawing which expands and shows the principal part of the catalyst for exhaust gas purification which concerns on one Example of this invention. 50%浄化温度を示すグラフである。It is a graph which shows 50% purification temperature. 上触媒コート層におけるCeO2量と50%浄化温度との関係を示すグラフである。Is a graph showing the relationship between the amount of CeO 2 and 50% purification temperatures in the upper catalyst coating layer. 下触媒コート層におけるCeO2量と50%浄化温度との関係を示すグラフである。Is a graph showing the relationship between the amount of CeO 2 and 50% purification temperature of lower catalyst coating layer. 50%浄化温度を示すグラフである。It is a graph which shows 50% purification temperature. 50%浄化温度を示すグラフである。It is a graph which shows 50% purification temperature.

符号の説明Explanation of symbols

1:担体基材 2:下触媒コート層 3:上触媒コート層   1: Support base material 2: Lower catalyst coat layer 3: Upper catalyst coat layer

Claims (3)

担体基材と、該担体基材の表面に形成された下触媒コート層と、該下触媒コート層の表面に形成された上触媒コート層と、からなる排ガス浄化用触媒であって、
該下触媒コート層は少なくともセリア−ジルコニア複合酸化物を含む担体にパラジウムが担持されてなる触媒粉末を含み、該上触媒コート層はジルコニア及びセリア−ジルコニア複合酸化物の少なくとも一方からなる担体にロジウムが担持されてなる触媒粉末を含むことを特徴とする排ガス浄化用触媒。
An exhaust gas purification catalyst comprising: a carrier substrate; a lower catalyst coat layer formed on the surface of the carrier substrate; and an upper catalyst coat layer formed on the surface of the lower catalyst coat layer,
The lower catalyst coat layer includes a catalyst powder in which palladium is supported on a carrier containing at least a ceria-zirconia composite oxide, and the upper catalyst coat layer is rhodium on a carrier made of at least one of zirconia and ceria-zirconia composite oxide. A catalyst for purification of exhaust gas, comprising a catalyst powder on which is supported.
前記下触媒コート層中に含まれたセリア−ジルコニア複合酸化物はCe/Zr原子比が1より大きい請求項1に記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to claim 1, wherein the ceria-zirconia composite oxide contained in the lower catalyst coat layer has a Ce / Zr atomic ratio larger than 1. 前記上触媒コート層中に含まれるセリア−ジルコニア複合酸化物はCe/Zr原子比が1より小さい請求項1に記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to claim 1, wherein the ceria-zirconia composite oxide contained in the upper catalyst coat layer has a Ce / Zr atomic ratio smaller than 1.
JP2007165259A 2007-06-22 2007-06-22 Exhaust gas cleaning catalyst Pending JP2009000648A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007165259A JP2009000648A (en) 2007-06-22 2007-06-22 Exhaust gas cleaning catalyst
PCT/JP2008/061050 WO2009001715A1 (en) 2007-06-22 2008-06-17 Catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165259A JP2009000648A (en) 2007-06-22 2007-06-22 Exhaust gas cleaning catalyst

Publications (1)

Publication Number Publication Date
JP2009000648A true JP2009000648A (en) 2009-01-08

Family

ID=40185533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165259A Pending JP2009000648A (en) 2007-06-22 2007-06-22 Exhaust gas cleaning catalyst

Country Status (2)

Country Link
JP (1) JP2009000648A (en)
WO (1) WO2009001715A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188224A (en) * 2009-02-16 2010-09-02 Mazda Motor Corp Catalyst for cleaning exhaust gas
WO2010109734A1 (en) 2009-03-25 2010-09-30 本田技研工業株式会社 Exhaust gas purifying catalyst for saddle type vehicle
JP2011136319A (en) * 2010-01-04 2011-07-14 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2011183317A (en) * 2010-03-09 2011-09-22 Mazda Motor Corp Exhaust gas cleaning catalyst
WO2012120349A1 (en) 2011-03-10 2012-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
KR20150021995A (en) * 2012-06-06 2015-03-03 우미코레 아게 운트 코 카게 Start-up catalyst for use upstream of a gasoline particulate filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079403A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2006205050A (en) * 2005-01-27 2006-08-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006326527A (en) * 2005-05-27 2006-12-07 Cataler Corp Catalyst for exhaust gas purification

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615040B2 (en) * 1987-07-06 1994-03-02 株式会社豊田中央研究所 Exhaust purification catalyst
JP3235640B2 (en) * 1995-11-09 2001-12-04 株式会社アイシーティー Internal combustion engine exhaust gas purification catalyst
JPH10296085A (en) * 1997-04-30 1998-11-10 Cataler Kogyo Kk Exhaust gas-purifying catalyst
JP2003299967A (en) * 2002-04-04 2003-10-21 Toyota Motor Corp Catalyst carrier structure body and exhaust gas cleaning catalyst
JP2007083125A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Catalyst for purifying exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079403A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2006205050A (en) * 2005-01-27 2006-08-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006326527A (en) * 2005-05-27 2006-12-07 Cataler Corp Catalyst for exhaust gas purification

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188224A (en) * 2009-02-16 2010-09-02 Mazda Motor Corp Catalyst for cleaning exhaust gas
WO2010109734A1 (en) 2009-03-25 2010-09-30 本田技研工業株式会社 Exhaust gas purifying catalyst for saddle type vehicle
JP5425888B2 (en) * 2009-03-25 2014-02-26 本田技研工業株式会社 Exhaust gas purification catalyst for saddle riding type vehicles
JP2011136319A (en) * 2010-01-04 2011-07-14 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2011183317A (en) * 2010-03-09 2011-09-22 Mazda Motor Corp Exhaust gas cleaning catalyst
WO2012120349A1 (en) 2011-03-10 2012-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US8796172B2 (en) 2011-03-10 2014-08-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
KR20150021995A (en) * 2012-06-06 2015-03-03 우미코레 아게 운트 코 카게 Start-up catalyst for use upstream of a gasoline particulate filter
JP2015520024A (en) * 2012-06-06 2015-07-16 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Start-up catalyst for use upstream of a gasoline particulate filter
JP2018001161A (en) * 2012-06-06 2018-01-11 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Start-up catalyst for using on upstream side of gasoline particulate filter
KR102068969B1 (en) * 2012-06-06 2020-01-22 우미코레 아게 운트 코 카게 Start-up catalyst for use upstream of a gasoline particulate filter

Also Published As

Publication number Publication date
WO2009001715A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP5807782B2 (en) Exhaust gas purification catalyst
CN108472590B (en) Exhaust gas purification device
JP6999555B2 (en) Catalytic system for dilute gasoline direct injection engine
EP1793914B1 (en) Catalyst for purifying exhaust gases
JP4935219B2 (en) Exhaust gas purification catalyst
JP2009273988A (en) Catalyst for cleaning exhaust gas
JP5218092B2 (en) Exhaust gas purification catalyst
JPWO2017203863A1 (en) Three-way catalyst for purification of gasoline engine exhaust gas
JP2006205050A (en) Catalyst for cleaning exhaust gas
JP6169379B2 (en) Gas purification catalyst for internal combustion engine
JP2003340291A (en) Exhaust gas cleaning catalyst
JP2009273986A (en) Exhaust gas cleaning catalyst
JP2009285604A (en) Catalyst for cleaning exhaust gas
JP2012055842A (en) Exhaust gas purifying catalyst
JP2009000648A (en) Exhaust gas cleaning catalyst
JP3882627B2 (en) Exhaust gas purification catalyst
JP5391664B2 (en) Exhaust gas purification catalyst
JP2006314894A (en) Production method of catalyst for cleaning emission gas
JP5322596B2 (en) Exhaust gas purification catalyst
JP2009050791A (en) Catalyst for purifying exhaust gas
JP5328133B2 (en) Exhaust gas purification catalyst
JP2009248057A (en) Catalyst for exhaust gas purification
JP2006035043A (en) Catalyst for purifying exhaust gas
JP2005279437A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306